ЛИТЕРАТУРА

1. Правила пользования электрической и тепловой энергией. – Минск: Тыдзень, 1996. – 176 с.

2. Г о р д е е в, В. И. Регулирование максимума нагрузки промышленных электрических сетей / В. И. Гордеев. – М.: Энергоатомиздат, 1986. – 184 с.

3. Головкин, П.И. Энергосистема и потребители электрической энергии / П.И. Головкин. – М.: Энергоатомиздат, 1984. – 360 с.

4. Ф е д о р о в, А. А. Основы электроснабжения промышленных предприятий / А. А. Федоров. – М.: Энергия, 1972. – 416 с.

5. Ф у р с а н о в, М. И. Определение и анализ потерь электроэнергии в электрических сетях энергосистем / М. И. Фурсанов. – Минск: УВИЦ при УП «Белэнергосбережение», 2005. – 207 с.

Представлена кафедрой электроснабжения

Поступила 10.11.2010

УДК 621.315.2

ВЛИЯНИЕ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ НА ИЗОЛЯЦИЮ СИЛОВЫХ КАБЕЛЕЙ НЕФТЕДОБЫВАЮЩИХ СТАНЦИЙ

Кандидаты техн. наук, доценты ЗАЛИЗНЫЙ Д. И., ШИРОКОВ О. Г., КУХАРЕНКО С. Н., инж. УСТИМЕНКО Е. Ю.

Гомельский государственный технический университет имени П. О. Сухого, НГДУ «Речицанефть»

Частотно-регулируемый электропривод имеет значительные функциональные возможности, что обеспечивает его самые различные области применения, в том числе и для погружных установок центробежных насосов нефтедобывающих станций. Однако в процессе эксплуатации сказываются негативные факторы, обусловленные влиянием высокочастотных составляющих напряжения, формируемого преобразователем частоты, на элементы привода: кабели, двигатели, трансформаторы и т. д. Это снижает надежность работы установки и соответственно ведет к возникновению аварийных ситуаций. Минимизация воздействия подобных факторов – одна из самых актуальных проблем в современной электротехнике.

В литературе анализируются различные причины отказов силовых кабелей для погружных электросистем [1] без применения частотнорегулируемого электропривода в силу накопленного значительного опыта эксплуатации. По теме применения преобразователей частоты такого опыта нет, публикации практически отсутствуют. Имеются лишь отчеты представителей нефтедобывающих предприятий, опубликованные в сети Интернет [2]. В данной статье рассмотрены последствия негативного влияния преобразователей частоты на изоляцию силовых кабелей, питающих погружные установки центробежных насосов нефтедобывающих станций ПО «Белоруснефть», а также предложены возможные пути для решения этой проблемы.

Совместно с преобразователями частоты в ПО «Белоруснефть» используют кабели типа КПпБП. Это трехжильные плоские кабели с двухслойной изоляцией из блок-сополимера пропилена с этиленом, подушкой из нетканого полотна, покрытые стальной броней. Длительно допустимая температура изоляции составляет 120 °C.

Упрощенная схема конструктивного исполнения частотно-регулируемого электропривода погружного насоса на основе станции управления типа «Борец» приведена на рис. 1.

Рис. 1. Упрощенная схема конструктивного исполнения нефтедобывающей станции

В скважине на глубине от 200 до 3000 м находится погружной электродвигатель (ПЭД) с центробежным насосом и насосно-компрессорной трубой. Питание на ПЭД подается посредством кабельной линии, состоящей из основного кабеля, соединительной муфты (сростки) и удлинителя типа УБ. Удлинитель выполнен трехжильным бронированным кабелем с резиновой изоляцией, каждая жила находится в свинцовой оболочке.

Управление ПЭД осуществляется с помощью станции управления «Борец-04», в состав которой входят силовой преобразователь частоты на основе мощных транзисторов типа IGBT и контроллер. Сформированное преобразователем частоты управляющее напряжение 0,4 кВ через частотный фильтр подается на повышающий трансформатор типа ТМПН, где повышается до 1000–2000 В и поступает на вводы кабеля.

В процессе эксплуатации подобных установок наблюдались неоднократные повреждения и отказы силовых кабелей в виде оплавления и пробоя изоляции в непосредственной близости от соединительной муфты. Повреждения кабельных удлинителей не наблюдались. Результатом отказов была остановка станций посредством срабатывания защиты на понижение сопротивления изоляции. В некоторых случаях срок службы кабеля не превышал 100 дней. В табл. 1 приведены основные сведения по отказам кабелей в нефтегазодобывающем управлении «Речицанефть».

Таблица 1

		· · · · ·	
Скважина	Период работы	Ревизия	Глубина спуска, м
	P		• <i>j</i> •,
Nº 6	03.2008-10.2008	Прогар изоляции основного ка-	
Осташковичского		беля в 20 см от места сростки с	
месторождения		кабельным удлинителем	2670
Там же	10.2008-04.2009	Прогар изоляции основного ка-	
		беля в 35 м от места сростки с ка-	
		бельным удлинителем	2575
<u>№</u> 38	08.2008-12.2008	Прогар изоляции крайней жилы	
Дубровского		основного кабеля в 10 см от места	
месторождения		сростки с кабельным удлинителем	2660

Сведения по отказам кабелей в НГДУ «Речицанефть»

В процессе оплавления произошло расслоение изоляции жил с выделением жидкой фракции между слоями (рис. 2а, б). Изоляция практически полностью отслоилась от жилы, потеряв свою первоначальную форму и эластичность. В непосредственной близости от муфты имелись повреждения, свидетельствующие о междуфазном коротком замыкании (рис. 2в). Ниже точки короткого замыкания непосредственно в самой муфте оплавление изоляции кабеля отсутствовало (рис. 2в). Выше по длине кабеля характер оплавления изоляции ослабевал, а над уровнем пластовой жидкости повреждения изоляции кабеля не наблюдались.

б

Рис. 2. Повреждения изоляции кабеля: а – силового; б – одной жилы; в – в разобранной муфте

Для выявления возможных причин повреждений кабелей авторами данной статьи были проведены исследования формы напряжений и токов, питающих ПЭД, на скважине № 7 Дубровского месторождения с кабелем КПпБП-3х16, ПЭД типа ЭДБТ 40-117 и длиной погружной части 2136 м.

На стороне высокого напряжения на вводах питающего кабеля были подключены измерительные трансформаторы напряжения и тока. Вторичные обмотки измерительных трансформаторов были соединены с соответствующими измерительными преобразователями переменного тока, к выходам которых, в свою очередь, был подключен многоканальный цифровой регистратор аналоговых сигналов с интерфейсом USB. Отсчеты мгновенных значений измеряемых величин – фазных напряжений и линейных токов – в реальном времени записывались в память портативного компьютера. Измерения проводились для частот питающего напряжения 30; 45; 50 и 60 Гц. Частота дискретизации по одному каналу составила 5 кГц. Примеры осциллограмм для частоты 50 Гц приведены на рис. 3.

Рис. 3. Осциллограммы: а – фазных напряжений; б – напряжения и тока по фазе А

В результате измерений оказалось, что форма токов по всем фазам ближе к синусоиде, чем форма напряжения. При этом нелинейные искажения формы напряжения возрастают с понижением частоты.

Исследования амплитудно-частотных (АЧХ) и фазочастотных (ФЧХ) характеристик при разложении в ряд Фурье показали, что в спектре высших гармоник напряжения явно преобладает третья гармоническая составляющая, а в спектре тока наблюдается незначительное преобладание второй гармоники, что свидетельствует о некоторой симметрии диаграммы напряжения относительно оси абсцисс и диаграммы тока относительно оси ординат [3].

В табл. 2 приведены значения АЧХ спектра для напряжения фазы A U_A и тока фазы A I_A при разложении в ряд Фурье по синусам для первых

10 гармоник, а также значения коэффициента искажения синусоидальности *К*_{нс} кривых напряжения и тока (как отношения среднеквадратического значения суммы высших гармоник к первой гармонике).

Значения амплитуд гармоник при частоте основной гармоники f Номер гармо-30 Гц 45 Гц 50 Гц 60 Гц ники U_A, \mathbf{B} U_A, \mathbf{B} U_A, \mathbf{B} U_A, \mathbf{B} I_A, A I_A , A I_A , A I_A , A 1 640,8 19,8 955,1 24,4 1082 26,7 1251 29,2 0,92 2,0 0,49 0,47 1.05 2 4,6 1,8 30,5 3 66,2 0,47 0,29 93,4 0,28 105,6 0,32 86,4 0,73 4 5,4 0,36 5,0 0,36 0,24 11,2 0,42 5 0,31 0,46 11,1 0,47 7,5 0,41 5,4 6,6 0,19 6 0,94 0,02 2,5 0,06 2,2 0,05 10,5 7 2,11 0,12 1,9 0,06 4,0 0,07 6,2 0,22 3,1 2,5 8 0,12 0,06 0,1 4,7 0,14 1,1 9 0,8 0,08 0,27 0,02 1,9 0,06 1,2 0.13 10 1,9 0,11 0,79 0,1 4,3 0,04 3,7 0,09 0,104 0,059 0,091 0,034 0,088 0,029 0,089 0.035 K_{HC}

АЧХ спектра для напряжения фазы А U_A и тока фазы А I_A

АЧХ и ФЧХ спектров напряжений и токов позволяют рассчитать входные импедансы по каждой гармонической составляющей. При этом необходимо учитывать направление активной мощности, так как нелинейная нагрузка может быть генератором по некоторым высшим гармоникам [3, с. 455]. Очевидно, если абсолютное значение фазового сдвига между напряжением и током для высшей гармонической составляющей превышает $\pm 90^{\circ}$, то активная мощность этой составляющей направлена от нагрузки к источнику, т. е. от ПЭД к преобразователю частоты.

Таким образом, расчет импедансов (полных сопротивлений) относительно фазных напряжений, например для фазы *A*, необходимо вести по формулам:

$$Z_{A.0}^{(k)} = \frac{U_A^{(k)} \exp\left(j\varphi_{U.A}^{(k)}\right)}{I_A^{(k)} \exp\left(j\varphi_{I.A}^{(k)}\right)},\tag{1}$$

если

$$\left(\left| \phi_{U.A}^{(k)} - \phi_{I.A}^{(k)} \right| < 90^{\circ} \right) \vee \left(\left| \phi_{U.A}^{(k)} - \phi_{I.A}^{(k)} \right| > 270^{\circ} \right);$$
(2)

$$Z_{A.1}^{(k)} = \frac{U_A^{(k)} \exp\left(j\varphi_{U.A}^{(k)}\right)}{I_A^{(k)} \exp\left(j\left(\varphi_{I.A}^{(k)} + 180^\circ\right)\right)},$$
(3)

если

$$\left(\left| \phi_{U.A}^{(k)} - \phi_{I.A}^{(k)} \right| \ge 90^{\circ} \right) \wedge \left(\left| \phi_{U.A}^{(k)} - \phi_{I.A}^{(k)} \right| \le 270^{\circ} \right), \tag{4}$$

где $Z_{A.0}^{(k)}$, $Z_{A.1}^{(k)}$ – соответственно импедансы *k*-й гармонической составляющей при направлении активной мощности от преобразователя частоты к ПЭД и от ПЭД к преобразователю частоты; $U_A^{(k)}$, $I_A^{(k)}$ – соответственно значения АЧХ *k*-й гармонической составляющей напряжения и тока; $\varphi_{U.A}^{(k)}$, $\varphi_{I.A}^{(k)}$ – соответственно значения ФЧХ *k*-й гармонической составляющей

Таблииа 2

напряжения и тока; ∨ – знак дизъюнкции (логического ИЛИ); ∧ – знак конъюнкции (логического И).

Формулы (2) и (4) позволяют определить направление активной мощности. Если эти условия не выполняются, то расчет импедансов $Z_{A.0}^{(k)}$ или $Z_{A.1}^{(k)}$ не имеет смысла, так как их активные (вещественные) составляющие будут отрицательными. В случае направления активной мощности высшей гармоники от ПЭД к преобразователю частоты в (3) осуществляется дополнительный фазовый сдвиг гармонической составляющей тока на 180°. Расчет для фаз *B* и *C* аналогичен.

В табл. 3 и 4 приведены значения входных импедансов по фазам A и B для различных значений частоты основной гармоники напряжения, подаваемого на ПЭД, для первых восьми гармоник при направлении активной мощности от преобразователя частоты к ПЭД ($Z_{A,0}^{(k)}$) и от ПЭД к преобразователю частоты ($Z_{A,1}^{(k)}$).

7	706	2
1	аолица	3

Номер	Значения импедансов при частоте основной гармоники f				
гармо-	45 Гц		50 Гц		
ники	$Z_{A.0}^{(k)}, \text{ Om}$	$Z_{A.1}^{(k)}, \mathrm{Om}$	$Z_{A.0}^{(k)}, \mathrm{Om}$	$Z_{A.1}^{(k)}$, Ом	
1	25 + j30	-	28,4 + <i>j</i> 28,9	-	
2	-	3,8 <i>-j</i> 1,4	-	1,4 <i>-j</i> 3,7	
3	-	9 + <i>j</i> 247,6	-	285,1+j185	
4	5,2 + <i>j</i> 12,9	-	0,19 – <i>j</i> 3,1	-	
5	-	12,7 + <i>j</i> 6,9	-	19,6 + <i>j</i> 13,5	
6	-	1,7 <i>-j</i> 43,4	31,4 – <i>j</i> 31,1	-	
7	_	10,2-j32,1	55,1+j17,7	_	
8	33,6+ <i>j</i> 34,6	_	22,8+ <i>j</i> 12,6	_	

Значения входных импедансов по фазе А для первых восьми гармоник

Таблица 4

Значения входных импедансов по фазе В для первых восьми гармоник

Номер гармо- ники	Значения импедансов при частоте основной гармоники f				
	45 Гц		50 Гц		
	$Z_{B.0}^{(k)}, \text{ Om}$	$Z_{B.1}^{(k)}, \mathrm{Om}$	$Z_{B.0}^{(k)}, \text{ Om}$	$Z_{B.1}^{(k)}, \mathrm{Om}$	
1	27,8 + <i>j</i> 30,7	-	30,4 + j29	_	
2	12,6 <i>-j</i> 1,8	-	3,3-j1,2	_	
3	413,8 + <i>j</i> 455,6	—	264,9 - <i>j</i> 1145	_	
4	20,5 + j13,4	_	18 + <i>j</i> 14,2	_	
5	—	8,7 + <i>j</i> 15,9	-	10,3 + j18,3	
6	22,9 - <i>j</i> 18	—	8,5 + <i>j</i> 1,3	_	
7	9,1+j17,4	_	_	43,4 <i>- j</i> 54,5	
8	70,9 + j98,2	_	3,3-j14,1	_	

Приведенные значения импедансов позволяют проанализировать возможные закономерности в смене направления активной мощности по высшим гармоникам, а также наличие резонансных режимов на промежуточных частотах между соответствующими частотами гармонических составляющих.

Из табл. 3 и 4, а также дополнительных расчетов, проведенных авторами, следует, что явная закономерность по направлению активной мощности как по разным фазам, так и по одной фазе, но на разных частотах, отсутствует. Это связано с тем, что реальные напряжения и токи не являются строго периодическими (рис. 3), тогда как при разложении в ряд Фурье они считаются периодическими функциями. Поэтому направление активной мощности по высшим гармоникам носит случайный характер. Главный фактор, по которому необходимо учитывать направление мощности, – это анализ наличия резонансов напряжения на промежуточных частотах между соответствующими гармоническими составляющими. О резонансе свидетельствует смена знака реактивной составляющей импеданса при данном направлении мощности. Так, из табл. 2 для $Z_{A.0}^{(k)}$ на частоте 45 Гц нельзя сделать вывод о резонансе, но на частоте 50 Гц наблюдаются резонансы между 1 и 4, 6 и 7 гармониками. Аналогично можно обнаружить резонансы и при направлении активной мощности на высших гармониках от ПЭД к преобразователю частоты.

Исследования авторов показывают, что резонансные частоты для разных фаз и различных частот основной гармоники – также явление случайное. Следовательно, резонансы в сложной системе, аналогичной рассматриваемой, всегда имеют место. Очевидно, что необходимо различать локальные резонансы, не оказывающие существенного влияния на работу оборудования, и глобальные резонансы (как в высокодобротных цепях), приводящие к аварийным режимам. В первом случае при резонансе напряжений активная составляющая импеданса, зависящая от частоты, емкостей и индуктивностей схемы замещения, достаточно велика, и соответственно входной ток на резонансной частоте мал, перенапряжения отсутствуют, изоляция работает в рамках нормального режима. В случае глобального резонанса напряжений активная составляющая входного импеданса резко снижается, и изоляция подвергается перенапряжениям или перегреву из-за возросшего тока на частоте резонанса. Плюс к этому возможно влияние эффектов длинных линий, феррорезонанса, а также токов, протекающих в броне кабеля.

вывод

Таким образом, проведенные исследования носят лишь предварительный характер и нуждаются в продолжении. Поставленная задача является многофакторной. Исследуемый кабель находится под влиянием высокой температуры, высокого давления, химически агрессивной среды и высших гармоник напряжения и тока. Для окончательных выводов о влиянии преобразователей частоты на работу изоляции кабеля необходимо привлекать специалистов в области химии, физики, электроники. Измерения необходимо проводить на современном оборудовании, защищенном от влияния внешних помех. Исследования должны быть проведены на большом количестве объектов с целью повышения достоверности результатов.

ЛИТЕРАТУРА

1. М е с е н ж н и к, Я. З. Силовые кабельные линии для погружных электросистем / Я. З. Месенжник, А. А. Осягин. – М.: Энергоатомиздат, 1987. – 240 с.

2. К о с т о л о м о в, Е. М. Результаты работы высоковольтных частотно-регулируемых электроприводов насосных агрегатов перекачки нефти на объектах ОАО «Сургутнефтегаз» / Е. М. Костоломов, С. В. Шибашов. – 23.10.2009; runeft.ru

3. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи / Л. А. Бессонов. – М.: Высш. шк., 1996. – 638 с.

Представлена кафедрой

электроснабжения

Поступила 16.09.2010