УДК 539.16

РАСЧЕТ SF-КОЭФФИЦИЕНТОВ ДЛЯ ПРОДУКТОВ ДЕЛЕНИЯ В ТОПЛИВЕ ТЕПЛОВОГО РЕАКТОРА ВВЭР-1000

Э. А. РУДАК, О. И. ЯЧНИК

Институт физики имени Б. И. Степанова НАН Беларуси, г. Минск

Н. В. МАКСИМЕНКО, В. В. АНДРЕЕВ

Учреждение образования «Гомельский государственный университет имени Ф. Скорины», Республика Беларусь

Введение

В ходе работы теплового реактора радионуклидный состав его активной зоны непрерывно меняется как вследствие деления ядер топлива (235 U, 239 Pu, 241 Pu, 238 U и др.) с образованием продуктов деления, так и за счет образования продуктов активации на тех же ядрах топлива и продуктах деления. Кроме того, образуются и коррозионные радионуклиды (58 Co, 59 Co, 51 Cr, 54 Mn и др.). По статистике, около процента тепловыделяющих элементов имеют нарушения в герметизации топлива. Поэтому и радиационная обстановка в районе даже нормально функционирующего водо-водяного реактора характеризуется выбросами продуктов деления, продуктов активации ядер топлива, а также продуктами коррозии [1].

Часто прямое измерение концентраций радионуклидов в отработанном топливе реактора, объектах окружающей среды является технически сложной задачей. Особенно если учесть, что многие радионуклиды в радиоактивных загрязнениях и отходах относятся к α- и β-излучающим нуклидам, а следовательно, их концентрации нельзя определить методами неразрушающего контроля по их собственному излучению. Поэтому альтернативой прямому измерению концентраций DTM (трудноизмеряемых) радионуклидов является метод масштабных коэффициентов (scaling factor method, SF-коэффициенты), основанный на корреляции между активностями DTM-радионуклидов и некоторыми ключевыми γ-излучающими ETM (легкоизмеряемыми) радионуклидами.

Метод SF-коэффициентов основывается на том, что со временем в различных объектах реактора и окружающей его среды устанавливается вполне определенный по структуре уровень радиационного загрязнения. Следовательно, устанавливаются и вполне определенные отношения активностей различных радионуклидов (SF-коэффициенты). По определению SF = $A_{\text{DTM}} / A_{\text{ETM}}$, где A_{DTM} – трудноизмеряемая активность и A_{ETM} – активность ключевого нуклида (по сути дела это те же корреляционные соотношения, исследованные в [2], [3]). Поэтому если мы знаем SF-коэффициенты для представляющих интерес радионуклидов, то определение радиационной обстановки сводится к простому пересчету по измеренной активности одного или нескольких ETM-радионуклидов.

Наиболее распространенными на практике ключевыми ЕТМ-радионуклидами являются 137 Cs($T_{1/2} = 30$ лет), образующийся при делении ядер топлива, и продукт

коррозии конструкционных материалов 60 Co($T_{1/2} = 5,3$ г). В SF-методе отношения SF = $A_{\text{DTM}} / A_{\text{ETM}}$ рассчитываются или определяются экспериментально для различных типов реакторов и являются основными величинами при оценке радиоэкологической обстановки в районе действующего реактора.

Очень важным объектом в SF-методе является отработанное реакторное топливо. При захоронении или дальнейшей переработке топлива требуется предварительно определить его радионуклидный состав по изотопам урана и трансурановых элементов (235 U, 238 U, 239 Pu, 240 Pu и др.), долгоживущим радионуклидам типа ⁸⁷ Rb($T_{1/2} = 4,88 \cdot 10^{10}$ лет), 93 Zr(1,5 $\cdot 10^{6}$ лет), 94 Nb(2,4 $\cdot 10^{4}$ лет) и т. д., т. е. требуется знать необходимые SF-факторы. В техническом отношении это очень сложная задача. Однако в случае реакторного топлива, как показано в [2], [3], при определении SF-коэффициентов можно обойтись и без сложного эксперимента.

Ранее в работах авторов настоящей статьи [2], [3] развивался частный случай SF-метода – так называемый метод корреляционных соотношений (КС-метод). КС-метод отличается от SF-метода тем, что он используется для установления соотношения между активностями радионуклидов только в топливе. Причем можно рассчитать КС (SF-коэффициенты) как для топлива действующего реактора, так и в отработанном реакторном топливе. В случае же радиоактивных выпадений, например, при анализе чернобыльских выпадений, КС устанавливались по экспериментальным данным загрязнения почвы [4].

Так, в работах [2]–[4] с помощью КС для определения косвенным методом содержания α -излучающих изотопов трансурановых элементов в качестве ключевого радионуклида брались, в основном, жестко связанные с топливной матрицей нуклиды ¹⁴¹Ce, ¹⁴⁴Ce, ⁹⁵Zr. В ряде случаев в качестве ключевых радионуклидов использовались ¹⁰³Ru, ¹⁰⁶Ru (при определении характера выпадений радионуклида [5]). Значительно реже использовался ¹³⁷Cs, поскольку в окружающую среду он был выброшен преимущественно в конденсационной форме. Таким образом, и КС (SF-коэффициентам) с использованием ¹³⁷Cs в качестве ключевого радионуклида уделялось мало внимания.

На сегодняшний момент, в связи с принятием решения о строительстве в Гродненской области атомной станции на основе реактора типа ВВЭР-1000, ситуация изменилась. Проблема расчета КС (SF-коэффициентов) с ¹³⁷Сs в качестве ключевого радионуклида в ближайшем будущем станет актуальной.

На кафедре теоретической физики ГГУ им. Ф. Скорины и в Институте физики НАН Беларуси в течение ряда лет велись совместные работы по использованию КС для решения радиоэкологических проблем, связанных с аварией на ЧАЭС [2]–[5]. В настоящей работе тот же коллектив авторов рассматривает возможность расчета SF-коэффициентов с использованием ¹³⁷Cs в качестве ключевого радионуклида для продуктов деления топлива BBЭP-1000.

Физические основы метода корреляционных соотношений для продуктов деления ядер топлива

Ранее в работах [6], [7] была исследована рассчитанная в [8] зависимость выгорания массы 235 U $m(^{235}$ U, t) от времени работы реактора t или выгорания W в работающих в режиме постоянной мощности реакторах ВВЭР-440 (обогащение по 235 U 1,6; 2,4; 3,3; 3,6 %), ВВЭР-1000 (обогащение по 235 U 4,4 %) и РБМК-1000

(обогащение по ²³⁵ U 2,0 %). При этом оказалось, что во всех случаях выполняются соотношения:

$$m(^{235}U,t) = [m_0(^{235}U) + \mu] \exp(-\lambda t) - \mu; \qquad (1)$$

$$\Delta m(^{235}\mathrm{U},t) = [m_0(^{235}\mathrm{U}) + \mu][1 - \exp(-\lambda t)], \qquad (2)$$

где $m_0(^{235}\text{ U})$ – исходная масса $^{235}\text{ U}$; μ – константа, $\lambda \approx 1/\tau$, τ – кампания реактора; $\Delta m(^{235}\text{ U},t) = m_0(^{235}\text{ U}) - m(^{235}\text{ U},t)$ – потеря массы $^{235}\text{ U}$ при выгорании топлива. При правильно выбранных константах формулы (1), (2) описывают результаты модельных численных расчетов выгорания $^{235}\text{ U}$ для всех перечисленных выше типов реакторов с погрешностью до нескольких процентов. Нахождение констант λ , μ по результатам численных расчетов не представляет особого труда. В частности, для реактора BBЭР-1000 (обогащение по $^{235}\text{ U}$ 4,4 %) кампания реактора $\tau = 2,71$ г., параметры $\lambda = 0,35 \text{ r}^{-1}$ и $\mu = 10,93$ кг/т. В табл. 1 в качестве примера приводится сравнение рассчитанных численным методом [8] и по формуле (1) масс $m(^{235}\text{ U},t)$ в зависимости от времени работы реактора BBЭР-1000.

Таблица 1

Сравнение аналитических (1) и численных [8] результатов расчетов удельной массы ²³⁵ U *m*(²³⁵ U, *t*) (кг/т) в ВВЭР-1000 в зависимости от времени работы реактора

<i>t</i> , г.	(1)	[8]	ρ	<i>t</i> , г.	(1)	[8]	ρ	<i>t</i> , г.	(1)	[8]	ρ
0,15	41,2	41,2	1	1,05	27,2	27,2	1	1,95	17,0	16,8	1,01
0,30	38,6	38,5	1	1,20	25,3	25,2	1	2,10	15,6	15,4	1,01
0,45	36,1	36,0	1	1,35	23,5	23,4	1	2,25	14,2	14,1	1,01
0,60	33,7	33,6	1	1,50	21,7	21,6	1	2,40	13,0	12,8	1,02
0,75	31,4	31,4	1	1,65	20,0	19,9	1,01	2,55	11,7	11,6	1,01
0,90	29,3	29,2	1	1,80	18,5	18,3	1,01	2,70	10,6	10,5	1,01

Результаты аналитических и численных расчетов практически совпадают. Поэтому, продифференцировав (1) по времени, мы сразу получаем экспоненциальную зависимость скорости выгорания массы ²³⁵ U со временем $m(^{235} \text{ U}, t)' = -\lambda[m_0(^{235} \text{ U}) + \mu]\exp(-\lambda t)]$. Поскольку для ²³⁵ U при малых энергиях нейтронов отношение сечения деления к полному сечению примерно постоянно $\sigma_f / \sigma_{t0t} \approx \text{const}$, то и для скорости деления ядер ²³⁵ U получается простая экспоненциальная зависимость

$$P_{f}(^{235}\mathrm{U},t) = P_{0f}\exp(-\lambda t),$$
 (3)

где P_{0f} – константа, соответствующая номинальной мощности реактора. Выражение $P_f(t)$ (3) является ключевым в методе корреляционных соотношений, или SF-методе для тепловых реакторов, в том числе и для представляющего особый интерес BBЭP-1000.

Поскольку в работающем в режиме постоянной мощности реакторе скорость делений P_{0f} постоянна, то на остальные делящиеся нуклиды (²³⁹ Pu,²⁴¹ Pu деление тепловыми нейтронами, ²³⁸U деление нейтронами спектра деления) приходится $P_f(R,t) = P_{0f}[1 - \exp(-\lambda t)]$. Без особой погрешности можно считать, что эта часть скорости делений P_{0f} обусловлена ²³⁹ Ри.

Как было показано в [9], [10], в случае двух делящихся нуклидов ²³⁵ U и ²³⁹ Pu для удельной активности *i*-го продукта деления $A_i(t)$ с периодом полураспада порядка суток и более получается исключительно простое выражение

$$A_{i}(t) = P_{0f} y_{i}^{K} (^{239} \operatorname{Pu}) [1 + \beta \exp(-\lambda t) - (1 + \beta) \exp(-\lambda_{i})], \qquad (4)$$

где коэффициент $\beta = \lambda_i [y_i^K (^{235}U) - y_i^K (^{239} Pu)]/(\lambda_i - \lambda) y_i^K (^{239} Pu), \lambda_i$ – константа распада *i*-го осколка деления, $y_i^c (^{235}U)$ и $y_i^c (^{239} Pu)$ – суммарные выходы этого нуклида при делении ²³⁵U и ²³⁹Pu соответственно. Согласие рассчитанных численным методом активностей $A_i(t)$ [11] с рассчитанными по формуле (4) для продуктов деления с $T_{1/2} \ge 1$ сут находится в пределах нескольких процентов.

Весь формализм расчета активностей радионуклидов был разработан первоначально для реактора РБМК-1000 и использовался в работах, связанных с ликвидацией последствий аварии на ЧАЭС для районов юга Гомельской области с преобладающим топливным загрязнением почвы. С точностью до константы P_{0f} этот формализм может быть использован и в расчетах для ВВЭР-1000. В РБМК-1000 скорость деления ядер составляет $P_{0f} \approx 6,06 \cdot 10^{17}$ Бк/т, а в ВВЭР-1000 $P_{0f} \approx 13,5 \cdot 10^{17}$ Бк/т. Для этого на рис. 1 приводится сравнение отношения удельных масс $\alpha(t) = m(^{235} \text{ U}, t)_{\text{BB3P}}/m(^{235} \text{ U}, t)_{\text{PБМК}}, \quad \beta(t) = m(^{239} \text{ Pu}, t)_{\text{BB3P}}/m(^{239} \text{ Pu}, t)_{\text{PБМК}}, в зависи$ мости от времени работы реактора.

Рис. 1. Отношения удельных масс, нарабатываемых в ВВЭР-1000 и РБМК-1000, в зависимости от времени работы реактора: $\alpha(t)$, $\beta(t)$, $\gamma(t)$ и $\delta(t)$

Как видно из рис. 1, для (²³⁵ U) и (²³⁹ Pu), дающих основной вклад в энерговыработку, эти отношения удельных масс чуть больше 2 и слабо зависят от времени. Поэтому можно считать, что весь развитый для РБМК-1000 формализм применим и для ВВЭР-1000.

Определение содержания продуктов деления в тепловом реакторе ВВЭР-1000 по активности ¹³⁷Сs

Как отмечалось выше, при определении активностей радионуклидов с помощью экспериментальных SF-коэффициентов в качестве ключевого радионуклида наибо-

лее часто используются сравнительно долгоживущие 60 Со и 137 Сs, γ -активности которых легко измеряются. Нетрудно показать, что 137 Сs исключительно удобен при использовании его в расчетах теоретических SF-коэффициентов для определения содержания радионуклидов в реакторном топливе.

Согласно (4) зависимость удельной активности 137 Cs от времени работы реактора *t* определяется формулой

$$A(^{137}\text{Cs},t) = P_{0f}6,7274 \cdot 10^{-2} [1+0,00479e^{-0,023t}] \text{ 5k/T.}$$
(5)

Без особых погрешностей эту формулу можно представить в виде:

$$A(^{137}\text{Cs},t) \approx P_{0f}6,7274 \cdot 10^{-2} [1 - e^{-0,023t}].$$
 (6)

Поскольку кампания реактора длится не более трех лет, то и эта формула может быть сильно упрощена:

$$A(^{137}\text{Cs},t) \approx P_{0,t} 1,55 \cdot 10^{-3} t.$$
(7)

Мы получили простую линейную зависимость удельной активности $A(^{137} \text{ Cs}, t)$ от времени работы реактора. Упрощения в формуле для наработки активности ¹³⁷ Cs оказались возможными благодаря малой абсолютной величине коэффициента β в формуле (4) для $A(^{137} \text{ Cs}, t)$. В свою очередь малость коэффициента β объясняется близкими по значению суммарными выходами ¹³⁷ Cs при делении ²³⁵ U $y^{K}(^{235} \text{ U},^{137} \text{ Cs}) = 6,2685 \cdot 10^{-2}$ и ²³⁹ Pu $y^{K}(^{239} \text{ Pu},^{137} \text{ Cs}) = 6,7274 \cdot 10^{-2}$, а также сравнительно малой константой распада ¹³⁷ Cs $\lambda(^{137} \text{ Cs}) \approx 0,023$ г.⁻¹

Результаты аналитических расчетов зависимости удельной активности $A(^{137} \text{ Cs}, t)$ по формуле (7) в РБМК-1000 практически совпадают с результатами численных расчетов [11]. Проверим формулу (7) и по наработке $A(^{137} \text{ Cs}, t)$ в аварийном РБМК-1000 ЧАЭС, для которого $P_{0f} \approx 6,1 \cdot 10^{17} \text{ Бк/т}$, масса топлива примерно 190 т, эффективное время работы реактора примерно 1,6 г. Следовательно, на момент аварии была наработана активность $A(^{137} \text{ Cs}, t) \approx 6,1 \cdot 10^{17} \cdot 190 \cdot 1,55 \cdot 10^{-3} \cdot 1,6 \approx 2,9 \cdot 10^{17} \text{ Бк}$, что хорошо согласуется с результатами сложных численных расчетов, приведенных в [12]. Очевидно, что аналогичные оценки можно делать и на уровне отдельной топливной сборки с различной глубиной выгорания топлива.

Если в качестве ключевого элемента используется $A(^{137}$ Cs, t), то по формуле (4) должны быть рассчитаны и удельные активности других продуктов деления. Возможность использования формулы $A_i(t)$ (4) ограничена периодом полураспада конечного нуклида в изобарной цепочке, т. е. он должен быть порядка суток и более. Представляющих практический интерес продуктов деления с такими периодами полураспада в топливе тепловых реакторов, по крайней мере, 32 (табл. 2):

Таблица 2

Продукты деления с $T_{1/2} \ge 1$ сут в тепловом реакторе

Нук- лид	<i>T</i> _{1/2}	Нук- лид	<i>T</i> _{1/2}	Нук- лид	<i>T</i> _{1/2}	Нук- лид	<i>T</i> _{1/2}
⁸⁷ Rb	4,8 · 10 ¹⁰ лет	⁹⁹ Mo	2,75 сут	¹²⁵ Sb	2,73 г.	^{133m} Xe	2,19 сут
⁸⁹ Sr	50,55 сут	⁹⁸ Tc	4,2 · 10 ⁶ лет	¹²⁷ Sb	3,85 сут	¹³³ Xe	5,25 сут
⁹⁰ Sr	28,6 лет	⁹⁹ Tc	2,13 · 10 ⁶ лет	^{127m} Te	109 сут	¹³⁷ Cs	30,17 лет

Окончание табл. 2

Нук- лид	T _{1/2}	Нук- лид	<i>T</i> _{1/2}	Нук- лид	<i>T</i> _{1/2}	Нук- лид	<i>T</i> _{1/2}
⁹¹ Y	58,51 сут	¹⁰³ Ru	39,26 сут	^{129m} Te	33,6 сут	¹⁴⁰ Ba	12,75 сут
⁹³ Zr	1,53 · 10 ⁶ лет	¹⁰⁶ Ru	371,6 сут	¹³² Te	3,26 сут	¹⁴¹ Ce	32,5 сут
⁹⁵ Zr	64,02 сут	¹¹¹ Ag	7,45 сут	¹²⁹ I	1,57·10 ⁷ лет	¹⁴³ Ce	1,37 сут
⁹⁷ Zr	16,9 ч	¹²⁵ Sn	9,64 сут	131 I	8,04 сут	¹⁴⁴ Ce	284,4 сут
⁹⁴ Nb	$2,03 \cdot 10^4$ лет	¹²⁶ Sn	$1,0 \cdot 10^5$ лет	^{131m} Xe	11,9 сут	¹⁴⁷ Nd	10,98 сут

Как видно из табл. 2, в число этих нуклидов входят долгоживущие 87 Rb, 93 Zr, 94 Nb, 98 Tc, 99 Tc, 126 Sn, 129 I, определение содержания которых в отработанном реакторном топливе обязательно.

Для этих продуктов деления SF-коэффициенты = $A_i(t) / A(^{137} \text{Cs}, t) = A_i(t) / P_{0f} 1,55 \cdot 10^{-3} \cdot t$. Поэтому результаты расчетов $A_i(t)$ по формуле (4) целесообразно аппроксимировать функциями типа

$$A_{i}(t)^{a} = \alpha \cdot t^{\delta} \cdot e^{\gamma t} \,\mathrm{K}/\mathrm{T},\tag{8}$$

где α, δ и γ – подгоночные параметры. Параметры α, δ и γдля указанных выше 32 продуктов деления приведены ниже в табл. 3.

Таблица 3

BB3P-1000, 4,4 % , $A(X) = \alpha \cdot t^{\circ} \cdot e^{\gamma t}$ Б κ/ T											
№ п/п	Ядро	α	β	γ	№ п/п	Ядро	α	β	γ		
1	⁸⁷ Rb	$4,747 \cdot 10^{5}$	0,986	-0,072	17	¹²⁵ Sb	$1,383 \cdot 10^{14}$	1,135	-0,037		
2	⁸⁹ Sr	$7,648 \cdot 10^{16}$	0,4	-0,386	18	¹²⁷ Sb	$2,901 \cdot 10^{15}$	0,231	0,092		
3	⁹⁰ Sr	$1,874 \cdot 10^{15}$	1	-0,1	19	^{127m} Te	$3,921 \cdot 10^{14}$	0,862	-0,155		
4	⁹¹ Y	$4,263 \cdot 10^{16}$	0,444	-0,379	20	^{129m} Te	$1,299 \cdot 10^{15}$	0,336	-0,035		
5	⁹³ Zr	$3,944 \cdot 10^{10}$	1	-0,054	21	¹³² Te	$5,996 \cdot 10^{16}$	0,016	0,026		
6	⁹⁵ Zr	$1,043 \cdot 10^{17}$	0,484	-0,3	22	¹²⁹ I	$4,245 \cdot 10^{8}$	1,031	0,068		
7	⁹⁷ Zr	$3,573 \cdot 10^{16}$	0	-0,016	23	131 I	$4,106 \cdot 10^{16}$	0,029	0,038		
8	⁹⁴ Nb	$9,579 \cdot 10^5$	1,164	0,135	24	^{131m} Xe	$4,588 \cdot 10^{14}$	0,054	0,023		
9	⁹⁹ Mo	$3,71 \cdot 10^{16}$	0	0	25	^{133m} Xe	$2,711 \cdot 10^{15}$	0,013	0,029		
10	⁹⁸ Tc	$1,562 \cdot 10^3$	0,985	-0,074	26	¹³³ Xe	$4,11 \cdot 10^{16}$	0	0		
11	⁹⁹ Tc	$2,694 \cdot 10^{11}$	1	0	27	¹³⁷ Cs	$2,089 \cdot 10^{15}$	1	0		
12	103 Ru	$5,603 \cdot 10^{16}$	0,375	-0,039	28	¹⁴⁰ Ba	$8,463 \cdot 10^{16}$	0,024	-0,035		
13	¹⁰⁶ Ru	$8,485 \cdot 10^{15}$	1,3	-0,064	29	¹⁴¹ Ce	$8,529 \cdot 10^{16}$	0,224	-0,134		
14	¹¹¹ Ag	$1,360 \cdot 10^{16}$	0,567	0,106	30	¹⁴³ Ce	$3,473 \cdot 10^{16}$	-0,017	-0,043		
15	¹²⁵ Sn	$7,752 \cdot 10^{13}$	0,207	0,092	31	¹⁴⁰ La	$3,802 \cdot 10^{16}$	0,026	-0,036		
16	¹²⁶ Sn	$7,291 \cdot 10^{9}$	1,149	0,132	32	¹⁴⁷ Nd	$3,019 \cdot 10^{16}$	0	-0,021		

Параметры α , δ и γ в формуле $A_i(t)^a$ (8)

Оказывается, что в интервале времени работы реактора t = 0-2,7 г. приближенная формула $A_i(t)^a$ (8) с точностью до нескольких процентов воспроизводит результаты расчетов $A_i(t)$ по формуле (4). В табл. 4 в качестве примера проводится сравнение активностей $A_i(t)$ и $A_i(t)^a$ для ⁹⁰Sr, ¹⁰⁶Ru и ¹⁴⁴Ce.

Таблица 4

<i>t</i> , г.	$A(^{90}Sr)$	$A(^{90}{\rm Sr})^{a}$	ρ	$A(^{106}Ru)$	$A(^{106}Ru)^{a}$	ρ	$A(^{144}Ce)$	$A(^{144}Ce)^{a}$	ρ
0,15	$2,87 \cdot 10^{14}$	$2,82 \cdot 10^{14}$	0,98	$7,17 \cdot 10^{14}$	$7,14 \cdot 10^{14}$	1,00	$9,22 \cdot 10^{15}$	$9,24 \cdot 10^{15}$	1,00
0,30	$5,61 \cdot 10^{14}$	$5,52 \cdot 10^{14}$	0,98	$1,71 \cdot 10^{15}$	$1,74 \cdot 10^{15}$	1,02	$1,71 \cdot 10^{16}$	$1,68 \cdot 10^{16}$	0,98
0,45	$8,22 \cdot 10^{14}$	$8,13 \cdot 10^{14}$	0,99	$2,87 \cdot 10^{15}$	$2,92 \cdot 10^{15}$	1,02	$2,38 \cdot 10^{16}$	$2,33 \cdot 10^{16}$	0,98
0,60	$1,07 \cdot 10^{15}$	$1,06 \cdot 10^{15}$	0,99	$4,16 \cdot 10^{15}$	$4,20 \cdot 10^{15}$	1,01	$2,96 \cdot 10^{16}$	$2,89 \cdot 10^{16}$	0,98
0,75	$1,31 \cdot 10^{15}$	$1,31 \cdot 10^{15}$	1	$5,55 \cdot 10^{15}$	$5,56 \cdot 10^{15}$	1,00	$3,45 \cdot 10^{16}$	$3,39 \cdot 10^{16}$	0,98
0,90	$1,55 \cdot 10^{15}$	$1,54 \cdot 10^{15}$	0,99	$6,99 \cdot 10^{15}$	$6,98 \cdot 10^{15}$	1,00	$3,87 \cdot 10^{16}$	$3,81 \cdot 10^{16}$	0,98
1,05	$1,77 \cdot 10^{15}$	$1,77 \cdot 10^{15}$	1	$8,46 \cdot 10^{15}$	$8,45 \cdot 10^{15}$	1,00	$4,23 \cdot 10^{16}$	$4,18 \cdot 10^{16}$	0,99
1,20	$2,00 \cdot 10^{15}$	$1,99 \cdot 10^{15}$	1,00	$9,95 \cdot 10^{15}$	$9,96 \cdot 10^{15}$	1,00	$4,54 \cdot 10^{16}$	$4,50 \cdot 10^{16}$	0,99
1,35	$2,21 \cdot 10^{15}$	$2,20 \cdot 10^{15}$	1,00	$1,15 \cdot 10^{16}$	$1,15 \cdot 10^{16}$	1	$4,77 \cdot 10^{16}$	$4,77 \cdot 10^{16}$	1
1,50	$2,45 \cdot 10^{15}$	$2,41 \cdot 10^{15}$	0,98	$1,31 \cdot 10^{16}$	$1,31 \cdot 10^{16}$	1	$4,99 \cdot 10^{16}$	$5,00 \cdot 10^{16}$	1,00
1,65	$2,61 \cdot 10^{15}$	$2,61 \cdot 10^{15}$	1	$1,47 \cdot 10^{16}$	$1,46 \cdot 10^{16}$	0,99	$5,17 \cdot 10^{16}$	$5,19 \cdot 10^{16}$	1,00
1,80	$2,81 \cdot 10^{15}$	$2,80 \cdot 10^{15}$	1,00	$1,64 \cdot 10^{16}$	$1,62 \cdot 10^{16}$	0,99	$5,30 \cdot 10^{16}$	$5,34 \cdot 10^{16}$	1,01
1,95	$2,98 \cdot 10^{15}$	$2,98 \cdot 10^{15}$	1	$1,79 \cdot 10^{16}$	$1,78 \cdot 10^{16}$	0,99	$5,43 \cdot 10^{16}$	$5,47 \cdot 10^{16}$	1,01
2,10	$3,18 \cdot 10^{15}$	$3,17 \cdot 10^{15}$	1,00	$1,96 \cdot 10^{16}$	$1,95 \cdot 10^{16}$	0,99	$5,52 \cdot 10^{16}$	$5,56 \cdot 10^{16}$	1,01
2,25	$3,34 \cdot 10^{15}$	$3,34 \cdot 10^{15}$	1	$2,12 \cdot 10^{16}$	$2,11 \cdot 10^{16}$	1,00	$5,59 \cdot 10^{16}$	$5,64 \cdot 10^{16}$	1,01
2,40	$3,52 \cdot 10^{15}$	$3,51 \cdot 10^{15}$	1,00	$2,27 \cdot 10^{16}$	$2,27 \cdot 10^{16}$	1	$5,66 \cdot 10^{16}$	$5,68 \cdot 10^{16}$	1,00
2,55	$3,67 \cdot 10^{15}$	$3,67 \cdot 10^{15}$	1	$2,43 \cdot 10^{16}$	$2,43 \cdot 10^{16}$	1	$5,70 \cdot 10^{16}$	$5,71 \cdot 10^{16}$	1,00
2,70	$3,85 \cdot 10^{15}$	$3,82 \cdot 10^{15}$	0,99	$2,61 \cdot 10^{16}$	$2,60 \cdot 10^{16}$	1,00	$5,72 \cdot 10^{16}$	$5,72 \cdot 10^{16}$	1

Сравнение активностей $A_i(t)$ (4) и $A_i(t)^a$ (8) для ⁹⁰Sr, ¹⁰⁶Ru и ¹⁴⁴Ce

В итоге на основании результатов расчетов в табл. 3 мы получаем 32 SF-коэффициента = $A_i(t)^a / P_{0f} 1,55 \cdot 10^{-3} \cdot t$, которые и приведены в табл. 5.

Таблица 5

SF-коэффициенты = $A_i(t)^a / P_{0f} 1,55 \cdot 10^{-3} \cdot t$ для продуктов деления в топливе BBЭP-1000

N⁰	Продукт	$A_{i}(t)^{a} / A_{i}(^{137}\text{Cs}, t)$	N⁰	Продукт	$A_{i}(t)^{a} / A_{i}(^{137}\text{Cs}, t)$
п/п	деления		п/п	деления	
1	⁸⁷ Rb	$2,27 \cdot 10^{-10} t^{-0,014} e^{-0,072t}$	17	¹²⁵ Sb	$6,59 \cdot 10^{-2} t^{0,135} e^{-0,037t}$
2	⁸⁹ Sr	$3,66 \cdot 10^{10} t^{-0.6} e^{-0.386t}$	18	¹²⁷ Sb	$1,39 t^{-0,769} e^{0,092t}$
3	⁹⁰ Sr	$8,94 \cdot 10^{-1} t^{-0,01} e^{-0,1t}$	19	^{127m} Te	$1,87 \cdot 10^{-1} t^{-0,138} e^{-0,155t}$
4	⁹¹ Y	$2,04 \cdot 10^{1} t^{-0,556} e^{-0,379t}$	20	^{129m} Te	$6,21 \cdot 10^{-1} t^{-0,664} e^{-0,035t}$
5	⁹³ Zr	$1,86 \cdot 10^{-5} e^{-0,043t}$	21	¹³² Te	$2,87 \cdot 10^1 t^{-0,984} e^{0,026t}$
6	⁹⁵ Zr	$4,97 \cdot 10^{1} t^{-0,516} e^{-0,3t}$	22	¹²⁹ I	$2,03 \cdot 10^{-7} t^{0,031} e^{0,068t}$
7	⁹⁷ Zr	$1,71 \cdot 10^{1} t^{-1} e^{-0,016t}$	23	¹³¹ I	$1,96 \cdot 10^1 t^{-0,971} e^{0,038t}$
8	⁹⁴ Nb	$4,59 \cdot 10^{-10} e^{-0,054t}$	24	^{131m} Xe	$2,19 \cdot 10^{-1} t^{-0,946} e^{0,023t}$
9	⁹⁹ Mo	$1,77 \cdot 10^{1} t^{-1}$	25	^{133m} Xe	$1,30 t^{-0,987} e^{0,029t}$
10	⁹⁸ Tc	$7,46 \cdot 10^{-13} t^{-0,015} e^{-0,074t}$	26	¹³³ Xe	$1,96 \cdot 10^1 t^{-1} e^{0,0031t}$
11	⁹⁹ Tc	$1,29 \cdot 10^{-4}$	27	¹³⁷ Cs	1
12	¹⁰³ Ru	$2,68 \cdot 10^1 t^{-0,625} e^{-0,039t}$	28	¹⁴⁰ Ba	$4,05 \cdot 10^{1} t^{-0.976} e^{-0.035t}$
13	¹⁰⁶ Ru	$4,05 t^{0,3} e^{-0,064t}$	29	¹⁴¹ Ce	$4,08 \cdot 10^{1} t^{-0,776} e^{-0,134t}$
14	¹¹¹ Ag	$6,50 t^{-0,433} e^{0,106t}$	30	¹⁴³ Ce	$1,66 \cdot 10^1 t^{-1,017} e^{-0,043t}$
15	125 Sn	$3,70\cdot 10^{-2} t^{-0,793} e^{0,092t}$	31	¹⁴⁴ Ce	$2,75 \cdot 10^{1} t^{-0,064} e^{-0,346t}$
16	¹²⁶ Sn	$3,46 \cdot 10^{-6} t^{0,149} e^{0,132t}$	32	¹⁴⁷ Nd	$1,44 \cdot 10^1 t^{-1} e^{-0,021t}$

Обсуждение полученных результатов

Как указывалось выше, нормально функционирующий реактор является источником различного рода радиоактивных отходов (РАО), в том числе и отработанного

реакторного топлива (OPT). На ранней стадии развития ядерной энергетики основной характеристикой радиоактивных отходов была их общая и удельная активность, т. е. не требовалось идентифицировать их радионуклидный состав.

В настоящее время требования к классификации (паспортизации) РАО стали более жесткими. В соответствии с рекомендациями МАГАТЭ для РАО АЭС наряду с общей активностью необходимо определять также радионуклидный состав РАО. При этом особое внимание должно уделяться идентификации средне- и долгоживущим радионуклидам, примерный список которых приведен в табл. 6.

Таблица б

№ п/п	Нуклид	№ п/п	Нуклид	№ п/п	Нуклид	№ п/п	Нуклид
1	³ H	12	⁸⁷ Rb	23	¹²⁶ Sn	34	²³⁸ U
2	¹⁴ C	13	⁸⁹ Sr	24	¹²⁵ Sb	35	²³⁷ Np
3	²² Na	14	⁹⁰ Sr	25	^{127m} Te	36	²³⁸ Pu
4	³⁶ Cl	15	⁹¹ Y	26	^{129m} Te	37	²³⁹ Pu
5	⁴¹ Ca	16	⁹³ Zr	27	¹²⁹ I	38	²⁴⁰ Pu
6	⁵⁴ Mn	17	⁹⁵ Zr	28	¹³⁴ Cs	39	²⁴¹ Pu
7	⁵⁵ Fe	18	⁹⁴ Nb	29	¹³⁵ Cs	40	²⁴² Pu
8	⁶⁰ Co	19	⁹⁸ Tc	30	¹³⁷ Cs	41	²⁴¹ Am
9	⁵⁹ Ni	20	⁹⁹ Tc	31	¹⁴¹ Ce	42	^{242m} Am
10	⁶³ Ni	21	103 Ru	32	¹⁴⁴ Ce	43	²⁴³ Am
11	⁷⁹ Se	22	¹⁰⁶ Ru	33	²³⁵ U	44	²⁴² Cm

Средне- и долгоживущие радионуклиды, образующиеся при работе ВВЭР-1000

Первые 8 нуклидов, включая ⁶⁰Со, – продукты активации теплоносителя, его примесей и активированные продукты коррозии. Все остальные нуклиды, исключая ¹³⁴Cs, до ²³⁵U – продукты деления ядер топлива (23 нуклида). Нуклид ¹³⁴Cs – продукт активации стабильного осколка деления ¹³³Cs. Остальные нуклиды – изотопы урана и трансурановых элементов. Табл. 5 и 6 перекрываются по 19 продуктам деления: ⁸⁷Rb, ⁸⁹Sr, ⁹⁰Sr, ⁹¹Y, ⁹³Zr, ⁹⁵Zr, ⁹⁴Nb, ⁹⁸Tc, ⁹⁹Tc, ¹⁰³Ru, ¹⁰⁶Ru, ¹²⁶Sn, ¹²⁵Sb, ^{127m}Te, ^{129m}Te, ¹²⁹I, ¹³⁷Cs, ¹⁴¹Ce, ¹⁴⁴Ce.

Как правило, в развитых странах с помощью SF-коэффициентов должны определяться концентрации ¹⁴C, ⁵⁹Ni, ⁶³Ni, ⁹⁴Nb, ⁹⁰Sr, ¹²⁹I, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Pu, ²⁴²Cm.

Подводя итог, можно утверждать, что представление SF-коэффициентов в аналитическом виде для BBЭP-1000 облегчает проблему идентификации необходимых продуктов деления в отработанном топливе. В дальнейшем будет показано, что это можно будет сделать для ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Pu, ²⁴²Cm и ряда других изотопов трансурановых элементов.

Литература

- 1. Гусев, Н. В. Радиоактивные выбросы в биосфере : справочник / Н. В. Гусев, В. А. Беляев. Москва : Энергоатомиздат, 1986. 224 с.
- Исследование взаимного влияния радиоактивных загрязнений на радиационную обстановку приграничных территорий Беларуси и Украины после аварии на ЧАЭС: отчет о НИР / Ин-т физики НАН Беларуси; рук. темы Э. А. Рудак. – Минск, 2006. – 53 с. – № ГР 2005269.
- 3. Рудак, Э. А. Корреляционные соотношения для оценки содержания изотопов плутония в аварийных выпадениях Чернобыльской АЭС / Э. А. Рудак,

А. М. Эльмансури, О. И. Ячник // Атом. энергия. – 2007. – Т. 103, вып. 4. – С. 255–259.

- 4. Оценка выброса плутония в аэрозольной форме при аварии на Чернобыльской АЭС / В. В. Андреев [и др.]. Минск, 2005. 25 с. (Препринт / Акад. наук Беларуси, Ин-т физики ; № 742).
- Использование корреляционных соотношений для определения вкладов топливной и конденсационной составляющей в чернобыльских радиоактивных выпадений / Э. А. Рудак [и др.] // Проблемы физики, математики и техники. Т. 1, вып. 1. 2009. С. 27–32.
- Бурак, А. О. Аппроксимация зависимостей концентраций нуклидов от времени простыми аналитическими функциями / А. О. Бурак, А. Н. Еремина, Э. А. Рудак // Атом. энергия. – 2003. – Т. 94, вып. 6. – С. 432–438.
- 7. Феноменологическая модель для оценки активностей осколков деления в ядерном топливе и аварийных реакторных выбросах / А. О. Бурак [и др.] // Атом. энергия. 2005. Т. 98, вып. 5. С. 380–386.
- Герасимов, А. С. Справочник по образованию нуклидов в ядерных реакторах / А. С. Герасимов, Т. С. Зарицкая, А. П. Рудик. – Москва : Энергоатомиздат, 1989. – 575 с.
- 9. Бурак, А. О. Расчет масс и активностей нуклидов в активной зоне реактора РБМК: 1. Феноменологическая теория наработки масс и активностей осколков деления / А. О. Бурак, П. А. Наполеау, Э. А. Рудак. Минск, 2000. 18 с. (Препринт / Акад. наук Беларуси, Ин-т физики ; № 728).
- Burak, A. O. Phenomenological model for calculating masses and activities of nuclides in the core water-moderated water-cooled power and high-power channel-type reactors / A. O. Burak, A. N. Eremina, E. A. Rudak // Environmental a. Chem. Physics. – 2001. – Vol. 23, № 3–4. – P. 94–100.
- Горбачева, Н. В. Метод расчета и создание банка данных по накоплению радионуклидов при различной глубине выгорания топлива реактора РБМК-1000 / Н. В. Горбачева, Г. А. Шароваров. – Минск, 1998. – 18 с. – (Препринт / НАН Беларуси, Ин-т радиоэкол. проблем ; № 22).
- Израэль, Ю. А. Радиоактивные выпадения после ядерных взрывов и аварий / Ю. А. Израэль. – Санкт-Петербург : Гидрометеоиздат: Прогноз-погода, 1996. – 356 с.

Получено 08.04.2010 г.