Литература

Гидравлика, гидромашины и гидроприводы /Т.М. Башта [и др.]. – М.: Машиностроение, 1982. Метлюк, Н.Ф. Динамика пневматических и гидравлических приводов автомобилей /Н.Ф. Метлюк, В.П. Автушко. – М.: Машиностроение, 1980.

МОДЕЛИРОВАНИЕ РАБОЧЕГО ПРОЦЕССА В ГИДРООБЪЁМНОМ ПРИВОДЕ РУЛЕВОГО УПРАВЛЕНИЯ КАРЬЕРНОГО САМОСВАЛА

Е.М. Заболоцкий

Учреждение образования «Белорусский национальный технический университет», г. Минск

Научный руководитель В.П. Автушко

Центральной проблемой современного этапа развития машиностроения является проблема разработки методологии организации автоматизированной процедуры проектного анализа и синтеза. Поэтому в Белорусском национальном техническом университете совместно с РУПП «БелАЗ» выполняются научно-исследовательские работы по проектированию гидрообъёмного привода рулевого управления перспективных карьерных самосвалов.

Одним из этапов данной работы является оценка конструктивных параметров гидравлического рулевого механизма (насоса-дозатора) на динамические характеристики привода. Для чего была поставлена задача разработать его математическую модель и выполнить расчетные исследования.

Рассмотрим динамическую модель одной из фаз работы гидравлического рулевого управления – поворот управляемых колёс в одну из сторон. Насос-дозатор и принцип его действия описаны в работе [1]. На рис. 1 приведена его конструктивная схема, на базе которой была разработана расчётная схема привода. Моделирование привода проведем по методике, описанной в работе [2]. Запишем уравнение движения поршня, которое отражает равновесие подвижных элементов под действием внешних сил:

$$m_{\rm m} \frac{d^2 z}{dt} = P_{\rm a} - P_{\rm c},$$

где $m_{\rm n}$ – приведённая к поршню масса подвижных элементов; z – перемещение поршня цилиндра; $P_{\rm a}$ – сумма активных сил, действующих на поршень; $P_{\rm c}$ – сумма сил сопротивления. После преобразований получаем:

$$m_{\rm m} \frac{d^2 z}{dt} = p_5 (F_{\rm m} - f_{\rm m}) - p_6 (F_{\rm m} - f_{\rm m}) - (P_0 + C_1 z),$$

где $F_{\rm n}$ – площадь поршня; $f_{\rm m}$ – площадь штока гидроцилиндра; p_5 и p_6 – давление в 5-м и 6-м узлах соответственно; P_0 – постоянная нагрузка; C_1 – коэффициент позиционной нагрузки.

Рис. 1. Схема насоса-дозатора

Кроме того, в модель следует ввести ограничения перемещения поршня в соответствии с конструкцией гидравлического цилиндра поворота, что позволит получить адекватные динамические характеристики.

Уравнение движения ротора гидромотора:

$$J_{\rm n} \frac{d^2 \varphi}{dt^2} = M_{\rm a} - M_{\rm c},$$

где $J_{\rm n}$ – приведённый к ротору момент инерции вращающихся деталей; $M_{\rm a}$ – момент активных сил; $M_{\rm c}$ – момент сил сопротивления, φ – угол поворота ротора гидромотора. Таким образом получаем:

$$J_{\rm m} \frac{d^2 \phi}{dt^2} = p_2 q_{\rm M} - p_3 q_{\rm M} - M_{\rm H} - M_{\rm TP} \, {\rm sgn} \frac{d \phi}{dt},$$

где p_2 и p_3 – давление во 2-м и 3-м узле соответственно; $M_{\rm H}$ – нагружающий момент; $M_{\rm Tp}$ – момент трения; $q_{\rm M}$ – удельный рабочий объём гидромотора.

Баланс давлений для *i*-го трубопровода:

$$p_i = p_{i+1} + \Delta p, \ \Delta p = \Delta p_l + \Delta p_M + \Delta p_J,$$

где Δp_l – потери по длине; Δp_M – потери на местные сопротивления; Δp_J – инерционные потери.

$$\Delta p_l = 27.5 \frac{\rho v l}{f} \upsilon + 0.443 \frac{k_{\varepsilon} \rho l}{\sqrt{f}} \upsilon^2, \quad \Delta p_M = 0.5\xi \rho \upsilon^2, \quad \Delta p_J = \rho l \frac{d^2 x}{dt^2},$$

где v – кинематическая вязкость жидкости; k_{ε} – коэффициент, зависящий от шероховатости внутренних стенок трубопровода; ρ – плотность жидкости; v – скорость жидкости; ξ – коэффициент местного сопротивления; x – перемещение столба жидкости.

Для связи параметров движения жидкости на различных участках используют уравнения расходов. Эти уравнения составляются для узлов, выделенных на динамической схеме: $\sum Q_i = 0$.

Для узлов, где учитывается сжимаемость жидкости $Q_{\rm BX} = Q_{\rm BbIX} + Q_{\partial}$, где Q_{∂} – расход, затраченный на сжимаемость жидкости.

После выполнения всех преобразований приходим к результирующей системе дифференциальных уравнений:

$$\frac{d^{2}Z}{dt^{2}} = \frac{1}{m_{\Pi} + \frac{(F_{\Pi} - f_{\Pi})^{2}}{f_{2}}(a_{4} + a_{7})} \times (p_{5} \cdot (F_{\Pi} - f_{\Pi}) - p_{9}(F_{\Pi} - f_{\Pi}) - \frac{(F_{\Pi} - f_{\Pi})^{3}}{f_{2}^{2}} \times (a_{5} + a_{8} + \frac{a_{13}}{(\phi(t) - k_{oc3}\phi)^{2}})(\frac{dZ}{dt})^{2} + (a_{6} + a_{9})(\frac{dZ}{dt})^{2} + (a_{6} + a_{9})(\frac{dZ}{dt}$$

$$\frac{d^{2}\varphi}{dt^{2}} = \frac{1}{\frac{J_{\Pi}}{q_{M}} + a_{0}a_{1}} (p_{\max} - p_{5} - (\frac{a_{10}}{(\varphi(t) - k_{oc1}\varphi)^{2}} + \frac{a_{10}}{(\varphi(t) - k_{oc2}\varphi)^{2}} + a_{2}a_{0}^{2}) \times \times (\frac{d\varphi}{dt})^{2} \operatorname{sgn} \frac{d\varphi}{dt} - a_{0}a_{3}\frac{d\varphi}{dt} - \frac{1}{q_{M}} (M_{H} + M_{TP}\operatorname{sgn} \frac{d\varphi}{dt}));$$
(2)

$$\frac{dp_5}{dt} = \frac{f_1 \frac{dx_1}{dt} - F_{\Pi} \frac{dZ}{dt}}{f_1 l_1 + F_{\Pi} (Z_0 + Z)} (E_{a0} + a_p p_5), \qquad (3)$$

где
$$a_0 = \frac{q_{\rm M}}{f_1}$$
; $a_1 = \rho l_1$; $a_4 = \rho l_2$; $a_7 = \rho l_3$; $a_{10} = \frac{q_{\rm M}^2 \rho}{2\pi^2 \mu^2 D_3^2}$; $a_2 = 0.5\xi_1 \rho + 0.443 \frac{k_{\rm e} \rho l_1}{\sqrt{f_1}}$;
 $a_5 = 0.5\xi_2 \rho + 0.443 \frac{k_{\rm e} \rho l_2}{\sqrt{f_2}}$; $a_{13} = \frac{0.5f_3^2 \rho}{(\mu \pi D_3)^2}$; $a_8 = 0.5\xi_3 \rho + 0.443 \frac{k_{\rm e} \rho l_3}{\sqrt{f_3}}$; $a_3 = 27.5 \frac{\rho \nu l_1}{f_1}$;
 $a_6 = 27.5 \frac{\rho \nu l_2}{f_2}$; $a_9 = 27.5 \frac{\rho \nu l_3}{f_3}$.

Здесь l_i – длина *i*-го трубопровода; f_i – площадь проходного сечения *i*-го трубопровода; z_0 – расстояние между поршнем и крышкой в начальном положении; E_{a0} – базовый модуль упругости; a_p – коэффициент, учитывающий влияние давления; μ – динамическая вязкость; D_3 – диаметр золотника распределителя.

Решение данной системы уравнений осуществлялось на ПЭВМ численными методами. Некоторые результаты расчета представлены на рис. 2.

Рис. 2. Графики переходных процессов при повороте рулевого колеса из одного крайнего положения в другое:
 давление при D_y = 16 мм;---- скорость поршня при D_y = 16 мм;
 давление при D_y = 12 мм; - − - скорость поршня при D_y = 12 мм

Выполнен многовариантный динамический расчет, проведен анализ влияния различных конструктивных и компоновочных параметров насоса-дозатора на динамику привода, выбраны их рациональные значения для разработки конструкции.

Литература

- Заболоцкий, Е.М. Энергетический расчёт гидрообъёмного привода рулевого управления мобильной машины /Е.М. Заболоцкий, В.П. Автушко //Сборник материалов III международной межвузовской научно-технической конференции студентов, аспирантов и магистрантов. – 2003. – с. 32.
- 2. Метлюк, Н.Ф. Динамика пневматических и гидравлических приводов автомобилей /Н.Ф. Метлюк, В.П. Автушко. М.: Машиностроение, 1980.