ЭНЕРГЕТИКА И ТЕПЛОЭНЕРГЕТИКА

УДК 536.24

КИПЕНИЕ АЦЕТОНА НА ГОРИЗОНТАЛЬНЫХ ТРУБАХ С ПОПЕРЕЧНЫМ ОРЕБРЕНИЕМ В КОЛЬЦЕВОМ КАНАЛЕ

А.В. ОВСЯННИК, Н.А. ВАЛЬЧЕНКО, Д.А. ДРОБЫШЕВСКИЙ, М.Н. НОВИКОВ, Е.А. КОРШУНОВ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение

Актуальность исследований определяется широким распространением оребренных поверхностей в промышленности в связи с их универсальностью для различных теплоносителей, технологичностью изготовления и сборки, возможностью работы на загрязненных теплоносителях. К тому же, до настоящего времени нет достаточных широкомасштабных исследований по процессу кипения жидкостей в условиях «стеснения» (отношение диаметра канала к диаметру образца меньше десяти), что не позволяет выполнять расчеты теплопередающей аппаратуры различных энергоустановок с достаточной точностью.

1. Экспериментальная установка и методика проведения исследований

Экспериментальные исследования проводились на специально созданном стенде, показанном на рис. 1. Геометрические параметры канала и исследованных образцов представлены в таблице 1.

Таблица 1

№ образца	<i>d</i> _o , мм	<i>D</i> ₀ , мм	<i>d</i> _{вн} , мм	<i>S</i> _p , мм	$\delta_o,$ MM	$\delta_{e},$ mm	<i>L</i> ₀ , мм	N _p , шт.	<i>h</i> _p , мм	<i>F</i> ₀ , м ²	$F_{\mu},$ M ²	<i>D</i> , мм
1		-		-	-	-		-	-	0 0227	0.0227	
2	25	-	16	-	-	-	302	-	-	0,0237	0,0237	107
3		50		4	4	2		36	12,5	0,0124	0,0592	
4				4	2	2		47		0,0163	0,0772	
5				4	4	1		36		0,0124	0,0539	

Параметры исследованных образцов

Здесь: d_o – диаметр образца по основной поверхности; D_o – наружный диаметр ребра; d_{e_H} – внутренний диаметр образца; S_p – шаг ребра; δ_o – толщина основания ребра; δ_e – толщина вершины ребра; L_o – длина образца; N_p – количество ребер; h_p – высота ребра; F_o – площадь основной поверхности; F_H – полная наружная площадь образца; D – диаметр кольцевого канала; 1, 2 – полированная и технически шероховатая трубки; 3, 4, 5 – соответственно, параболический, прямоугольный, треугольный профиль ребра.

Рис. 1. Экспериментальная установка: 1 – рабочая камера; 2 – конденсатор; 3 – баллон с рабочей жидкостью; 4, 9 – иллюминатор; 5 – стойка; 6, 7 – фланцы; 8 – вывод термопар; 10 – манометр; 11 – клапан предохранительный; 12 – защитный экран; 13 – вентиль; 14 – стойка рабочей камеры; 15 – электрические розетки

Тепловой поток к образцу подводился с помощью электронагревателя от стабилизированного источника постоянного тока. Жидкость в процессе проведения эксперимента подавалась через нижний патрубок в кольцевой канал, а паровая фаза отводилась через верхний патрубок в конденсатор. Водяной теплообменник-конденсатор 2 выполнен в виде емкости, в которой установлены два змеевика. Необходимое давление в кольцевом канале обеспечивалось конденсатором, поддерживающим уровень давления за счет изменения расхода охлаждающей жидкости.

Рабочая испарительная камера 1 представляет собой цилиндр, закрытый фланцами 6 и 7. Фланец 7 имеет стеклянный иллюминатор для подсветки фонарем. На фланце 6 смонтирован разъем 8 для подвода термопар. Посреди камеры предусмотрен смотровой иллюминатор 9 для визуального наблюдения процесса кипения на поверхности образца. Для хранения рабочей жидкости служит баллон 3. На рабочей камере установлены: манометр 10, предохранительный клапан 11, вентиль 13 – для подачи в камеру воздуха при проверке на герметичность при замене образца и вывода паров рабочей жидкости (для токсичных). На стойке 5 смонтированы электрические розетки 15: для подачи напряжения, для подсветки, для нагрева рабочего образца. Образцы изготавливались из дюралюминия. На поверхности экспериментальных образцов для измерения температурного напора зачеканивались хромель-копелевые дифференциальные термопары с диаметром проводников 0,5 мм. Экспериментальные данные регистрировались и обрабатывались с помощью автоматизированной системы измерений, созданной на базе аналого-цифрового преобразователя ADC32-1533 фирмы ANALOG DEVICES, программой обработки данных ADC32GD 1.0.

2. Результаты исследования и их обсуждение

В качестве контрольных опытов были проведены эксперименты по кипению ацетона при атмосферном давлении на технически шероховатой и полированной горизонтальных трубках в диапазоне тепловых потоков 6-100 кВт/м² (рис. 2). Полученные опытные данные удовлетворительно согласуются с результатами работы [1], и подтверждают положительное влияние условий «стеснения» [2]. Коэффициенты теплоотдачи для исследованных условий проведения опытов, в диапазоне малых и умеренных тепловых потоках (6-40 кВт/м²), получены на 10-30 % выше, чем при кипении в большом объеме (рис. 3). Это объясняется тем, что при затрудненном отводе паровой фазы создается дополнительный перепад давления, который способствует уменьшению критического радиуса парового зародыша, и, как следствие, приводит к увеличению количества активных центров парообразования.

Рис. 2. Экспериментальные зависимости $\Delta T = f(q)$ при кипении ацетона на гладкой поверхности при атмосферном давлении

Экспериментальное исследование теплообмена при кипении ацетона на поперечно оребренных горизонтальных трубах с различной геометрией ребра проведено в диапазоне тепловых потоков $q = 3 \div 30$ кВт/м² при атмосферном давлении. Исследовалось три типа оребренных поверхностей со следующими профилями ребра: прямоугольный, параболический и треугольный. Более низкие значения плотности теплового потока (по сравнению с технически шероховатой и полированной трубками) связаны с тем, что подводимый от электронагревателя тепловой поток относился к полной поверхности оребренной трубки:

$$q = \frac{Q}{F_o + F_p},\tag{1}$$

где *F*_o – площадь основной поверхности без оребрения; *F*_p – полная площадь ребер.

Рис. 3. Экспериментальные зависимости $\alpha = f(q)$ при кипении ацетона на гладкой поверхности при атмосферном давлении

Коэффициенты теплоотдачи рассчитывались как отношение плотности теплового потока к среднему температурному напору по образцу:

$$\alpha = \frac{q}{\Delta T_{cp}} = \frac{q}{(\Delta T_o + \Delta T_p)/2},$$
(2)

где ΔT_o – средний температурный напор по основной поверхности не занятой оребрением; ΔT_p – средний температурный напор по ребру.

По результатам визуальных наблюдений процесса кипения на гладких и оребренных трубках можно отметить, что процесс парообразования (начало кипения) на оребренных поверхностях начинался при значительно более низких температурных напорах и плотностях теплового потока ($1 - 2 \, ^\circ C$ и 5 $^\circ C$, 3 кВт/м² и 6,5 кВт/м², соответственно, см. рис. 4). Это говорит о достаточно высокой эффективности оребренных поверхностей. Средние коэффициенты теплоотдачи для них в 2-3,5 раза выше, чем для полированной трубки (рис. 5).

Рис. 4. Экспериментальные зависимости $\Delta T = f(q)$ при кипении ацетона на трубках с поперечным оребрением при атмосферном давлении

Рис. 5. Экспериментальные зависимости $\alpha = f(q)$ при кипении ацетона на трубках с поперечным оребрением при атмосферном давлении

В то же время, характер кривых кипения на оребренных трубках в значительной мере определялся геометрией поверхности [3, 4]. При кипении на трубке с прямо-

угольным профилем ребра в области малых тепловых потоков 3 – 15 кВт/м² значения коэффициентов теплоотдачи выше, нежели на поверхности с параболическим профилем ребра. Это связано с ослаблением пульсаций у поверхности окружающей образец жидкости, более быстрым прогреванием объемов жидкости в межреберных зазорах, что приводит к стабилизации процесса парообразования. Однако с ростом теплового потока q > 15 кВт/м² картина резко меняется. В этом случае достаточно узкое поперечное сечение прямоугольного оребрения препятствует отводу образовавшейся паровой фазы, что приводит к снижению интенсивности теплоотдачи вследствие запаривания поверхности. Процесс кипения на трубке с треугольным оребрением начинался при более высоких температурных напорах и плотностях теплового потока (2 °C и 4 кВт/м²). В этом случае низкая эффективность (более низкие значения коэффициентов теплоотдачи, чем для других исследованных оребренных поверхностей) обусловлена ухудшением условий зарождения паровой фазы – значительным влиянием пульсаций жидкости у поверхности, и снижением количества возможных центров парообразования из-за слабого развития поверхности теплообмена.

Выводы

1. Экспериментально подтверждено положительное влияние условий «стеснения» на интенсивность теплоотдачи при кипении ацетона на горизонтальных трубках в кольцевом канале.

2. Проведены экспериментальные исследования процесса кипения на трубках с поперечным оребрением. Полученные значения коэффициентов теплоотдачи в 2-3,5 раза превышают аналогичные величины для гладкой поверхности, что говорит о достаточно высокой эффективности исследованного метода интенсификации теплоотдачи.

3. Выявлены закономерности влияния профиля ребра на вид кривой кипения. Определено, что в области малых тепловых потоков (3 – 15 кВт/м²) наиболее эффективным является прямоугольное оребрение, а при q > 15 кВт/м² – параболическое.

4. Полученные результаты могут быть использованы при разработке высокоэффективных теплообменных аппаратов, теплопередающие поверхности которых работают в условиях «стеснения».

Литература

- 1. Вершинин С.В., Майданик Ю.Ф. Исследование теплообмена при кипении ацетона на мелкопористой капиллярной структуре. Свердловск, 1987. 20 с. Деп. в ВИНИТИ, № 666–В87.
- Овсянник А.В. Некоторые особенности кипения жидкостей в горизонтальных кольцевых каналах //Тепломассообмен – ММФ – 2000: Труды 4-го Минского международного форума по тепло- и массообмену. – Минск: АНК ИТМО НАНБ, 2000. – Т. V. – С. 193-197.
- 3. Кутепов А.М., Стерман Л.С., Стюшин Н.Г. Гидродинамика и теплообмен при парообразовании. М.: Высшая школа, 1986. 352 с.
- Безродный М.К., Сосновский В.И. Определение оптимальных параметров оребрения поверхности, охлаждаемой кипящей жидкостью //ИФЖ. – 1976. – Т. 31, № 1. – С. 142-143.

Получено 20.05.2002 г.