УДК 546.62

ТЕРМОХИМИЧЕСКИЙ СИНТЕЗ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА, СОАКТИВИРОВАННЫХ ЦЕРИЕМ И СЕРОЙ

Е. Н. ПОДДЕНЕЖНЫЙ, Н. Е. ДРОБЫШЕВСКАЯ, А. А. БОЙКО, О. В. ДАВЫДОВА

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Изучен новый метод формирования ультрадисперсных порошков иттрий-алюминиевого граната, солегированного церием и серой, путем термохимического синтеза (горения). Размеры частиц $Y_3AI_5O_{12}$: Се, S для порошка, синтезированного в смеси тиокарбамида и гексаметилентетрамина, составляют 14 нм–0,47 мкм в зависимости от температуры прокаливания. Показано, что полученные материалы, синтезированные методом горения, обладают яркой желто-зеленой люминесценцией с максимумом на длине волны 560 нм при возбуждении при $\lambda = 440$ нм, а интенсивность люминесценции зависит от температуры прокаливания и состава газовой среды.

Ключевые слова: ультрадисперсные порошки, иттрий-алюминиевый гранат, ионы церия, ионы серы, термохимический синтез.

THERMOCHEMICAL SYNTHESIS OF ULTRA-DISPERSED POWDERS OF YTTRIUM-ALUMINUM GARNET, CO-ACTIVATED WITH CERIUM AND SULFUR

E. N. PODDENEZHNY, N. E. DROBYSHEVSKAYA, A. A. BOIKO, O. V. DAVYDOVA

Educational Institution "Sukhoi State Technical University of Gomel", the Republic of Belarus

The article shows a new method of forming ultra-dispersed powders of yttrium-aluminum garnet, salted with cerium and sulfur, by thermochemical synthesis (combustion). The particle sizes of $Y_3Al_5O_{12}$: Ce, S for the powder synthesized in the mixture of thiocarbamide and hexamethylenetetramine are 14 nm-0.47 µm depending on the calcination temperature. It has been shown that the obtained materials synthesized by the combustion method have bright yellow-green luminescence with a maximum at a wavelength of 560 nm at excitation at $\gamma = 440$ nm, and the intensity of luminescence depends on the calcination temperature and the composition of the gas medium.

Keywords: ultra-dispersed powders, yttrium-aluminium garnet, cerium ions, sulfur ions, thermochemical synthesis.

Введение

В последнее время светодиодные (СД) лампы все шире используются в системах промышленного и бытового освещения [1]. Основой излучающей части СД светильника является полупроводниковая структура InGaN, генерирующая синий свет и покрытая желтым люминофором, излучение которой суммарно воспринимается как белый свет [2]. В качестве желтого люминофора чаще всего используются микрокристаллические порошки иттрий-алюминиевого граната, активированного ионами

церия $Y_3Al_5O_{12}$: Се (YAG : Ce), распределенные равномерно в полимерном компаунде [3]. Метод промышленного получения порошка граната является знергозатратным (тепература синтеза – около 1600 °C в восстановительной среде), требует длительного размола и рассева агломератов до частиц нужного размера [4]. Разрабатывается несколько альтернативных методов получения порошков люминофоров: осаждение из растворов, золь-гель процесс, самораспространяющийся высокотемпературный синтез (CBC), варианты которого отличаются использованием различных видов горючего [5].

Ранее было установлено, что введение ионов серы в состав оксидных кристаллических люминофоров позволяет значительно увеличить интенсивность люминесценции, повысить их энергоэффективность [6], [7]. Однако методы получения оксисульфидных люминофоров путем горения до сих пор в научной литературе не описаны.

Целью настоящей работы является установление влияния метода синтеза, состава реакционной смеси и термических обработок на морфологию, структуру и люминесцентные характеристики порошков иттрий-алюминиевого граната, солегированного церием и серой.

Материалы и методы исследований

Для синтеза YAG : Се, S методом термохимического синтеза (горения) в качестве исходных ингредиентов были использованы: Y(NO₃)₃ · 6H₂O, ЧДА, ТУ 6-09–4676; Al(NO₃)₃ · 9H₂O, ЧДА, ГОСТ 3757–75; Ce(NO₃)₃ · 6H₂O, ЧДА, ТУ 6-09-4081–84; тиокарбамид CH₄N₂S, ЧДА, ГОСТ 6344–73; гексаметилентетрамин (ГМТА) (CH₂)₆N₄, ГОСТ 1381–73.

Величину удельной поверхности синтезированных порошков S_{ya} измеряли методом низкотемпературной десорбции аргона. Размер частиц оценивали по формуле $d = 6/(\rho S_{ya})$ [8], где ρ – плотность YAG : Се (4,56 г/см³). ИК-спектры диффузного отражения порошков в интервале 4000–400 см⁻¹ регистрировали с помощью спектрометра с Фурье-преобразованием Thermo Nicolet Nexus FT-IR (соотношение «образец : KBr = 1 : 9»). Фазовый состав изучали на автоматическом рентгеновском дифрактометре «ДРОН-7» (Россия) в излучении медного анода с никелевым фильтром. Термическую деструкцию образцов исследовали в условиях атмосферного воздуха с помощью дериватографа Q-1500D (Венгрия). Скорость нагрева составляла 10 °С/мин. Для изучения морфологии и распределения частиц по размерам использовали растровый электронный микроскоп TESCAN (Чехия). Спектры люминесценции полученных порошков регистрировали с помощью спектрофлуориметра СДЛ-2 при возбуждении люминесценции светом ртутной лампы с фильтрами.

Экспериментальная часть

Для процесса синтеза оксидных порошков термохимическим методом был предложен и разработан вариант процесса с использованием в качестве комплексного горючего смеси азотсодержащих органических соединений – тиокарбамида и гексаметилентетрамина. При применении смешанного горючего удалось объединить в одном процессе этапы инициирования реакции, удаление органических примесей, свободной и связанной воды и формирование кристаллической структуры без извлечения промежуточных продуктов.

Данные по удельной поверхности порошкообразных образцов после их размола и прокаливания в интервале 700–1200 °C, а также условный диаметр частиц, рассчитанный на основе полученных данных, приведены в таблице.

Температура прокаливания <i>T</i> , °C	Удельная поверхность синтезированных порошков S _{va} , м ² /г	Условный диаметр частиц <i>d</i> , нм
700	96,0	14,0
900	39,0	34,0
1100	4,6	288,0
1200	2,8	474,0

Удельная поверхность порошков и условный диаметр частиц в зависимости от температуры прокаливания при использовании комплексного горючего «тиокарбамид – ГМТА»

Исходя из данных таблицы можно видеть, что оценочные размеры частиц, формируемых при горении в смеси тиокарбамида и ГМТА, находятся в области нанои микроразмеров (от 14 нм до 0,47 мкм в зависимости от температуры прокаливания). При термообработке с поверхности агрегатов удаляются адсорбированные газы и гидроксильные группы, а при дальнейшем нагреве происходит рост частиц за счет их припекания друг к другу.

Синтез легированного церием серосодержащего иттрий-алюминиевого граната с использованием азотнокислых солей иттрия и европия при горении азотнокислых солей в комплексном горючем изучали также методами дериватографии (рис. 1). На кривых потери массы (ДТГ, ДТА) при горении азотнокислых солей в смеси тиокарбамида и ГМТА имеются три ступени, границы которых можно определить в пределах 350, 550 и 950 °C. На первом участке в температурном интервале 20–120 °C происходит удаление свободной и сорбированной воды, далее – удаление азотнокислых остатков, что происходит примерно до 300 °C. Процесс горения с экзоэффектом проходит при 300–550 °C с выделением большого количества тепла и газовых примесей, после чего масса навески резко уменьшается, после 600 °C масса продолжает уменьшаться до температуры приблизительно 900 °C за счет удаления связанных газовых остатков и гидроксилов. Формирование кристаллической фазы $Y_3Al_5O_{12}$ происходит, по-видимому, при 920 °C (экзотермический пик на кривой ДТА), а завершение структурных изменений в порошке отмечено при 920–930 °C (пик на кривой ДТГ).

Рис. 1. Кривые ДТА и ДТГ порошков YAG : Се, S, полученных методом горения в тиокарбамиде и ГМТА

Вышеперечисленные результаты подтверждаются и серией дифрактограмм, снятых после прокаливания образцов при 700, 900, 1100 и 1200 °C (рис. 2). При их рассмотрении становится очевидно, что кристаллическая фаза начинает формироваться при 900 °C, а при 1100 °C – уже соответствует кристаллической фазе граната, причем при прокаливании до 1200 °C структура практически не изменяется.

ис. 2. дифрактограммы прекурсора и порошка ТАС . Се, S получаемого методом горения в тиокарбамиде и ГМТА и прокаленного на воздухе (1 ч) при температурах 700 (1); 900 (2); 1100 (3) и 1200 °C (4)

С использованием методов сканирующей электронной микроскопии была изучена морфология порошков и определены средние размеры агломератов (рис. 3).

Рис. 3. СЭМ-изображение частиц YAG : Ce, S, полученных с использованием тиокарбамида и ГМТА в качестве горючего, прокаленных при 1100 °С (1 ч) при разном увеличении

После прокаливания прекурсоров на воздухе при температуре 1100 °С формируются порошки YAG : Се, S в виде пористых объемных агломератов с острыми краями с размерами от 30 до 300 мкм, легко разрушаемые механическими способами (в ступке или в шаровой мельнице). Размол спекшегося продукта для дальнейших исследований проводили в планетарной шаровой мельнице «Пульверизетте 5» (фирма Fritsch, Германия) в стаканах из диоксида циркония в течение 10 мин.

При изучении ИК-спектров образцов YAG : Ce, S, полученных с использованием тиокарбамида и ГМТА в качестве горючего, можно отметить, что полоса на $3500-3800 \text{ см}^{-1}$, обусловленная валентными колебаниями групп OH⁻ для H₂O, абсорбированной пористыми частицами люминофора, присутствует во всех случаях обработки. Однако ее интенсивность с ростом температуры несколько падает, но концентрация OH⁻ групп остается достаточно высокой, что подтверждает наличие разветвленной поверхности частиц и повышенную способность к удерживанию OH⁻ групп при имеющихся примесных ионах серы (рис. 4). Расчет суммарной концентрации HOH и OH⁻ (полоса на 3500–3800 см⁻¹) дает значения для различных температур прокаливания от 0,02 до 0,05 мас. %.

Рис. 4. ИК-спектры порошков Y₃Al₅O₁₂: Ce, S, полученных методом горения в смеси тиокарбамида и ГМТА, в зависимости от температуры: *I* − 300 °C; 2 − 700 °C; *3* − 900 °C; *4* −1100 °C; 5 − 1200 °C

Порошки на основе YAG : Ce, S, синтезированные методом горения азотнокислых солей в тиокарбамиде и ГМТА, при возбуждении синим светом ($\lambda = 440$ нм) люминесцируют в диапазоне 470–720 нм с максимумом на 560 нм (желто-зеленое излучение).

На рис. 5 приведен спектр люминесценции образцов иттрий-алюминиевого граната, легированного церием и серой, прокаленных при температурах 700, 900, 1100 и 1200 °С в воздушной среде, а также в среде инертного газа – аргона (1 ч).

Рис. 5. Спектры люминесценции образцов иттрий-алюминиевого граната, легированного церием и серой, прокаленных при температурах 700 (1); 900 (2); 1100 (3) и 1200 °C (4) в воздушной среде, а также в среде инертного газа – аргона при температуре 1200 °C (1 ч) (5)

Проанализировав рис. 5, можно сделать заключение, что до 900 °C порошки практически не люминесцируют, а интенсивная люминесценция наблюдается только при нагреве порошков до 1200 °C, причем дополнительное прокаливание порошков в среде аргона приводит к росту интенсивности люминесценции в 1,5 раза. Это можно объяснить дополнительным вкладом в люминесценцию ионов Ce³⁺, формирующихся за счет трансформации части четырехзарядных ионов Ce⁴⁺ в трехзарядовое состояние в слабовосстановительной среде.

Заключение

В результате обобщения вышеизложенного можно сделать следующие выводы:

1. Изучен вариант формирования ультрадисперсных порошков иттрий-алюминиевого граната, легированного церием и серой, путем термохимического синтеза (горения) в смеси азотнокислых солей, тиокарбамида и ГМТА.

2. Установлено, что размеры первичных частиц YAG : Ce, S составляют от 14 нм до 0,47 мкм в зависимости от температуры прокаливания (700–1200 °C).

3. Показано, что структура и морфология частиц иттрий-алюминиевого граната, активированного ионами церия и серы, в значительной степени зависят от последующей термической обработки.

4. Ультрадисперсные порошки, синтезированные методом горения, обладают яркой желто-зеленой люминесценцией с максимумом на длине волны 560 нм при возбуждении при $\lambda = 440$ нм, а интенсивность люминесценции зависит от температуры прокаливания и состава газовой среды.

Работа выполнена в рамках задания 1.2 ГПНИ «Фотоника и электроника для инноваций», финансируемого из средств республиканского бюджета по государственным программам научных исследований на 2021–2025 гг. в Республике Беларусь.

Литература

- 1. Светодиодное освещение технология сегодняшнего дня. Режим доступа: https://www.ixbt.com/infopages/verbatim-led-light.shtml.
- 2. Шуберт, Ф. Светодиоды : пер. с англ. / Ф. Шуберт ; под ред. А. Э. Юновича. 2-е изд. М. : Физматлит, 2008. 496 с.
- Steven, C. A nearly ideal phosphor-converted white light-emitting diode / C. Steven, Allen and Andrew J. Stecki // Applied physics letters. - 2008. - Vol. 92, № 143309. -P. 1-3.
- Нейман, А. Я. Условия и макромеханизм твердофазного синтеза алюминатов иттрия/ А. Я. Нейман, Е. В. Ткаченко, Л. А. Квичко // Неорган. химия. – 1980. – Т. 25, № 9. – С. 2340–2345.
- 5. Влияние метода синтеза на морфологию и структуру порошков иттрийалюминиевого граната, легированного церием / Е. Н. Подденежный [и др.] // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2021. – № 2. – С. 44–51.
- 6. Способ получения порошков соединений диоксосульфидов редкоземельных элементов Ln₂O₂S и твердых растворов на их основе Ln'₂O₂S–Ln"₂O₂S (Ln, Ln', Ln" = Gd–Lu, Y : пат. 2554202 Рос. Федерация : МПК С 2 / Андреев П. О., Сальникова Е. И. ; опубл. 27.06.15.
- 7. Михитарьян, Б. В. Люминесцентно-спектральные свойства твердых растворов Gd₂O₂S–Tb₂O₂S и Y₂O₂S–Tb₂O₂S : дис. ... канд. физ.-мат. наук / Б. В. Михитарьян. Ставрополь, 2007. 171 с.
- 8. Грег, С. Адсорбция, удельная поверхность, пористость / С. Грег, К. Синг. М. : Мир, 1984. 306 с.
- 9. Способ получения наноструктурированного порошка иттрий-алюминиевого граната, легированного церием : пат. 22052 Респ. Беларусь : МПК С 30 В 29/28, С 01 F 7/02 / Давыдова О. В., Дробышевская Н. Е., Подденежный Е. Н., Бойко А. А. ; заявитель Гомел. гос. техн. ун-т им. П. О. Сухого. № а 20160193 ; заявл. 30.05.16 ; опубл. 30.08.18 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2018. № 4 (123). С. 93–94.

Получено 24.02.2022 г.