tronic resource]. - 2006. - Mode of access: http://arxiv.org/pdf/hep-ph/10032157. - Date of access: 13.09.2018.

Е. З. Авакян, С. Л. Авакян

УО «Гомельский государственный технический университет имени П. О. Сухого», Гомель, Беларусь

РАСПАДЫ СТРАННЫХ МЕЗОНОВ ПРИ НИЗКИХ ЭНЕРГИЯХ

Введение

Задача изучения низкоэнергетических взаимодействий каонов остается акктуальной на протяжении многих десятилетий. Изучение распадов -мезонов позволяет получить информацию о возможных проявлениях новой физики за рамками Стандартной Модели (СМ). Их можно назвать окном в мир «новой» физики. С этой точки зрения представляется крайне важным получение достоверных количественных оценок параметров данных распадов в рамках СМ. Каонные распады рассматриваются в целом ряде обзоров, например, [1, 2]. Экспериментальное изучение этих распадов ведется рядом экспериментальных групп (BNL KEK - JAEA IHEP, Protvino INFN, Frascati) [3]. В данной работе изучаются распады $K \to \pi l v_l$ (K_{l_3} - распады). Для них получены параметры наклона λ'_+ ; λ'_- ; λ'_0 , а также воспроизведено соотношение Каллана-Треймана-Матура-Окубо-Пандита (КТМОП) [4, 5]. Все рассмотрение проводилось в рамках Модели Конфайнмированных Кварков (МКК) [6].

1. Получение параметров К₁₃ распадов

Матричный элемент распада $K \to \pi e v$ определяется диаграммами, приведенными на рисунке 1, и может быть записан в виде:

$$M^{\mu}(p_1, p_2) = F_+(t)(p_1 + p_2)^{\mu} + F_-(t)(p_1 - p_2)^{\mu},$$

где

$$F_{+}(t) = F_{+}^{(a)}(t) + F_{+}^{(b)}(t)$$

$$F_{-}(t) = F_{-}^{(a)}(t) + F_{-}^{(b)}(t)$$

Импульсы p_1, p_2 – импульсы каона и -мезона, $t = (p_1 - p_2)^2$. Индексы a и b означают вклады диаграмм 1a и 1b соответственно. Указанные вклады в МКК имеют вид:

$$F_{\pm}^{(a)}(t) = \sqrt{2h_K h_\pi} F_{VPP}^{\mp}(t, m_K^2, m_\pi^2, \Lambda_s, \Lambda_u, \Lambda_u),$$

где h_K, h_π, h_{K^*} – константы взаимодействия мезонов с кварками, вычисленные в МКК с помощью условия связности. $F_{VPP}^{\pm}(t, m_K^2, m_\pi^2, \Lambda_s, \Lambda_u, \Lambda_u)$ – петлевые интегралы, описывающий $V \to PP$ переход, их явный вид приведен в [7].

Рисунок 1 – Диаграммамы, описывающие распад $K \rightarrow \pi e v$

Учет вклада промежуточных адронных состояний проведен в, так называемом, цепочном приближении. Пропагатор промежуточного векторного мезона в цепочном приближении определяется следующим образом:

$$h_V G_V^{\mu\nu}(p) = \frac{1}{\Pi_1(p^2) - \Pi_1(m_V^2)} \left\{ -g^{\mu\nu} + p^{\mu} p^{\nu} \frac{\Pi_2(p^2)}{\Pi_1(p^2) - \Pi_1(m_V^2) + p^2 \Pi_2(p^2)} \right\}$$

Здесь $\Pi_1(p^2)$ и $\Pi_2(p^2)$ – поляризационные операторы.

После стандартных преобразований нами получены следующие выражения для вкладов промежуточного векторного мезона в формфакторы $F^b_+(t)$:

$$F_{+}^{b}(t) = -F_{+}^{a}(t) \frac{t}{\Pi_{1}(t) - \Pi_{1}(m_{K^{*}}^{2})} F_{VV}(t),$$

$$F_{-}^{b}(t) = F_{-}^{a}(t) \frac{m_{k}^{2} - m_{\pi}^{2}}{\Pi_{1}(t) - \Pi_{1}(m_{K^{*}}^{2})} F_{VV}(t),$$

 $F_{VV}(t)$ – петлевой интеграл, описывающий поперечную часть $V \to V$ перехода.

В рамках алгебры токов Калланом, Трейманом [4], Матуро, Окубо и Пандитом [5] было установлено простое соотношение между $F_+(m_K^2)$ и $F_-(m_K^2)$:

$$F_+(m_K^2) + F_-(m_K^2) = \frac{f_K}{f_\pi}.$$

Вычисляя значения $F_{\pm}(t)$ при $t = m_K^2 (m_{\pi}^2 = 0)$ получаем:

$$F_+(m_K^2) + F_-(m_K^2) = 0.9 \frac{f_K}{f_\pi}.$$

Таким образом, в рамках МКК с 10% точностью удалось воспроизвести киральное соотношение КТМОП. Следует заметить, что в данном случае вклады промежуточных состояний сокращаются.

Векторный формфактор $F_+(t)$ представляет собой -волновую проекцию матричного элемента $\langle 0|\bar{s}\gamma^{\mu}u|K\pi\rangle$. *s*-волновую проекцию определяет скалярный формфактор, представляющий собой комбинацию $F_+(t)$:

$$F_0(t) = F_+(t) + \frac{t}{m_k^2 - m_\pi^2} F_-(t).$$

Удобно рассматривать формфакторы, нормированные к значению в нуле

$$f_{+,0}(t) = \frac{F_{+,0}(t)}{F_{+,0}(0)}.$$

Обычно, для анализа экспериментальных данных используют следующую параметризацию

$$f_{+,0}(t) = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 + \cdots$$

Параметр наклона $\lambda'_{+,0}$ вычисляется как

$$\lambda'_{+,0} = m_{\pi}^2 f'_{+,0}(0),$$

Полученные значения параметров $\lambda'_{+}, \lambda'_{-}, \lambda'_{0}$ а также усредненное экспериментальное значение приведены в таблице 1.

λ'	МКК	Эксперимент
λ'_{-}	3	0 [8]
λ'_0	16,5	11,7 ± 1,4 [8]
λ'_+	31	29,86 ± 0,2 [9]

Таблица 1 – Значения параметров наклона *К*₁₃, полученные в МКК

Заключение

В рамках Модели Конфайнмированных Кварков получены значения параметров для распада $K \to \pi l \nu_l, \lambda'_+, \lambda'_-, \lambda'_0$, показано, что учет промежуточного векторного мезона K^* значительно приближает полученные значения к экспериментальным. Также с 10% точностью удалось воспроизвести киральное соотношение Каллана-Треймана-Матуро-Окубо-Пандита.

Литература

1. *B*, *D* and *K* Decays / M. Artuso [et al.] // Eur. Phys. J. – 2008. – Vol. C57. – P. 309–492.

2. Portoles, J. Important rare kaon decays / J. Portoles // Nucl. Phys. Proc. Suppl. – 2012. – Vol. 273, – P. 254–259.

3. Komasubara, T. K. Experiments with K-Meson Decays / T. K. Komasubara // Prog.Part.Nucl.Phys. – 2012. – Vol. 67. – P. 995–1018.

4. Callan, C. G. Equal Time Commutators and K Meson Decays / C. G. Callan, S. B. Treiman // Phys. Rev. Lett. – 1966. – Vol. 16. – P. 153–157.

5. Mattur, V. Algebra of Currents and K_{l_3} Decay / V. Mattur, S. Okubo, L. Pandit // Phys. Rev. Lett. – 1966. – Vol. 16. – P. 371–374, 601.

6. Efimov, G. V. The Quark Confinement Model of Hadrons / G. V. Efimov, M. A. Ivanov. – London. IOP Publishing Ltd, 1993.

7. Авакян, Е. З. Редкие распады странных мезонов / Е. З. Авакян, С. Л. Авакян // Журнал Белорусского государственного университета. Физика. – 2019. – № 1. – С. 51–62.

8. Particle Data Group J. / S. Beringer [et al.] // Phys. Rev. – 2012. – Vol. D86, № 1. – P. 010001.

9. High statistics measurement of the $K^+ \rightarrow \pi^0 e^+ v(Ke3)$ decay formfactors / V. Obraztsov [et al.] // Nucl. Part. Phys. Proc. – 2016. – Vol. 273-275. – P. 1330–1333.

Е. З. Авакян, С. Л. Авакян

УО «Гомельский государственный техническийуниверситет имени П. О. Сухого», Гомель, Беларусь

НИЗКОЭНЕРГЕТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ СКАЛЯРНЫХ МЕЗОНОВ

Введение

Проблема описания скалярных мезонов является одной из самых актуальных в современной физике элементарных частиц «до чарма» [1]. В первую очередь, это относится к самой легкой из скалярных частиц – $f_0(600)$, которая играет ключевую роль при описании нуклоннуклонных взаимодействий, π -рассеяния и нелептонных взаимодействий каонов. Со времени, когда в своей работе [2] Р. Estabrooks поставила вопрос «Где он и что это такое – скалярный мезон?» («Where and what are the scalar mesons?») прошло уже около четырех десятилетий и если мы знаем ответ на первую часть вопроса, то вторая остается актуальной до сих пор.

Идентификация скалярных состояний остается сложной задачей на протяжении всего времени их изучения. Основные экспериментальные данные о скалярных мезонах получены при изучении -волн в двух частичных реакциях с псевдоскалярными мезонами: $\pi^+\pi^- \rightarrow \pi^+\pi^-, \pi^+\pi^- \rightarrow \pi^0\pi^0, \pi^+\pi^- \rightarrow K^+K^-, \pi^+\pi^- \rightarrow K^0_S K^0_S, \pi K \rightarrow \pi K$, при исследовании спектров масс псевдоскалярных мезонов, рождающихся в реакциях типа $J/\Psi \rightarrow X + \pi\pi, \phi + \pi\pi, p\bar{p} \rightarrow K^0_S K^0_S (\pi\pi)$, в экспериментах SND и CMD2, в реакции $e^+e^- \rightarrow \pi^0\pi^0\gamma e^+e^- \rightarrow \pi^0\pi^0\gamma$ [1].

С теоретической точки зрения проблема скалярных мезонов состоит в том, что до сих пор остается неясной их внутренняя структура. Есть модели, рассматривающие скалярные мезоны 0⁺⁺ как двухкварковые состояния ($q\bar{q}$) [3, 4]. В отличие от псевдоскалярных, векторных, аксиально векторных и тензорных мезонов, описание которых полностью согласуется с наивной двухкварковой модели [5, 6], скалярные частицы не укладываются в указанную схему. В ряде подходов скалярные мезоны рассматриваются как четырех кварковые системы ($qq\bar{q}\bar{q}$) [7, 8]. Существуют также подходы, связывающие ска-