Практическое применение программного инструментария заключается в оптимизации технических решений по обеспечению надежности при проектировании и эксплуатации сложных электрических систем. Результаты исследования позволят: прогнозировать показатели надежности электрооборудования СЭС; установить «узкие места» в обеспечении надежности; разработать мероприятия по повышению эффективности функционирования электрооборудования.

КОМПЛЕКТНЫЙ ЭЛЕКТРОПРИВОД АСИНХРОННОГО С КОРОТКОЗАМКНУТЫМ РОТОРОМ ЭЛЕКТРОДВИГАТЕЛЯ И ФАЗОВЫМ УПРАВЛЕНИЕМ НАПРЯЖЕНИЕМ В ЦЕПИ СТАТОРА В ЭЛЕКТРОМЕХАТРОННОМ ИСПОЛНЕНИИ

А. С. Бутраменко, И. И. Бадьков, Д. П. Антипенко, А. Н. Михайлова

Государственное учреждение высшего профессионального образования «Белорусско-Российский университет», г. Могилев, Беларусь

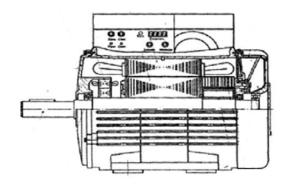
Научный руководитель О. Н. Парфенович

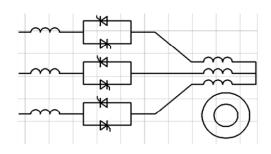
В настоящее время в связи с возможностями микроэлектроники информационная подсистема (ИПС) электроприводов может обеспечить практически неограниченное количество функциональных операций с электродвигателем, причем, в блоке с достаточно небольшими размерами. Достижения в области IJBT и MOSFET технологий производства мощных транзисторов позволили значительно снизить и габаритные характеристики силового электронного блока, так называемой энергетической подсистемы (ЭПС) преобразователей. Как результат, электротехнические компании с началом нового столетия стали предлагать рынку электромехатронные (ЭМПТ) изделия, у которых подсистемы ИПС-ЭПС были совмещены в однокорпусной конструкции. Но дальше дело не пошло! Рынок не принял такие изделия. Сейчас предлагается преобразователи, системы управления и защиты устанавливать отдельно от электродвигателей. Почему? С нашей точки зрения, потому что, во-первых, стоимость ЭМПТ с преобразователем частоты в однокорпусном исполнении в 4-5 раз превышает стоимость электродвигателя (при этом окупаемость затрат весьма проблематична); вовторых, потери электроэнергии непосредственно в электронном преобразователе частотно-регулируемого электропривода, работающего на модулируемой частоте 4–15 кГц, настолько значительны, что они дополнительно разогревают корпус электродвигателя, тем самым снижая его выходную мощность. Имеются также проблемы с электромагнитной совместимостью в одном корпусе подсистемы ИПС и ЭПС, работающих в среде широкого спектра мощных гармоник от коммутации силовых токов электродвигателя с частотой 4-15 кГц, что существенно влияет на надежность электропривода в целом. Здесь следует, пожалуй, отметить то, что к настоящему времени многие электротехнические компании, производящие силовую преобразовательную технику и электродвигатели, усиленно рекламируют и рекомендуют к применению в различных отраслях производства именно частотно-регулируемые (ПЧ) электроприводы, работающие на модулируемой частоте 4–15 кГц.

При этом обращается внимание прежде всего на возможность получения в таких системах сверх широкого диапазона регулирования скорости асинхронного электродвигателя, расширение функциональных возможностей электропривода в целом, и как один из примеров – «Установка в нагнетателях вместо дросселирования регулируемых электродвигателей дает экономию электроэнергии до 40–50 %, воды – до 10–15 %, тепла – до 20 %» [1].

С нашей точки зрения, здесь не все так просто. Хорошо известны недостатки частотно-регулируемых электроприводов, которые работают на модулируемой частоте 4–15~ к Γ и.

Пожалуй, главное из этих недостатков – это то, что до настоящего времени не исследовано влияние мощного электромагнитного излучения электроприводов ПЧ, работающих на модулируемой частоте силовых токов 4–15 кГц, на окружающую среду, в частности, обслуживающий персонал, что может со временем оказаться определяющим фактором, резко ограничивающим применение электроприводов подобного типа. Высокочастотные гармонические составляющие создают дополнительные потери в электродвигателе, что приводит к снижению его КПД. Согласно полученным нами экспериментальным данным, приведенным в табл. 1, суммарные потери в преобразователе и фильтрах могут достигать 15 % от номинальной мощности электропривода, а дополнительные потери в электродвигателе, вызванные импульсным характером питающего напряжения – 10–20 %. К такому же выводу пришли и ученые Ивановского государственного энергетического университета [2].


Таблица 1 Результаты измерения КПД для различных узлов ПЧ


Узел	P_{BX} , BT	$P_{\text{вых}}$, Вт	КПД, %
Входной фильтр	3382	3314	0,98
ПЧ	3314	3148	0,95
Выходной фильтр	3148	2896	0,92
Сумма	3382	2896	0,85

Таким образом, общий КПД системы частотнорегулируемого электропривода, например с электродвигателем 4A100S4, с которым мы и проводили исследования: $\eta_{\text{сум}} = \eta_{\text{дн}} \eta_{\text{л/}} \eta_{\text{пр}} = 0.81 \cdot 0.8 \cdot 0.85 = 0.5$, где $\eta_{\text{дн}} - \text{КПД}$ электродвигателя, $\eta_{\text{дf}} - \text{сниже-}$ ние КПД электродвигателя от влияния гармонического спектра токов, $\eta_{\text{пр}} - \text{КПД}$ преобразователя, что по потерям энергии соизмеримо с максимальными цифрами экономии электроэнергии, которые рекламируют некоторые электротехнические компании, при использовании частотнорегулируемых электроприводов в различных типах технологических процессов.

Мы предлагаем альтернативу электроприводам с ПЧ — электроприводы с электродвигателем (по нашей рубрикации — ДАС-12 [3]), разработанным на кафедре «Электропривод и АПУ» в Белорусско-Российском университете (рис. 1), специально предназначенным для работы с тиристорным регулятором напряжения (система ТРН-АД, рис. 2), которые во многом лишены приведенных выше недостатков системы ПЧ-АД.

В двигателе DAC-12 ротор вентилятора охлаждения вращается с постоянной скоростью независимо от скорости вращения силового ротора. Выступающая часть ротора имеет закрытый круглый паз, стержни которого за счет частотного сжатия тока увеличивают активное сопротивление на регулировочной характеристике двигателя.

Рис. 1. Особенности конструкции асинхронного электродвигателя ДАС-12, работающего с тиристорным регулятором напряжения

Рис. 2. Функциональная схема ТРН-АД

Предлагаемая система электропривода в электромехатронном исполнении обеспечивает 5 основных, в так называемой базовой комплектации, функциональных режимов работы электродвигателя: управляемый пуск, управляемое торможение, регулирование частоты вращения в диапазоне 10, режим энергосбережения на номинальной скорости электродвигателя, момент электродвигателя по условиям нагрева при заторможенном роторе $M_{\pi} = (0,3...0,4) M_{\text{H}}$.

Указанные режимы работы достаточны для 80–90 % электродвигателей, используемых в производстве. Пожалуй, единственный недостаток данной системы электропривода — это повышенные, пропорционально скольжению, потери в электродвигателе на регулировочных характеристиках. Этот недостаток в определенной мере устраняется выполнением обмотки статора электродвигателя по конструктивной схеме, представленной на рис. 3, сработанной на основе теоретических идей с практическим выходом профессора Яловеги.

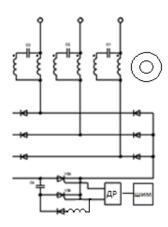


Рис. 3. Функциональная схема ТРН-АД с ШИМ

В табл. 2 приведены технические характеристики стандартных электродвигателей АИР100S4, СМ 300/400 и ДАС-12, ДАС-15 — две последующие графы расчетные, полученные на основе опытных данных соответствующих других модификаций подобных двигателей.

Таблица 2

Характеристики асинхронных электродвигателей

Параметр	АИРС 100S4	СМ300/400 с электронным регулятором частоты (Siemens, ФРГ)	ДАС-12 с электронным регулятором напряжения	ДАС-15 с ТРН с ШИМ
Мощность, Вт	2300	3000	3500	3900
Напряжение, В	380	380	380	380
Ток, А	5,76	6,92	7,8	8,6
Частота, Гц	50	50	50	50
Скольжение	4,8	5,7	4,5	4,4
Частота вращения, об./мин	1428	1415	1433	1434
Момент номинальный, Н · м	15,4	20,2	23,4	26,3
Ток холостого хода, А	4,3	0,5	0,5	0,5
КПД номинальный, %	78	81,5	82	82
Cos(f) номинальный	0,78	0,81	0,83	0,84
Кратность пускового тока, $I_{\scriptscriptstyle \rm II}/I_{\scriptscriptstyle \rm H}$	6,2	6	3.5	3,5
Кратность пускового тока, $M_{\mbox{\tiny H}}/M_{\mbox{\tiny H}}$	2,8	2,8	2,55	3,0
Кратность максимального момента, $M_{\text{max}}/M_{\text{H}}$	3,1	3	2.6	_
Кратность минимального момента, $M_{min}/M_{\scriptscriptstyle H}$	2,27	2,2	2,5	_
Момент, допустимый по условиям нагрева при $n = 0$, $H \cdot M$	0,5	8,4	6	12
Диапазон регулирования напряжения при вентиляторной нагрузке	1,5	1000	10	100
Допустимая частота пускотормозных циклов при $J = 6J_{\text{дв}}$	До 80	До 120	До 400	До 400
Габариты, мм	360-245-240	366-270-240	360-289-240	366-270-240
Масса, кг	27,9	28	28,8	29

Литература

- 1. Ильинский, Н. Ф. Опыт и перспективы применения регулируемого электропривода насосов и вентиляторов / Н. Ф. Ильинский // Тезисы докл. XII Всерос. конф. СПб., 1995. С. 12.
- 2. Казаков, Ю. Б. Зависимость потерь асинхронных двигателей от параметров широтноимпульсного регулирования напряжения / Ю. Б. Казаков, А. А. Лукин, В. А. Андреев. – Вестн. ИГЭУ. Вып. 3. – Иваново, 2007. – С. 1–4.
- 3. Асинхронный электродвигатель регулируемый Парфеновича : пат. 4647 Респ. Беларусь, HO2К 9/06 / О. Н. Парфенович ; заявл. 10.10.94 ; опубл. 25.04.06 // Бюл. № 5.
- 4. Параметрический привод Яловеги : пат. 2262791 РФ. www.findpatent.ru/patent/226'/226279/html.