УДК 629.113-592

МОДЕЛИРОВАНИЕ И РАСЧЕТ ДИНАМИКИ ЭЛЕКТРОПНЕВМОМОДУЛЯТОРА В ЦИКЛИЧЕСКОМ РЕЖИМЕ РАБОТЫ

В.П. АВТУШКО, М.И. ЖИЛЕВИЧ

Белорусский национальный технический университет, г. Минск

Для создания эффективных противоблокировочных систем (ПБС) с оптимальным алгоритмом функционирования электропневмомодуляторов (ЭПМ) необходимо разработать математическую модель и программное обеспечение для исследования динамики пневматического привода тормозов мобильной машины в циклическом режиме работы.

Циклическое изменение давления в тормозных камерах, а следовательно, и регулирование тормозного момента при работе ПБС осуществляется чередованием фаз автоматического торможения (Φ_3) и оттормаживания (Φ_2), время переходных процессов которых зависит от параметров привода и закона изменения сигналов электронно-решающего блока (ЭРБ) ПБС. Исследуемый ЭПМ имеет два электропневматических клапана и два пневматических клапана каскада усиления. Модулятор соединяется трубопроводами с питающей частью привода и с тормозной камерой. Автоматическое оттормаживание происходит при подаче от ЭРБ сигналов управления на оба электромагнита модулятора, при этом сжатый воздух из тормозной камеры через выпускной клапан ЭПМ выходит в атмосферу. Автоматическое торможение осуществляется снятием сигналов с электромагнитов, а выдержка давления в тормозных камерах (фаза Φ_4) — подачей сигнала на один из электромагнитов.

Сигнал управления первым электромагнитом поступает от ЭРБ ПБС с различной частотой f и скважностью $\tau = t_1/T_{\rm c}$, где t_1 – время сигнала (длительность фазы Φ_2); T_c – период, причем $T_{\rm c}=1/f$. При трехфазовом регулировании изменения величины давления в тормозных камерах и величины тормозного момента к фазам Φ_2 и Φ_3 с помощью второго электромагнита добавляется фаза Φ_4 выдержки давления на определенном уровне, зависящем от частоты входного сигнала f, скважности τ сигнала фазы Φ_2 и скважности $\tau_1 = t_1^{"}/t_1$ сигнала управления фазы Φ_4 , где $t_1^{"}$ – продолжительность сигнала управления вторым электромагнитом ($0 \le t_1^{"} \le t_1$). Законы регулирования перемещения клапанов каскада усиления могут задаваться в различной форме. Обычно для увеличения быстродействия модулятора их стремятся приблизить к релейной форме.

При рассмотрении динамических процессов и составлении дифференциальных уравнений приняты следующие допущения: температура воздуха в ресивере, полостях модулятора и тормозной камере не изменяется в течение переходного процесса регулирования давления; отсутствуют утечки воздуха из системы; трубопроводы заменяются сосредоточенными пневмосопротивлениями; сигналы, подаваемые на электромагниты модулятора, и перемещение его клапанов изменяются скачкообразно; тормозные камеры одного моста имеют одинаковую упругую характеристику.

Для составления дифференциальных уравнений используются: уравнение баланса мгновенных массовых расходов в узлах расчетных схем и гиперболическая газодинамическая функция расхода воздуха через пневмосопротивление [1]. Баланс мгновенных массовых расходов для каждого узла расчетной схемы для фазы Φ_3 (рис. 1):

$$G_{31} - G_{M} - 2G_{2} = 0;
G_{2} - G_{K} = 0$$
(1)

где G_{31} — мгновенный массовый расход воздуха через эквивалентный дроссель с пропускной способностью (μA)₃₁, представляющей собой последовательное соединение трубопровода с пропускной способностью (μA)₁ от ресивера до модулятора и его впускного клапана с пропускной способностью (μA)_{м1}; $G_{\rm M}$ и $G_{\rm K}$ — мгновенный массовый расход воздуха, поступающего, соответственно, в полость модулятора и в тормозную камеру; G_2 — мгновенный массовый расход воздуха через трубопровод с пропускной способностью (μA)₂, соединяющий модулятор и тормозную камеру.

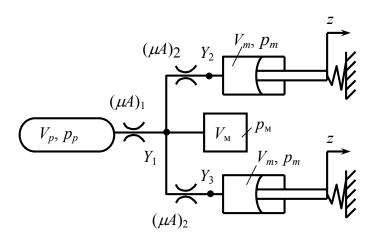


Рис. 1. Расчетная схема для фазы торможения

Пропускная способность (μA) $_{31}$ определяется из соотношения

$$1/(\mu A)_{_{91}}^{2}=1/(\mu A)_{_{1}}^{2}+1/(\mu A)_{_{M1}}^{2}.$$

Мгновенные массовые расходы с учетом гиперболической газодинамической функции расхода воздуха через дроссели и уравнений состояния воздуха в емкостях [1] записываются в виде:

$$\begin{split} G_{_{91}} &= \left(\mu A\right)_{_{91}} v_{_{0}} \frac{p_{_{p}}}{RT} B_{_{0}} \frac{p_{_{p}} - p_{_{M}}}{B_{_{1}} p_{_{p}} - p_{_{M}}}; \\ G_{_{M}} &= \frac{V_{_{M}}}{kRT} \frac{dp_{_{M}}}{dt}; \\ G_{_{2}} &= \left(\mu A\right)_{_{2}} v_{_{0}} \frac{p_{_{M}}}{RT} B_{_{0}} \frac{p_{_{M}} - p_{_{m}}}{B_{_{1}} p_{_{M}} - p_{_{m}}}; \\ G_{_{K}} &= \frac{V_{_{m}}}{kRT} \frac{dp_{_{m}}}{dt} + \frac{p_{_{m}}}{RT} \frac{dV_{_{m}}}{dt}, \end{split}$$

где v_0 — местная скорость звука, $v_0 = \sqrt{kRT}$; R — газовая постоянная воздуха; T — термодинамическая температура воздуха перед дросселем; k — показатель адиабаты; B_0 и B_1 — коэффициенты аппроксимации газодинамической функции расхода; p_p , $p_{\scriptscriptstyle M}$, p_m — давление воздуха, соответственно, в ресивере, модуляторе и тормозной камере; V_m — объем тормозной камеры, зависящий от площади диафрагмы F_m и ее перемещения z, т. е. $V_m = V_0 + F_m z$, где V_0 — начальный объем тормозной камеры, причем площадь диафрагмы изменяется при перемещении штока и может быть выражена линейным уравнением регрессии вида [2] $F_m = a - bz$, где a и b — коэффициенты, зависящие от типоразмера тормозной камеры.

Закон изменения перемещения штока тормозной камеры определяется нелинейной силовой характеристикой тормозного механизма, которая представляет собой зависимость перемещения z от давления воздуха p_m в тормозной камере. Эта характеристика обычно определяется экспериментально. Зависимость $z(p_m)$ является существенно нелинейной, имеющей петлю гистерезиса, величина которого изменяется в значительных пределах и зависит от типа и конструкции тормозного механизма, а также от частоты циклического режима. Для исследования динамики рассматриваемого модулятора экспериментальная характеристика заднего тормозного механизма автомобиля MA3 [2] была аппроксимирована однозначной нелинейной зависимостью вида

$$z = \left(\frac{p_m - p_0}{p_{max} - p_0}\right)^{0.4} z_{max},$$

где p_0 — давление предварительного сжатия пружины тормозной камеры; z_{max} — максимальный ход штока, соответствующий максимальному давлению p_{max} в камере.

Продифференцировав выражения для определения z и V_m , получим

$$\frac{dV_m}{dt} = (a-2bz)\frac{dz}{dt}; \frac{dz}{dt} = \frac{0.4z_{max}}{p_{max}-p_0} \cdot \left(\frac{p_{max}-p_0}{p_m-p_0}\right)^{0.6} \frac{dp_m}{dt}.$$

Подставив в систему уравнений (1) соответствующие выражения, после преобразований получаем уравнения, описывающие процессы изменения давления воздуха в модуляторе и тормозной камере на фазе торможения:

$$\frac{dp_{M}}{dt} = \frac{kv_{0}B_{0}}{V_{M}} (\mu A)_{31} p_{p} \frac{p_{p} - p_{M}}{B_{1}p_{p} - p_{M}} - 2\frac{kv_{0}B_{0}}{V_{M}} (\mu A)_{2} p_{M} \frac{p_{M} - p_{m}}{B_{1}p_{M} - p_{m}};$$

$$\frac{dp_{m}}{dt} = \frac{\frac{kv_{0}B_{0}}{V_{m}} (\mu A)_{2} p_{M} \frac{p_{M} - p_{m}}{B_{1}p_{M} - p_{m}}}{1 + \frac{k}{V_{m}} p_{m}} \left(a - 2bz_{max} \left(\frac{p_{m} - p_{0}}{p_{max} - p_{0}} \right)^{0.4} \right) \frac{0.4z_{max}}{p_{max} - p_{0}} \cdot \left(\frac{p_{max} - p_{0}}{p_{m} - p_{0}} \right)^{0.6}} \right\}.$$
(2)

Баланс мгновенных массовых расходов для каждого узла расчетной схемы для фазы оттормаживания Φ_2 (рис. 2) записывается в виде:

$$\begin{cases}
G_{\kappa_0} - G_{2_0} = 0; \\
2G_{2_0} - G_3 - G_{M_0} = 0
\end{cases},$$
(3)

где $G_{\kappa o}$, $G_{\kappa o}$ – мгновенный массовый расход воздуха, выходящего, соответственно, из тормозной камеры и модулятора при оттормаживании; G_3 – мгновенный массовый расход воздуха через выпускной клапан модулятора с пропускной способностью $(\mu A)_3$, G_{2o} – мгновенный массовый расход воздуха через трубопровод с пропускной способностью $(\mu A)_2$, соединяющий модулятор и тормозную камеру, при оттормаживании.

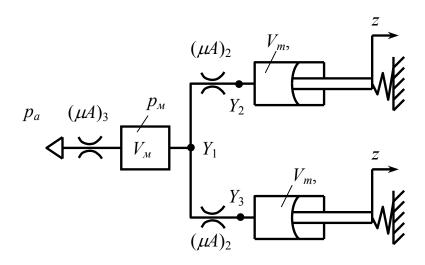


Рис. 2. Расчетная схема для фазы оттормаживания

Мгновенные массовые расходы записываются в виде:

$$\begin{split} G_{\kappa o} &= - \left(\frac{V_{m}}{kRT} \frac{dp_{m}}{dt} + \frac{p_{m}}{RT} \frac{dV_{m}}{dt} \right); \\ G_{2o} &= (\mu A)_{2} v_{0} \frac{p_{m}}{RT} B_{0} \frac{p_{m} - p_{M}}{B_{1} p_{m} - p_{M}}; \\ G_{3} &= (\mu A)_{3} v_{0} \frac{p_{M}}{RT} B_{0} \frac{p_{M} - p_{a}}{B_{1} p_{M} - p_{a}}; \\ G_{MO} &= - \frac{V_{M}}{kRT} \frac{dp_{M}}{dt}, \end{split}$$

где p_a — атмосферное давление воздуха.

Подставляя соответствующие выражения в уравнения (3), после преобразований получаем систему дифференциальных уравнений, описывающих процессы изменения давления воздуха в тормозной камере и модуляторе на фазе оттормаживания:

$$\frac{dp_{m}}{dt} = \frac{-\frac{kv_{0}B_{0}}{V_{T}}(\mu A)_{2} p_{m} \frac{p_{m}-p_{M}}{B_{1}p_{m}-p_{M}}}{1 + \frac{k}{V_{T}} p_{m} \left(a-2bz_{max} \left(\frac{p_{m}-p_{0}}{p_{max}-p_{0}}\right)^{0,4}\right) \frac{0.4z_{max}}{p_{max}-p_{0}} \cdot \left(\frac{p_{max}-p_{0}}{p_{m}-p_{0}}\right)^{0,6}}; }{\frac{dp_{M}}{dt} = 2\frac{kv_{0}B_{0}}{V_{M}}(\mu A)_{2} p_{m} \frac{p_{m}-p_{M}}{B_{1}p_{m}-p_{M}} - \frac{kv_{0}B_{0}}{V_{M}}(\mu A)_{3} p_{M} \frac{p_{M}-p_{a}}{B_{1}p_{M}-p_{a}}}{B_{1}p_{M}-p_{a}}} \right\}.$$
(4)

Для анализа характеристик ЭПМ по разработанным математическим моделям (2) и (4) были составлены программы на алгоритмическом языке Паскаль, позволяющие

исследовать динамику модулятора как в режиме торможения, так и в режиме оттормаживания, а также в циклическом режиме торможения-оттормаживания при двухфазовом и трехфазовом алгоритмах функционирования модулятора.

Разработанные математические модели и программное обеспечение позволили провести многовариантный анализ динамических процессов в ЭПМ. В качестве основных фиксированных исходных данных приняты давление в системе питания пневмопривода, свойства рабочей среды, размеры и нагрузочные характеристики тормозной камеры. Расчет проводился для некоторого базового набора исходных данных и в зависимости от значения одного из варьируемых параметров, среди которых: пропускная способность трубопроводов, соединяющих ресивер с модулятором и модулятор с тормозными камерами; пропускная способность выпускного клапана и внутренний объем камер модулятора; частота срабатывания клапанов модулятора в циклическом режиме.

Наиболее существенное влияние на характер протекания переходного процесса и длительность фазы торможения оказывает пропускная способность трубопроводов, соединяющих ЭПМ с тормозными камерами (μA)₂ и питающей частью привода $(\mu A)_1$. Причем изменение величины этих параметров, конструктивно соответствующих размерам трубопроводов и компоновке элементов привода на мобильной машине, в большей степени сказывается на характере нарастания давления в модуляторе. Увеличение пропускной способности трубопроводов способствует повышению скорости нарастания давления в тормозных камерах и быстродействию привода, в то же время с увеличением (μA)₂ снижается скорость нарастания давления в модуляторе (см. рис. 3, обозначение MUA2 соответствует (μA)₂). Проведен расчет динамических характеристик ЭПМ в зависимости от внутреннего объема его камер, изменение которого может быть связано с конструктивными особенностями модулятора. Этот параметр в пределах реального диапазона изменения его значений не оказывает никакого влияния на характер изменения давления в модуляторе и тормозных камерах. Пропускная способность трубопроводов также практически не влияет на характеристики движения штока тормозной камеры.

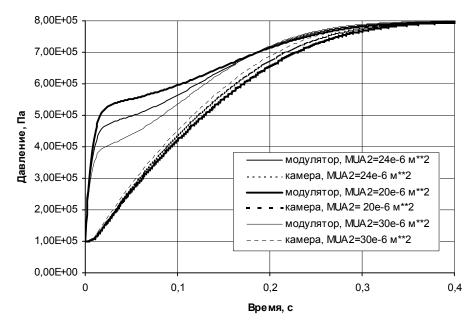


Рис. 3. Переходные процессы для режима торможения

Результаты расчетов ЭПМ в режиме оттормаживания показали, что хотя пропускная способность выходного трубопровода тормозного контура (μA)₂ и оказывает влияние на характер изменения давления в модуляторе и тормозной камере, но на начальной стадии оттормаживания (t < 0.5 с), что важно при циклической работе модулятора, это влияние не столь заметно для тормозных камер. Увеличение (μA)₂ снижает скорость и уровень падения давления в модуляторе на начальной стадии оттормаживания, этот фактор может быть полезен для организации более эффективной работы питающей части привода и выбора алгоритма функционирования системы управления.

На рис. 4 представлены графики изменения давления в режиме оттормаживания в зависимости от пропускной способности выпускного клапана ЭПМ, величина которой существенно больше пропускной способности трубопроводов и может изменяться в широком диапазоне значений (обозначение MUA3 соответствует (μ A)₃). Увеличение (μ A)₃ с 50·10⁻⁶ м² до 250·10⁻⁶ м² повышает интенсивность падения давления в сотни раз (время переходного процесса уменьшается с 0,25 с до менее чем 0,01 с). Чрезмерное падение давления в модуляторе на фазе Φ 2 в циклическом режиме может привести к снижению быстродействия тормозной системы по причине более длительного периода наполнения модулятора в режиме торможения, а также к повышенному расходу воздуха и более жестким требованиям к питающей части привода или к необходимости использовать трехфазовый алгоритм работы.

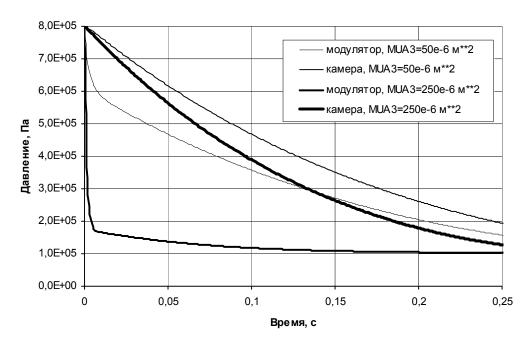
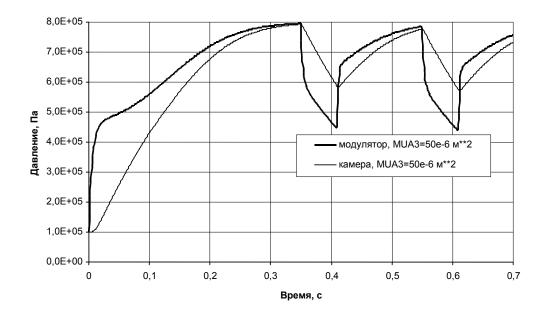
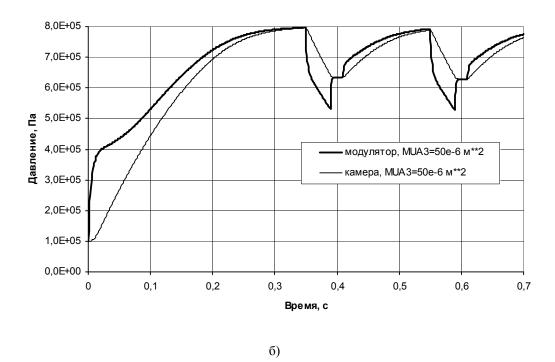




Рис. 4. Переходные процессы

Проведены расчеты динамики ЭПМ в двухфазовом режиме работы с частотой 5 и 10 Γ ц, причем фазы Φ_2 и Φ_3 распределялись по времени в соотношении 30 % и 70 % соответственно. Для трехфазового алгоритма время фазы торможения не менялось, а время фазы оттормаживания сокращено за счет введения фазы выдержки. Анализируя соответствующие графики (рис. 5), можно сделать вывод, что трехфазовый режим работы ЭПМ позволяет повысить средний уровень давления в тормозных камерах, улучшив эффективность торможения, а также снизить уровень падения давления в модуляторе, уменьшив расход сжатого воздуха и нагрузки на систему подготовки воздуха.

a)

Puc. 5. Результаты расчета динамических процессов в ЭПМ для двухфазового (а) и трехфазового (б) режимов работы

Разработанная модель ЭПМ может быть интегрирована в обобщенную математическую модель мобильной машины с ПБС тормозов для комплексного исследования процесса торможения.

Литература

1. Метлюк Н.Ф., Автушко В.П. Динамика пневматических и гидравлических приводов автомобилей. – М.: Машиностроение, 1980. – 231 с.

2. Метлюк Н.Ф., Автушко В.П., Кишкевич П.Н. Исследование циклического режима работы контура пневматического тормозного привода автомобиля //Автотракторостроение. Теория и конструирование мобильных машин. — Мн.: Выш. шк., 1980. — Вып. 15. — С. 69-76.

Получено 11.10.2002 г.