ИЗУЧЕНИЕ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ НА АДГЕЗИЮ ПОРОШКОВОГО ПОКРЫТИЯ К СТАЛЬНОЙ ПОЛОСЕ ПРИ ЭЛЕКТРОИМПУЛЬСНОМ ВОЗДЕЙСТВИИ

А.Н. Швецов

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Бобарикин Ю.Л.

Одна из основных проблем, общая для всех областей техники, — повышение надежности и долговечности машин, механизмов и приборов. Главной причиной выхода из строя машин, сокращения срока их службы является износ. Большинство вопросов, решающих эту проблему, связано с устранением износа путем применения специальных покрытий, имеющих высокую износостойкость. Особое место занимают порошковые композиционные материалы и покрытия, позволяющие получать широкий диапазон эксплуатационных свойств.

Одним из перспективных методов нанесения износостойких порошковых покрытий является метод электроимпульсного спекания. Он заключается в электроконтактном припекании порошкового материала к поверхности стальной полосы. В зону припекания порошок подается в свободно насыпанном состоянии, где он одновременно спекается в слой покрытия и припекается к поверхности полосы. Полосы с покрытием используются для дальнейшего изготовления из них подшипников скольжения различных конструкций. Основными преимуществами этого метода являются: высокая производительность, низкая энергоёмкость, возможность получения спечённых изделий с незначительной пористостью, минимальная потеря порошкового материала.

Однако такой способ, имея неоспоримые достоинства, имеет свои недостатки. Так, например, затруднено применение ферромагнитных порошков, в том числе самофлюсующихся, из-за выноса их из зоны припекания электромагнитными силами. Поэтому существует необходимость применения дорогостоящих порошков цветных металлов и флюсов, т. е. имеет место узкий диапазон свойств применяемых порошков.

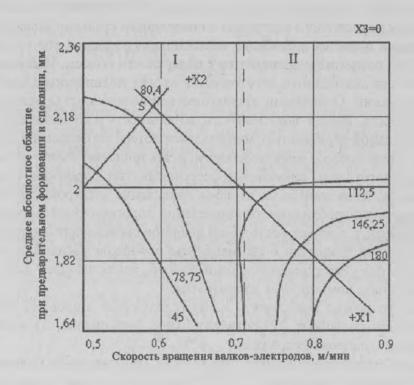
Для получения покрытий с применением порошков расширенного диапазона свойств разработан усовершенствованный способ, исключающий вынос ферромагнитных порошковых компонентов из покрытия.

Условно его можно представить в виде следующих этапов: 1) подготовка поверхности полосы-подложки; 2) предварительное формование; 3) электроимпульсное спекание; 4) калибровка прокаткой.

В качестве материала-покрытия был выбран композиционный материал, включающий в себя порошковые компоненты: 70 мас. % Fe, 7-10 мас. % Cu, 5-10 мас. % Ni, 5-10 мас. % Sn и 10-15 мас. % омедненного графита.

Для определения оптимальных технологических режимов разработанного способа использован статистический метод планирования многофакторного эксперимента. В качестве исследуемой функции отклика был выбран качественный критерий – проверка на адгезию композиционного слоя с полосой-подложкой методом перегиба (α°) и визуальная оценка отсутствия выноса ферромагнитных компонентов из зоны формирования покрытия, а в качестве варьируемых факторов – параметры технологического процесса: среднее абсолютное обжатие при предварительном формовании и спекании; скорость вращения валков-электродов; сила тока спекания.

Исследовались образцы с материалом полосы-подложки сталь 08кп, шириной полосы 15 мм и уровнем насыпки порошковой шихты 2 мм. Электроимпульсное


спекание проводилось при постоянном давлении 200 МПа, обеспечивающее плотный электроконтакт.

Предварительно методом «крутого восхождения», с учетом технических характеристик экспериментальной установки, была экспериментально определена область изменения интервалов варьирования. Дальнейшее исследование совместного влияния варьируемых факторов на качество адгезии композиционного слоя с полосойподложкой проводилось с помощью метода рототабельного планирования второго порядка.

После обработки экспериментальных данных было получено уравнение регрессии, отражающее влияние факторов на исследуемую функцию:

$$\alpha^{\circ} = 100,9 + 5,6X_{1} - 29,8X_{2} + 29,8X_{3} + 1,75X_{1}X_{2} - 3X_{1}X_{3} + 5X_{2}X_{3} - -16,57X_{1}^{2} + 10,25X_{2}^{2} - 17,8X_{3}^{2}.$$
 (1)

На рисунке представлены сечения поверхности отклика, при этом кривые имеют вид двуполостных гиперболоидов.

На основании анализа уравнения (1) и его геометрической интерпретации (см. рис.) можно сделать следующие выводы: адгезия композиционного слоя с полосой-подложкой зависит от среднего абсолютного обжатия материала при предварительном формовании и спекании, скорости вращения валков-электродов и силы тока спекания по квадратичной зависимости.

Из графиков сечения поверхности отклика видна неоднозначная взаимосвязь обжатия и скорости на величину адгезии композиционного слоя. Для объяснения такого характера зависимостей можно предположить, что для поддержания постоянной величины адгезии композиционного слоя необходимо: во первых, поддержание постоянного давления при спекании; во вторых, поддержание постоянной температуры спекания. В свою очередь, температура в покрытии зависит от обжа-

тия и скорости, а обжатие влияет на толщину композиционного покрытия и электросопротивление порошкового слоя. Можно предположить, что в I-ом диапазоне графиков на температуру спекания в большей степени влияет электросопротивление порошкового слоя, а во II-ом диапазоне — толщина композиционного покрытия, что и наблюдается на рисунке.

Анализ результатов эксперимента позволяет определить режимы процесса, обеспечивающие угол перегиба 180°, который на основании экспериментальных данных является достаточным условием отсутствия расслоений после последующей штамповки подшипников скольжения из получаемого полосового материала.

После анализа результатов математического планирования эксперимента и на основании проведенных экспериментов можно определить следующие оптимальные режимы процесса:

1. Среднее абсолютное обжатие материала при предварительном формовании и спекании: 1,65...1,86 мм.

2. Скорость вращения валков-электродов: 0,8...0,9 м/мин.

3. Сила тока спекания: 19 кА.

ИССЛЕДОВАНИЕ СВОЙСТВ АНТИКОРРОЗИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ЭПОКСИДНЫХ КОМПОЗИЦИЙ

Н.В. Друзик

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Рыженко М.М.

Введение

При перевозке агрессивных жидкостей в металлических емкостях вследствие коррозии они часто выходят из строя. К наиболее эффективным способам защиты металлов от коррозии можно отнести поверхностное насыщение стали хромом, кремнием, а также нанесение лакокрасочных и полимерных покрытий. Особенно эффективны полимерные покрытия от различных видов коррозии в условиях абразивного изнашивания. Долговечность покрытий при работе в таких условиях зависит, в основном, от химической стойкости полимера, проницаемости покрытия, ударной прочности и адгезии к металлам. В химической промышленности наиболее широкое применение получили покрытия из эпоксидных покрытий. По способности противостоять ударным нагрузкам и изнашиванию эпоксидные смолы превосходят многие полимеры, а по химической стойкости находятся близко к фторсодержащим полимерам. Эпоксидные смолы используются как в чистом виде, так и с различными наполнителями. Эпоксидные композиции наносят на металлическую поверхность в виде порошков, паст, растворов.

Методика эксперимента

Для получения покрытий использовали следующие материалы: эпоксидную жидкую смолу ЭД-20 (ГОСТ 10587-84), каучук СКН 26-1А (ТУ 38-103-16-78), аэросил А-175, графит, металлический порошок из оксида титана, отвердитель ПЭПА (полиэтиленполиамин). Добавка компонентов эпоксидной композиции производится весовым методом. Свежеприготовленные эпоксидные композиции перед испытаниями выдерживали 336 часов при температуре 20 °С. Покрытия из жидкой эпоксидной композиции на стальные образцы наносили в литьевых формах методом литья под давлением в вакууме. Были проведены исследования физико-