УДК 539.3

АНАЛИЗ ФОРМИРОВАНИЯ НА ОПРАВКЕ ГЕРМЕТИЗАТОРА ИЗ НЕЛИНЕЙНО-УПРУГОГО ПОЛИМЕРНОГО МАТЕРИАЛА

С. В. ШИЛЬКО, Т. В. РЯБЧЕНКО

Государственное научное учреждение «Институт механики металлополимерных систем имени В. А. Белого НАН Беларуси», г. Гомель

О. В. КРОПОТИН

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Омский государственный технический университет», Российская Федерация

Введение

Необходимость повышения качества герметизирующих устройств (уплотнений) ужесточает требования к качеству их важнейшего элемента — герметизатора. Традиционный, во многом интуитивный поиск оптимальных технологических режимов изготовления герметизаторов, включая выбор материала и геометрических характеристик заготовки, является весьма трудоемким. К примеру, наполнение эластомерной матрицы частицами углерода, обеспечивая кратное повышение износостойкости герметизатора, сопровождается значительным увеличением модуля упругости и уменьшением предельной относительной деформации материала. Это затрудняет придание заготовке необходимой формы путем напрессовки или натягивания на фасонную оправку, требуя проверки ряда конструктивных вариантов.

В этой связи следует шире использовать средства механико-математического моделирования, а именно, теорию нелинейных деформаций [2], [3] и численные методы, в первую очередь, конечно-элементную аппроксимацию моделей контактного взаимодействия эластичных герметизаторов с уплотняемыми деталями [4]–[7]. В сравнении с расчетами параметров уплотнений в условиях эксплуатации, вопросы моделирования технологических процессов их изготовления изучены гораздо меньше и являются предметом настоящего исследования.

Целью работы является главным образом оценка возможностей нелинейного конечно-элементного анализа для оптимизации технологического процесса формирования герметизирующих элементов уплотнений методом напрессовки на оправку.

Формулировка задачи и построение конечно-элементной модели

Рассмотрим процесс изготовления герметизатора путем напрессовки полимерной или эластомерной заготовки на металлическую цилиндро-коническую оправку (рис. 1) с обеспечением максимального прилегания заготовки к формообразующей поверхности. После термообработки в состоянии натяга, позволяющей зафиксировать форму заготовки, например, путем вулканизации резины, готовое изделие снимается с оправки.

Нелинейность задачи моделирования указанного технологического процесса обусловлена большими упругими деформациями заготовки, ее контактным взаимодействием с оправкой при наличии трения с возможностью изменения зоны контакта при деформировании заготовки и ее локального отрыва от поверхности оправки.

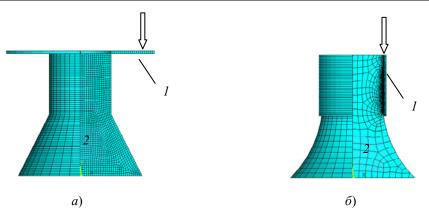


Рис. 1. Схема формирования уплотнения: 1 – дисковая заготовка (a), заготовка в виде цилиндрической оболочки (δ); 2 – оправка

Используемые в настоящее время модели контактного деформирования эластомерных и полимерных заготовок в большинстве случаев основаны на предположении линейно-упругого деформирования материала, что приводит к значительной погрешности расчета в условиях конечных деформаций. В этом случае следует применять гиперупругие модели, основанные на теории потенциала. К ним относится модель Муни–Ривлина, реализация которой в распространенной программе конечноэлементного анализа ANSYS в виде процедуры Mooney–Rivlin Hyperelastic кратко изложена ниже.

Кроме того, материалы уплотнений отличаются выраженным вязкоупругим поведением, что необходимо учитывать в рамках соответствующих реологические моделей, например, модели Прони (изложена ниже).

Конечно-элементное моделирование гиперупругих деформаций

Гиперупругость материала может быть описана функцией упругого потенциала (плотности энергии деформации) W, производная которой по компонентам деформации определяет соответствующие напряжения:

$$S_{ii} = \partial W/\partial E_{ii} = 2\partial W/\partial C_{ii}, \tag{1}$$

где S_{ij} — компоненты второго тензора напряжений Пиолы—Кирхгофа; W — функция плотности энергии деформации; E_{ij} — компоненты тензора деформации Лагранжа; C_{ij} — компоненты правого тензора деформации Коши—Грина.

Деформации Лагранжа определяются следующим образом:

$$E_{ij} = 0.5(C_{ij} - \delta_{ij}), \tag{2}$$

где $\delta_{ij} = 1$ при i = j и $\delta_{ij} = 0$ при $i \neq j$.

Тензор деформаций C_{ii} определяется произведением градиентов деформации f_{ii} :

$$C_{ij} = f_{ik} f_{kj}, (3)$$

где $f_{ij} = \partial X_i/\partial x_i$; X_i — координата точки по оси i в недеформированном состоянии; $x_i = X_i + u$ — координата точки по оси i после деформации; u_i — перемещение точки в направлении i.

В программе ANSYS модель Муни–Ривлина (команда *MOONEY или ТВDATA с опцией ТВ,МООNEY) описывает несжимаемые и слабосжимаемые материалы и используется ниже в примере расчета.

Для гиперупругих материалов константы Муни–Ривлина можно получить из диаграммы «напряжение – деформация». В программе ANSYS они задаются с помощью команды *МООNEY в поле LTYPE. Выбор опции LTYPE соответствует шести напряженно-деформированным состояниям, включая одноосное растяжение (только LTYPE = 1 или сочетание LTYPE = 6, 7 или 9); одноосное сжатие (только LTYPE = 1 или сочетание LTYPE = 6, 8 или 9); равнодвухосное сжатие (только LTYPE = 1 или сочетание LTYPE = 6, 8 или 9); равнодвухосное растяжение (только LTYPE = 2 или сочетание LTYPE = 6, 8 или 9); растяжение в плоскости (только LTYPE = 4 или 5 или сочетание LTYPE = 7, 8 или 9); сжатие в плоскости (только LTYPE = 4 или 5 или сочетание LTYPE = 7, 8 или 9). Использование результатов испытаний в различных состояниях повышает стабильность параметров гиперупругости материала.

Описание вязкоупругого деформирования по Прони

Деформационный отклик рассматриваемых уплотнительных материалов, имеющих высокомолекулярную природу, включает вязкую компоненту. Под действием сжимающей нагрузки упругий отклик является мгновенным, в то время как вязкое деформирование происходит в течение достаточно длительного периода времени. При малых деформациях для термореологически простого вязкоупругого материала справедливы следующие определяющие уравнения:

$$\sigma = \int_{0}^{t} 2G(t-\tau) \frac{de}{d\tau} d\tau + I \int_{0}^{t} K(t-\tau) \frac{d\Delta}{d\tau} d\tau, \tag{4}$$

где σ — напряжение Коши; e — девиаторная часть напряжения; Δ — объемная часть напряжения; G(t) — функция ядра сдвиговой релаксации; K(t) — функция ядра объемной релаксации; t — текущее время; t — прошедшее время; I — единичный тензор.

Исходя из представления (4), для моделирования вязкоупругого поведения герметизатора воспользуемся моделью Прони, соответствующей классическому представлению теории вязкоупругости в виде модели Максвелла и реализованной в большинстве конечно-элементных программ, включая ANSYS.

В программе ANSYS для вязкоупругих конечных элементов VISCO88 и VISCO89 свойства материала выражаются в интегральной форме с использованием функции ядра из обобщенных элементов Максвелла:

$$G(\xi) = G_{\infty} + \sum_{i=1}^{n_G} G_i e^{(-\xi/\lambda_i^G)};$$
 (5)

$$K(\xi) = K_{\infty} + \sum_{i=1}^{n_K} K_i e^{(-\xi/\lambda_i^K)};$$
 (6)

$$G_i = C_i(G_0 - G_{\infty}); \tag{7}$$

$$K_i = D_i(K_0 - K_{\infty}), \tag{8}$$

где ξ — приведенное время; $G(\xi)$ — функция ядра сдвиговой релаксации; $K(\xi)$ — функция ядра объемной релаксации; n_G — число элементов Максвелла, используемых при аппроксимации ядра сдвиговой релаксации; n_K — число элементов Максвелла, используемых при аппроксимации ядра объемной релаксации; C_i — константы, связанные с мгновенным откликом для сдвигового поведения; D_i — константы, связанные с мгновенным откликом для объемного поведения; G_0 — начальный модуль сдвига; G_∞ — конечный модуль сдвига; C_∞ — конечный модуль; C_∞ — конечный модуль C_∞ — конечны

константы, связанные с дискретным спектром релаксации при сдвиге; λ_i^K – константы, связанные с дискретным спектром релаксации при объемной деформации.

В конечных элементах LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, SOLSH190, SHELL208, SHELL209, SHELL281 функции ядра представляются в виде ряда Прони:

$$G = G_{\infty} + \sum_{i=1}^{n_G} G_i \exp\left(-\frac{t}{\tau_i^G}\right); \tag{9}$$

$$K = K_{\infty} + \sum_{i=1}^{n_K} K_i \exp\left(-\frac{t}{\tau_i^K}\right),\tag{10}$$

где G_{∞} , G_i – сдвиговые упругие модули; K_{∞} , K_i – объемные упругие модули; τ_i^G , τ_i^K – времена релаксации для каждого компонента Прони.

При введении относительных модулей

$$\alpha_i^G = G_i / G_0; \tag{11}$$

$$\alpha_i^K = K_i / K_0, \tag{12}$$

где
$$G_0 = G_{\infty} + \sum_{i=1}^{n_G} G_i; \ K_0 = K_{\infty} + \sum_{i=1}^{n_K} K_i,$$

функции ядра могут быть эквивалентно выражены как

$$G = G_0 \left[\alpha_{\infty}^G + \sum_{i=1}^{n_G} \alpha_i^G \exp\left(-\frac{t}{\tau_i^G}\right) \right]; \quad K = K_0 \left[\alpha_{\infty}^K + \sum_{i=1}^{n_K} \alpha_i^K \exp\left(-\frac{t}{\tau_i^K}\right) \right]. \tag{13}$$

Здесь G_0 и K_0 — сдвиговой и объемный модули при быстром нагружении (мгновенные модули), соответственно и G_∞ и K_∞ — модули при медленном нагружении. Интегральная функция [4] описывает упругое деформационное поведение в пределах очень медленного и очень быстрого нагружения. Кроме того, при аппроксимации (13) предполагается, что девиаторная и объемная части напряжения относятся к различным релаксационным кривым.

Результаты моделирования и их обсуждение

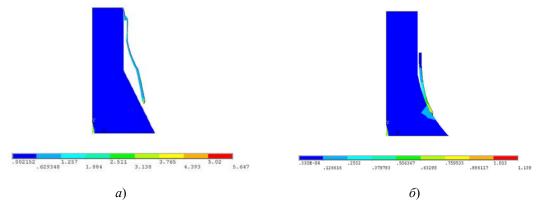
Исходя из осевой симметрии заготовки и оправки, решалась осесимметричная контактная задача (на рис. 1 показана правая половина диаметрального сечения сопряжения). В соответствии с реальным технологическим процессом задавалось кинематическое нагружение в виде вертикального смещения наружного края верхней торцевой поверхности дисковой заготовки (рис. 1, a) и всей верхней торцевой поверхности заготовки в виде цилиндрической оболочки (втулки) (рис. 1, δ). Нижнее основание модели оправки было жестко закреплено и предполагалось, что трение в контакте оправки и заготовки определяется законом Кулона.

В примере расчета использовали следующие исходные данные: модуль упругости и коэффициент Пуассона материала оправки (сталь) $E_{\rm c}=200~{\rm \Gamma\Pi a}$ и $\nu_{\rm c}=0.28$ соответственно; упругие константы по модели Муни–Ривлина (см. выше) для материала заготовки (сырая резина): $c_{10}=0.3~{\rm M\Pi a},~c_{01}=0.1~{\rm M\Pi a};$ коэффициент несжимаемости d=1, коэффициент трения по стали f=0.3. Ввиду существенного различия жесткости оправки и заготовки, очевидно, допустимо также упрощенное представление оправки в виде твердой поверхности, что способствует уменьшению вычислительных затрат. Вязкоупругие свойства материала заготовки описывались

моделью Прони (см. выше) с использованием следующих значений коэффициентов $a_1 = 0,4$; $\tau_1 = 10$ c; $a_2 = 0,5$; $\tau_2 = 100$ c.

Для двух видов заготовок были найдены распределения объемных и контактных напряжений и перемещений, позволяющие судить о предельных состояниях заготовки по условию прочности в напряжениях и деформациях.

На рис. 2–4 представлены распределения объемных (эквивалентных по Мизесу) и контактных напряжений, а также эквивалентных деформаций, возникающих при формировании уплотнения из заготовок в виде диска с отверстием (a) и цилиндрической оболочки (δ) для момента времени t=1 с.



 $Puc.\ 2.$ Распределение эквивалентных напряжений при напрессовке дисковой (a) и цилиндрической (δ) заготовки

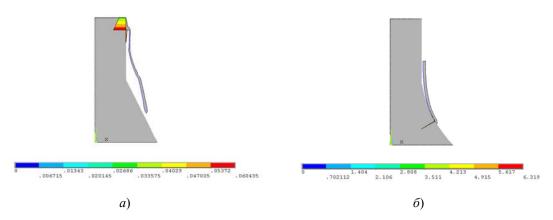


Рис. 3. Распределение давлений (МПа) в контакте оправки и заготовки *Примечание*. Обозначения те же, что и на рис. 2.

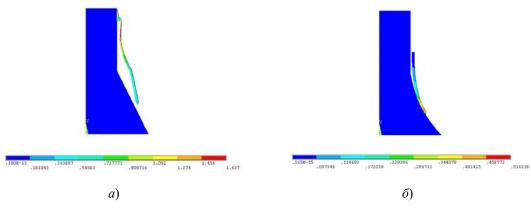


Рис. 4. Распределение эквивалентных деформаций в заготовке *Примечание*. Обозначения те же, что и на рис. 2.

В таблице сделано сопоставление ряда параметров напряженно-деформированного состояния дисковой и цилиндрической оболочечной заготовок. Можно заметить, что формирование герметизатора из дисковой заготовки характеризуется довольно высокими значениями максимальных напряжений и деформаций. Сопоставление полученных результатов с аналогичными компонентами напряженно-деформированного состояния, полученными в рамках упругой модели, показало существенное влияние вязкости материала заготовки на ее конфигурацию при напрессовке. При использовании оболочечной заготовки максимальные эквивалентные напряжения и контактные давления уменьшаются примерно в 5 раз, а максимальные эквивалентные деформации — более чем в 3 раза. Для улучшения формообразования герметизатора изменяли диаметр отверстия в дисковой заготовке и модифицировали форму оправки путем увеличения радиуса закругления ее края. Тем не менее, заготовка в виде оболочки оказывается более предпочтительной, обеспечивая хорошее воспроизведение формы оправки без модификации геометрической формы последней и при невысоких напряжениях и деформациях заготовки.

Сопоставление максимальных значений компонент напряженно-деформированного состояния дисковой и цилиндрической заготовок

Параметр	Форма заготовки	
	Диск	Цилиндрическая оболочка
Эквивалентное напряжение, МПа	5,6	1,0
Контактное давление, МПа	0,06	6,3
Эквивалентная деформация	1,64	0,52

Заключение

Конечно-элементное моделирование является эффективным средством оптимизации технологического режима формирования герметизирующих элементов уплотнений методом напрессовки заготовки на оправку, так как расчетные распределения объемных и контактных напряжений, перемещений и деформаций позволяют судить о соответствии изделия профилю оправки и предельных состояниях заготовки по условию прочности. Существенными факторами являются гиперупругость и вязкоупругость полимерных и эластомерных материалов, которые могут быть описаны в рамках двухкомпонентной модели Муни-Ривлина и модели Прони, имеющихся в современных программных продуктах. Установлено, что формирование цилиндроконического герметизатора из дисковой заготовки сопровождается значительными напряжениями и деформациями, а также требует коррекции формы оправки, что делает предпочтительным использование заготовки в виде цилиндрической оболочки.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (проект T12P-227).

Литература

- 1. Уплотнения и уплотнительная техника / Л. А. Кондаков [и др.] ; под общ. ред. А. И. Голубева и Л. А. Кондакова. М. : Машиностроение, 1986. 464 с.
- 2. Ogden, R. W. Nonlinear Elastic Deformations / R. W. Ogden. Dover Publications, Inc. 1984. 532 p.
- 3. Коробейников, С. Н. Нелинейное деформирование твердых тел / С. Н. Коробейников. Новосибирск: Изд-во СО РАН, 2000. 262 с.

- 4. Oden, J. T. Finite Elements in Nonlinear Continua / J. T. Oden. New York: McGraw-Hill, 1972. 432 р. / рус. пер.: Оден Дж. Конечные элементы в нелинейной механике сплошных сред / Дж. Оден. М.: Мир, 1976. –464 с.
- 5. Ереско, С. П. Математическое моделирование, автоматизация проектирования и конструирование уплотнений подвижных соединений механических систем / С. П. Ереско М.: Изд-во ИАП РАН, 2003. 155 с.
- 6. Кропотин, О. В. Разработка элементов герметизирующих устройств трибосистем и анализ их напряженно-деформированного состояния с использованием метода конечных элементов / О. В. Кропотин, Ю. К. Машков, В. П. Пивоваров // Трение и износ. 2004. Т. 25, № 5. С. 461–465.
- 7. Кропотин, О. В. Оценка работоспособности кольцевых уплотнений из углепластиков по модифицированным критериям качества / О. В. Кропотин, Ю. К. Машков, С. В. Шилько // Механика машин, механизмов и материалов. 2013. № 1 (22). С. 67—70.
- 8. ANSYS 11.0. User's Manual.

Получено 10.06.2013 г.