УДК 536.621.1+628.95+535.24

ИЗМЕРЕНИЕ ЭНЕРГИИ ТЕПЛОВЫХ ПОТЕРЬ МОЩНОГО СВЕТОДИОДНОГО МОДУЛЯ

Т. Н. САВКОВА, А. И. КРАВЧЕНКО

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Основная проблема при создании светодиодных осветительных установок с высоким световым потоком заключается в эффективности преобразования электрической энергии в оптическое излучение. Увеличение рабочего тока с целью повышения яркости светодиодной лампы приводит к увеличению тепловыделения и к повышению температуры активной области светодиодной структуры. Перегрев светодиодов уменьшает световую отдачу, ограничивает максимальную оптическую мощность, влияет на срок службы. Поэтому анализ рабочего теплового режима [1], [2] и светоотдачи светодиодных структур требует детального изучения.

Основная часть

Измерение энергии тепловых потерь (тепловых потерь) проводилось косвенным методом с помощью калориметра-интегратора (калориметра). Исследования проводились на коммерчески доступных светодиодных модулях белого света с потребляемой мощностью 50 Вт, на медной подложке (размером 40 × 45 мм) которых располагались 5 рядов светодиодных ячеек по 10 штук в каждом. Блок-схема экспериментальной установки определения тепловых потерь светодиодного модуля (СДМ) представлена на рис. 1.

Рис. 1. Блок-схема экспериментальной установки для измерения энергии тепловых потерь СДМ: БУ – блок управления; АЦП – аналого-цифровой преобразователь; БСП – блок стабилизированного питания; ПК – персональный компьютер

Основным элементом калориметрической системы является цилиндр из алюминия с выемкой для нагревателя – СДМ, помещенный в теплоизолированный корпус из плотного пеноплекса (рис. 2).

Пространство между пенопластом и блоком заполнялось дистиллированной водой. Излучение СДМ выводилось через отверстие в крышке калориметра за его пределы. Измерение температуры проводилось термопарами, установленными в различных точках калориметра, в том числе на стенке алюминиевого цилиндра и подложке СДМ, а также на излучающей поверхности СДМ и на некотором расстоянии от нее. Напряжение с термопар через аналоговый коммутатор поступало на АЦП и ПК. Блок стабилизированного питания позволял поддерживать постоянную мощность электрического тока, подводимого к СДМ. На начальном этапе все элементы калориметра были с одинаковой начальной температурой. Измерения проводились через равные промежутки времени в течение 2 ч.

Рис. 2. Массивный калориметр-интегратор для измерения энергии тепловых потерь, выделяющейся при работе СДМ

Тепловая энергия, выделяемая светодиодным модулем, определялась суммой тепловых энергий: энергии испускаемой с поверхности СДМ, энергии, полученной калориметром, а также отданной калориметром в окружающую среду, т. е.

$$Q = Q_1 + Q_2 + Q_3.$$
 (1)

Тепловая энергия, отдаваемая поверхностью СДМ, складывалась из излучаемой энергии и уносимой конвекционным потоком:

$$Q_1 = Q_{\mu} + Q_{\kappa}. \tag{2}$$

Так как температура поверхности СДМ устанавливалась практически мгновенно, то энергию теплового излучения поверхности можно определить на основании закона Стефана–Больцмана по формуле [3]:

$$Q_{\mu} = \alpha \cdot \sigma \cdot T_A^4 \cdot s_1 \cdot t, \qquad (3)$$

где α – коэффициент черноты поверхности СДМ; σ – постоянная закона Стефана– Больцмана; s_1 – площадь излучающей поверхности СДМ; T_A – температура на поверхности СДМ в точке *A*; *t* – время проведения опыта.

Для расчета тепловой энергии, обусловленной конвекцией с поверхности СДМ, мы воспользовались законом Ньютона, в котором тепловой поток считается пропорциональным разности температур между теплоносителем и окружающей средой [3]:

$$Q_{\kappa} = \gamma (T_A - T_0) s_1 \cdot t, \tag{4}$$

где
 γ – коэффициент теплоотдачи; T_0 – температура окружающей среды.

Тепловая энергия Q_2 , которая пошла на нагрев алюминиевого цилиндра, крепежа, медной подложки СДМ, дистиллированной воды и пеноплекса:

$$Q_{2} = c_{a\pi} \cdot m_{a\pi} \cdot \Delta T_{a\pi} + c_{\pi} \cdot m_{\pi} \cdot \Delta T_{\pi} + c_{\mu} \cdot m_{\mu} \cdot \Delta T_{\mu} + c_{\mu} \cdot m_{\mu} \cdot \Delta T_{\mu} + c_{\mu} \cdot m_{\mu} \cdot \Delta T_{\mu} + c_{\mu} \cdot m_{\mu} \cdot \Delta T_{\mu}, \qquad (5)$$

где c_{an} – удельная теплоемкость алюминия; m_{an} – масса алюминиевого цилиндра; c_{π} – удельная теплоемкость железа (крепежа); m_{π} – масса крепежа; c_{M} – удельная теплоемкость подложки СДМ (медь); m_{M} – масса подложки СДМ; c_{B} – среднее значение удельной теплоемкости дистиллированной воды; m_{B} – масса воды; c_{n} – удельная теплоемкость пеноплекса; m_{n} – масса пеноплекса; $\Delta T = (T_{2} - T_{1})$, где T_{1} и T_{2} – начальная и конечная температура элементов калориметра; ΔT_{n} – определялась

как разность средней температуры пеноплекса $\left(\frac{T_E + T_F}{2}\right)$ и начальной.

В расчете Q_2 не учитывалась зависимость теплоемкости и плотности воды от температуры, а также тепловая энергия от мешалки (в виду их незначительности).

Тепловые потери с поверхности калориметра Q_3 определялись конвекционным потоком (тепловое излучение незначительно) по формуле

$$Q_3 = \gamma (T_{F \, cp} - T_0) s_2 \cdot t, \tag{6}$$

где s_2 – площадь внешней поверхности пеноплекса; $T_{F_{cp}}$ – средняя температура на поверхности пеноплекса в точке F.

Результаты вычислений, выполненных на основании ряда измерений по формулам (1)-(6) представлены в таблице.

Обозначение	Среднее значение тепловой энергии за 2,1 ч, Дж	Средняя мощность тепловых потерь <i>P</i> , Вт	Средняя мощ- ность в % от под- водимой мощно- сти к СДМ 50Вт
$Q_{1 cp}$	17571,24	2,25	4,50
Q_{2cp}	252682,1	32,39	64,79
Q_{3cp}	1586	0,20	0,40
$Q_{ m cp}$	271839,34	34,85	69,70

Результаты вычисления средней энергии тепловых потерь СДМ 50Вт, измеренных с помощью массивного калориметра-интегратора

В результате измерений было установлено, что средняя мощность тепловых потерь СДМ составила порядка 70 % от измеряемой мощности при 5 % погрешности измерений.

Измерение средней мощности теплового излучения нашло свое подтверждение при измерениях средней мощности светового излучения с использованием калиброванного спектрорадиометрического комплекса с интегрирующей сферой DTF-320-201.

Структурная схема спектрорадиометрического комплекса изображена на рис. 3. Световое излучение исследуемого СДМ направлялось в интегрирующую сферу, где сравнивалось с излучением эталонной лампы Osram Sylvania 1000Вт, 120В. Далее через световод из оптического волокна излучение попадало в ПЗС – спектрорадиометр, цифровой измеритель мощности и ПК.

Рис. 3. Структурная схема спектрорадиометрического комплекса

Результаты измерений были обработаны с помощью программы Spectral Analysis и представлены на рис. 4. Энергетическая эффективность для данного СДМ составила порядка 30 % (~15 Вт).

Рис. 4. Абсолютный спектральный состав излучения СДМ 50Вт

Эффективность преобразования электрической энергии в свет в СДМ видна из диаграммы (рис. 5), показывающей сравнительный баланс энергии. Для повышения качества светодиодных источников света, как нам представляется необходимо использовать светодиоды малой единичной мощности с минимальными тепловыми потерями.

Рис. 5. Баланс энергии СДМ 50Вт

Заключение

Таким образом, предложенный метод измерений энергии тепловых потерь с использованием массивного калориметра-интегратора позволяет с достаточной точностью определять мощность тепловых потерь мощного СДМ. Результаты измерений и расчетов подтверждаются измерениями мощности светового излучения.

Литература

- 1. Николаев, Д. Светодиодные светильники: ваш первый опыт / Д. Николаев, С. Щеглов, А. Феопентов // Полупроводниковая светотехника. 2009. № 1. С. 37–41.
- 2. Никифоров, С. Температура в жизни и работе светодиодов / С. Никифоров // Компоненты и технологии. 2005. № 9. С. 140–146.
- 3. Болгарский, А. В. Термодинамика и теплопередача : учеб. для вузов / А. В. Болгарский, Г. А. Мухачев, В. К. Щукин. М. : Высш. шк., 1975. 495 с.

Получено 02.07.2013 г.