242 Cexknus VII. UndopmanmoHHbIe TEXHOJOTHH U MOJAEJIUPOBAHUE

Training on single CPU.
Initializing input data normalization.

Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning
| | (hh:mm:ss) | Accuracy | Loss | Rate

00:00:00 38.28%
00:00:1%9 100.00%

|] .0837
] |

00:00:38 | 100.00% |
] |
| |

.0054

] .0100
|

L0027 |
|
|

L0100
.0100
L0100
.0100

25
30

150
180

00:00:58 100.00%
00:01:09 100.00%

.0009

|
|
17 | 100
|
] .0003

oo oo
oo o oo

|
I
|
I
I] 50
I
|
I
|

D) Ty P e LI

Training Progreas {10-lan-2821 03:21:57)

Puc. 3. Pe3ynpTaThl IPUMEHEHHS CBEPTOUHBIX HEHPOHHBIX ceTeil

[IpumeHeHre HEMPOMOIEIUPOBAHUS B JTMArHOCTHUKE CHCTEM OOECIIEUeHUs] SHEPro-
CHa0XEHHUS TO3BOJIUT KOHTPOJIMPOBATH COCTOSTHHE TPAHC(POPMATOPOB B PEKUME PEaTbHO-
r'0 BpeMEHH, He BBIBOAS TpaHC(hOpMaTop U3 pabOThL, YTO MPEIOCTABIIAET JOMOIHUTEIbHbBIE
BO3MOXXHOCTH B 00€CIICUeHUN HU3KOTO YPOBHs 0Oe3aBapUitHOCTH U COOIIOIEHUS PEKUMOB
OecniepeOOHOTO AIEKTPOCHAOKEHHSI, COTIPOBOKIAONINXCS, KaK MPABUIIO, 3HAYNTEIbHBI-
MU IKOHOMUYECKUMHU M IKOJOTUYCCKUMH H3ACPKKAMU WA PeaIbHBIM YIIEpOOM ISl T1O-
TpeduTteneii. [Ipu »ToM 3aTpaThl Ha BHEIPEHNE JTAHHOW TEXHOJIOTHH HEHPOMOICITUPOBAHHMS
OTHOCUTEIILHO HEBEJIMKH (HAlpUMep, MPUMEHEHHE OJHOIUIATHBIX KOMITBIOTEPOB), a (-
(EeKTUBHOCTH OT IPUMEHEHHUS OyIEeT CYIIECTBEHHOM.

FACILITATING SOFTWARE COMPONENT REUSE IN THE DHIS2
PLATFORM ECOSYSTEM

A. Bengtsson
University of Oslo, Norway

Scientific advisors: P. Nielsen, M. Li

There is an increase in the development of generic software systems that are developed
to serve multiple organizations and used for different purposes. Some examples of generic
software are the Microsoft Office 365 suite, Adobe Photoshop, and DHIS2 — a generic web-
based Health Management Information System (HMIS) platform, which is the focus of my
study. The purpose of HMIS is to routinely manage and generate health information data that
would serve as a basis for management decisions to foster improvements in health service
provision. DHIS2 is currently the world's largest health management information system,
and it is in use by 73 low- and middle-income countries [1]. HISP is a global network that
develops and supports the DHIS2 platform. The network is comprised of HISP groups —
organizations based in developing countries, providing support to DHIS2.

Cexknus VII. UndopmManmoHHbIe TEXHOJOTHH U MOJAEJIUPOBAHUE 243

One way of contributing to the DHIS2 is through the development of additional
modules or web applications on top of generic software, which are extensions of the user
interface and the functionality in the case of the DHIS2. Building these web applications
from scratch can be time-consuming. It is also not resource-efficient if different HISP
groups are developing similar modules. One way of addressing this problem is by building
software from existing components using a component-based software engineering
(CBSE) approach. Software reuse is the central focus of this approach, and the main idea is
a development of applications by reusing configurable software components. However,
there are several barriers to component reuse, and one of them is the poor cataloging and
distribution of reusable software components. This has a considerable impact on
component discovery and makes the process of component reuse less effective.

This study aimed at attaining two goals — a practical one and a theoretical one.
The practical goal was to conduct engaged research with the HISP community exploring
the possibility of creating a component repository that facilitates component reuse in web-
based application development. Therefore, a primary focus of the work in this project was
the design, implementation, and evaluation of such a repository in collaboration with
the DHIS2 core team and members of HISP groups involved in application development
work. The theoretical goal of my research was to identify and establish a set
of theoretically and empirically grounded design principles for implementing a component
repository that facilitates component reuse in a software platform ecosystem. These design
principles are a theoretical contribution to the knowledge base on how component
repositories can be designed and developed. They are prescriptive in nature and are meant
to give value beyond local practice. Given the above, the paper addresses the following
research question: What are the essential design principles for implementing a component
repository that facilitates component reuse in a software platform ecosystem?

Guided by the nature of the research problem, this study was situated within the
pragmatic research paradigm. Software reuse is a socio-technical activity, as it clearly has
some social aspects in addition to technical aspects. For example, the specification
of metadata for a component is highly technical, as it must be exactly specified and machine-
readable to ensure proper component cataloging in a component repository. There are,
however, also highly social aspects, for example, the developers’ attitude towards software
reuse, which could be influenced by social factors such as trust and understanding. Given
this, I could see a clear application for the pragmatic research paradigm that advocates
embracing the approach that gives most utility in the circumstances. I have chosen Design
Science Research (DSR) as an overarching methodology to guide the design and
development of the component repository. Contrary to other methodologies that have a goal
of understanding reality, DSR is a problem-solving approach with the aim of changing
situations to a better or more desirable state. DSR offers a cyclical process model that
includes such activities as problem identification, definitions of the objectives, design and
development of the artifact, demonstration, evaluation of the artifact, and, finally,
communication of the conducted research.

To identify the problem, my team and I have conducted focus group discussions with
the members of the DHIS2 core team at the University of Oslo. Additionally, we
conducted a set of interviews with developers in HISP East Africa. Our goal was to learn
about application development practices, motivation for software reuse, current and
prospective reuse practices, impediments for reuse, tooling, and collaboration in co-located
teams (i. e., within one HISP group) and geographically dispersed teams (i. e., between
different HISP groups). Analysis of the gathered data has shown that there is diversity in

244 Cexknus VII. UndopmanmoHHbIe TEXHOJOTHH U MOJAEJIUPOBAHUE

technology, tooling, and software reuse practices. One of the practices discerned during
the interviews is software reuse through the copying of code, and while it can be seen as
code reuse with minimal effort, there is a number of issues pertaining to such a practice.
The code might have bugs and security vulnerabilities, and copy-pasting would mean
introducing these issues in different applications. Another practice we have encountered
during the interviews was CBSE, which involved the creation of reusable components
which were stored on Github and as NPM packages in NPM Registry. This has made us
question whether there is, in fact, a need for the development of a component repository
given that NPM Registry is already in place. We have decided not to develop a completely
new component repository but rather cultivate the installed base by reusing and extending
the existing infrastructure. The main goal of our solution would be to support and improve
the existing CBSE approach by addressing some of the challenges we have encountered
with existing technologies, services, and tools.

As a practical contribution to this study, a component repository called the DHIS2
Shared Component Platform (SCP) was developed. The component repository consists of a
website (built using React) that aggregates reusable components and two other modules
that support the process of component certification: a command-line interface (CLI, written
in TypeScript) to provide functionality for local certification, and a GitHub repository with
an automated certification workflow using GitHub Actions workflow that invokes the
command line interface. During the development phase, SCP was evaluated by the DHIS2
core team members with the intention to improve SCP’s functionality and develop a higher
quality artifact. SCP aims to increase the productivity of DHIS2 developers and shorten
the development life cycle. Component certification improves component trustworthiness
and thus, improves the quality and reliability of the developed web applications.
The established set of design principles, a theoretical contribution of this study, attempts
to address the challenging aspects of the implementation of a component repository
that facilitates component reuse in a software platform ecosystem. These principles can
serve as guidance for the construction of a similar artifact.

The first design principle, Principle of installed base cultivation, advocates the utilization
of the existing infrastructure to increase the likelihood of component repository adoption.
The process of design and development should not start from scratch; it must consider
the existing infrastructure, e. g., attitude towards software reuse, software reuse practices and
process, technology, and tooling. Instead of creating a radical change, one should cultivate
the installed base towards better practice.

The second design principle, Principle of component trustworthiness, advocates the
implementation of component certification as an integral part of software reuse in order to
increase component trustworthiness and make developers more comfortable reusing
software. The review of the previous literature on CBSE has shown that component
certification is an important aspect of CBSE, and the DHIS2 core team has also expressed
the need for certification functionality to promote components with a certain level
of quality. When implementing certification, one must take into consideration the level
of human discretion in the certification process. A certification process with a low level
of human discretion can be automated and more accurate, while a manual process with
a high level of human discretion can be subjective, time-consuming, and less accurate.

The third design principle, Principle of balanced certification, emphasizes
the importance of governance balance in a software platform ecosystem when choosing
individuals for the role of component certifiers. If the DHIS2 core team, as platform
owners, takes this responsibility, it might have a significant impact on the autonomy

Cexknus VII. UndopmManmoHHbIe TEXHOJOTHH U MOJAEJIUPOBAHUE 245

of third-party developers. If the team of certifiers is entirely comprised of third-party
developers, it brings more egalitarianism to the platform ecosystem but reduces the
platform owners’ control over the platform.

The fourth design principle, Principle of component granularity, advocates providing
the right level of component granularity in a component repository as it has a high impact
on a component’s discoverability and usability. NPM packages have an arbitrary level
of component granularity, i.e., some packages might contain only one reusable
component, while some packages act as component libraries and contain multiple
components. This has a negative effect on the component discovery, as NPM registry does
not search for components within packages. SCP addresses this challenge by indexing
reusable components inside the packages and thus, improves their discoverability.

The fifth design principle, Principle of orthogonality, guides the researchers and
developers in their work on architecting and implementing a component repository.
A component repository is part of the component-management process and must provide
support for other processes such as component publishing, component acquisition,
and certification. Adopting a modular approach with the aim of building an orthogonal
system, i. e., highly cohesive and loosely coupled, can reduce the complexity of the system
and increase its maintainability. A high degree of orthogonality has a significant impact on
the system’s evolution, as each of the modules can evolve in a decentralized way
(i. e., the modules can be modified, updated, and removed independently from each other).

References

1. About DHIS2. — 2021. — Access mode: https://dhis2.org/About/. — Accessed: 14.02.2021.

KOMIMNbKOTEPHOE MOOENMMPOBAHUE ®PUKLUMUOHHOIO Y3J1A
C.TI'. Muaramon

Vupeorcoenue obpazosanus «Benopycckutl 20cy0apcmeenHblil
YHUgepcumem mpancnopmay, 2. I omens

Hayunsiii pyxoBogutens J. U. Ianai

MomHOCTh U 3()PEKTUBHOCTH TOPMO30B OMPEEISAIOTCA 110 TPEM OCHOBHBIM IOKa-
3aTeNsiM: CKOPOCTh M0e3/1a, €ro BeC M JUIMHA TOPMO3HOTO MyTH. DTU (AKTOPHI ABISIOTCS
JTOMUHHPYIOIUMHU TPH BBIOOpE TOPMO3HBIX cucTeM [1]. B Hacrosmee Bpems Ha 00Jb-
IIMHCTBE BArOHOB MPUMEHSIIOTCS KOMITIO3UIIMOHHBIE KOJIOAKH M3 Matepuana THUHNP-300,
THUNP-303, TUUP-308, obianaroniue BHICOKOW M3HOCOCTOMKOCTBIO — OHU B 3—3,5 pasza
JIOJITOBEYHEE CTAHJIAPTHBIX YyTYHHBIX [2]. UyryHHBIE KOJOJIKH OBICTPO HM3HANIHBAIOTCS,
yTo TpedyeT Oonbmioro od0beMa padoT MO 3aMEHE W PETyJIHPOBKE PHIYAKHBIX Iepe-
nau [4], [5]. KoadgduureHT TemnonpoBOJHOCTH KOMIO3UIIMOHHOTO MaTepuana COCTaB-
asetr oT 0,7-0,93 no 1-4 Bt/ (M- K). [Ins cpaBHeHus, ecid TBEpAOCTb TOPMO3HOMN
kojonku coctaBisieT 2400 MIla, To ko3(pPuUIMEHT TEMIONPOBOJHOCTH YyryHa Tuma P
coctaBisieT 45 Bt/(m - K) [3], [6]. [losToMy 4UyryHHBIN MaTepHasl MPUMEHSETCS Yallle,
4yeM KOMIIO3MIMOHHBIN MaTtepuan. KosdduiueHT TpeHus KOMMO3UIIMOHHBIX KOJIOIOK
MEHBbIIIE 3aBUCUT OT CKOpPOCTU. B rpy3oBbIX Baronax xene3nsix gopor CHI', a takxke
B CIIIA npumeHsieTcsi OAHOCTOPOHHEE Ha)XKaTWe TOPMO3HBIX KOon0K. B 3amaanoit EB-
porie Ha TPY30BbIX U MACCAKUPCKUX BaroHaX UCIOJIB3YIOTCS TOPMO3a C IBYXCTOPOHHUM
Ha)aTUEM TOPMO3HBIX KOJIOJOK Ha Kojeco. KonomouHblit TOpMO3 ¢ OTHOCTOPOHHUM Ha-
JKaTUEM Ha Kosieca oOecreunBaeT MEHBIITYI0 TOPMO3HYIO 3D (PEKTUBHOCTH MO CPAaBHEHHUIO
C JIBYXCTOPOHHHM Ha)KaTHEM KOJOJOK Ha Kojeco. K HemoctaTkaM OZHOCTOPOHHETO

