УДК 620.9

О НЕКОТОРЫХ АСПЕКТАХ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ПО ЭНЕРГОСБЕРЕЖЕНИЮ

А. Г. УС, А. И. КОНОВАЛОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Ввеление

Энергосбережение в соответствии с [1] — это организационная, научная, практическая, информационная деятельность государственных организаций, юридических и физических лиц, направленная на снижение расхода (потерь) топливно-энергетических ресурсов в процессе их добычи, переработки, транспортировки, хранения, производства, использования и утилизации.

Это многогранная деятельность, которая требует для своего решения наличия соответствующего методологического, технического, информационного, организационного, математического и программного обеспечения.

Энергосберегающая и сопутствующая ей деятельность начали осуществляться уже давно. У нас в республике осознанная деятельность в области энергосбережения проводится с 80-х гг. предыдущего столетия. За рубежом этот процесс начался еще раньше. На сегодняшний день накоплен достаточный практический опыт, чтобы энергосбережение сформировалось как отрасль науки, как деятельность многогранного обеспечения.

Постановка задачи

В настоящее время работы по энергосбережению носят сугубо творческий, субъективный характер с решением отдельных не совсем первоочередных задач, направленных на экономию топливно-энергетических ресурсов (ТЭР). Например, проведение энергоаудита потребителей, разработка технического учета расхода ТЭР, норм расхода энергоресурсов, отдельных мероприятий по экономии ТЭР.

Очевидным является и то, что только при системном подходе к решению вопросов энергосбережения ТЭР может быть достигнут значительный результат, наибольший экономический эффект. Целесообразным является комплексный подход к исследованию всей полноты вопросов, возникающих при энергосберегающей деятельности. Это декомпозиция обследуемой системы по различным критериям, классификация и ранжирование широкого круга задач, разработка баз данных по потреблению ТЭР, нормативной базе, мероприятиям по энергосбережению и др.

В данной статье рассматривается ряд аспектов системного подхода к решению широкого круга вопросов энергосберегающей деятельности.

Методология решения

Известно, что под системным подходом понимается направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, т. е. рассмотрение объекта как системы, анализ которой направлен на выдвижение альтернатив и сопоставление вариантов по тем или иным критериям эффективности.

Конечным результатам являются мероприятия (аспекты), позволяющие повысить эффективность энергосберегающей деятельности.

Решение

С целью более полного, эффективного выявления энергосберегающих задач (мероприятий) на основании результатов обследования и анализа существующего положения дел по работе энергетических служб потребителей, Гомельского областного управления по надзору за рациональным использованием ТЭР, организаций, выполняющих энергетические обследования и разработку программ энергосбережения [2], а также самих отчетов по энергоаудиту предлагается матричная декомпозиция системы потребления по осям расхода ТЭР и направлениям (резервам) экономии энергии.

В табл. 1 и 2 приведены примеры в виде фрагментов матричной декомпозиции, составленной по электрической и тепловой энергии.

Таблица 1 Фрагмент матричной декомпозиции по электрической энергии

	Резервы экономии						
Статьи расхода	От холостых ходов и недогрузок оборудования	В сетях и трансформаторах	Из-за отсутствия автоматики	Недокомпенсация реактивной мощности	Энергосберегающие технологии	Другие резервы	Всего резервов
Общесетевое оборудование							
Оборудование технологического процесса							
Вспомогательные процессы							
Прочие потребители							

	Резервы экономии						
Статьи расхода	Нарушение теплоизоля- ции трубо- провода	Отсутст- вие авто- матики	Использова- ние вторич- ных энергоре- сурсов	Другие резервы	Всего резер- вов		
Передача и распределение тепловой энергии	-						
Отопление							
Горячее водоснабжение	1						
Вентиляция							

При таком способе декомпозиции системы потребления и использования энергоресурсов в местах пересечения координатных осей образуются ячейки, содержащие одно или несколько направлений (резервов) экономии ТЭР.

Правильно выбранные системы координат (расход по подразделениям, по статьям расхода, объекты, области управления, функции управления, направления экономии энергоресурсов) гарантируют наибольшую полноту выявленных мероприятий по энергосбережению.

Проведенный анализ с помощью способа декомпозиции позволил все мероприятия по экономии энергоресурсов классифицировать на следующие группы:

- 1. Мероприятия по нормативной базе: нормы расхода энергоресурсов, технический (внутрипроизводственный) учет, техническая документация, АРМы и т. д.
- 2. Мероприятия по системам энергоснабжения (электро-, теплоснабжения). В частности, по системам электроснабжения, например оптимальное распределение электроэнергии по критерию минимума потерь электроэнергии; обеспечение экономически целесообразного режима работы силовых трансформаторов (выбор оптимального количества работающих трансформаторов); оптимизация реактивной мощности в электрической сети, уровней напряжения в узлах нагрузки; совершенствование суточных графиков нагрузки и т. д.
- 3. Мероприятия по общепромышленным установкам: компрессоры, насосы. вентиляторы, подъемно-транспортные механизмы, сварочные, металло- и деревообрабатывающее оборудование, электрическое освещение.
- 4. Мероприятия по специальным технологическим установкам: различные технологические линии, установки, определяемые конкретным предприятием, отраслью промышленности.

Рассмотренная классификация и примерный перечень мероприятий по экономии энергоресурсов не являются исчерпывающими. Однако такое направление рассмотрения, обследования и исследования энергетического хозяйства предприятий и организаций позволит осуществить научный подход к энергосберегающей деятельности.

Это позволяет наметить конкретный объем работы по энергосбережению по отраслям, ведомствам, центральным и региональным органам управления и научным подразделениям.

Большие объемы, порой несистематизированной информации, используют в управляющих топливно-энергетическими ресурсами органах. Необходима разработка информационных баз, систематизация всего объема информации, разработка автоматизированных рабочих мест специалистов. Информационно-поисковые системы могут быть многоуровневыми, построенными по территориальному (предприятие — регион — республика) или ведомственному (предприятие — объединение — концерн (министерство) — республика) принципу.

Нами разработана база данных мероприятий по энергосбережению для каждой группы задач в соответствии с приведенной ранее классификацией. Для каждого мероприятия указаны средние ожидаемые значения срока окупаемости и экономического эффекта от внедрения. Эта информация может быть эффективно использована при экспресс-энергоаудите, планировании мероприятий по энергосбережению, разработке прогрессивных норм расхода ТЭР и решения широкого круга других задач управления потреблением и использованием ТЭР.

Важным при решении вопросов энергосбережения является оценка эффективности использования ТЭР. Необходима организация учета расхода энергоресурсов на выпускаемую продукцию или выполняемую работу для определения удельного фактического расхода ТЭР — это с одной стороны. С другой стороны, необходимо наличие нормативной базы — удельных норм расхода ТЭР.

Нами разработана база данных удельных норм расхода ТЭР для региона Гомельской области в соответствии с классификатором, предложенным Департаментом по энергоэффективности. Значения норм расхода электроэнергии приведены в табл. 3.

Таблица 3

Нормы расхода электроэнергии

Код продук-	Наименование вида продукции (работ, услуг)	Единица	Норма
ции по ОКП		измерения	расхода
0120008808	Теплоэнергия, отпущенная электростанциями		
	и районными котельными	кВт · ч/Гкал	28,663
9980000122	Добыча нефти всеми способами	кВт · ч/т	71,2
0259100000	Первичная переработка нефти	кВт · ч/т	18,2
0259420000	Гидрокрекинг	кВт • ч/т	46,6
0259220000	Каталитический риформинг	кВт • ч/т	31
0259410000	Гидроочистка	кВт • ч/т	20,2
3922100000	Топливные брикеты	кВт • ч/т	76,8
	Добыча и переработка торфа	кВт · ч/т	0,68
9980000012	Сжатый воздух	$\kappa \text{Вт} \cdot \text{ч/тыс. } \text{м}^3$	104,9
0890020000	Прокат черных металлов	кВт • ч/т	59,2
	(включая поковки из слитков)		
1200000000	Метизы (из готового проката) – всего	кВт · ч/т	127,5
2112200000	Сера	кВт · ч/т	312,8
2121100000	Кислота серная	кВт • ч/т	109
2197000000	Минеральные удобрения	кВт • ч/т	712
2223000000	Смолы карбамидные	кВт · ч/т	68
4111060000	Литье чугунное	кВт · ч/т	1414
4113000000	Литье цветное	кВт · ч/т	10574
4112010000	Литье стальное	кВт · ч/т	7778
5361800000	Деревянные изделия	кВт · ч/м ³	152
5610000000	Мебель	кВт · ч/усл. ед.	54,344
5430000000	Бумага	кВт · ч/т	1326
4100010000	Металлоконструкции	кВт · ч/т	913
5800000000	Бетонные и железобетонные изделия	$\kappa B_T \cdot \Psi/M^3$	106,68
	Товарный бетон и раствор	$\kappa B_T \cdot \eta / M^3$	13,933
	Товарная арматура	кВт · ч/т	114
	Столярные изделия	κ Вт · ч/м ³	32
	Погонажные изделия	кВт · ч/тыс. п. м	1,75
571801000	Асфальт и асфальтобетон	кВт · ч/т	8,6
5911000000	Стекло и изделия из него	кВт · ч/т	267,6
848000000	Мех искусственный	$\kappa \text{BT} \cdot \text{ч/n}^2$	1487
8800110000	Обувь резиновая	кВт · ч/тыс.	504
8800110000	Обувь резиновая		30 4
8501100000	Швейные изделия	усл. пар кВт · ч/усл. ед.	68,2133
9222000000	Цельномолочная продукция в пересчете на молоко	квт · ч/усл. ед.	66,157
9224010000	Обезжиренная молочная продукция в пересчете	квт · ч/т кВт · ч/т	87,69
9444010000	на молоко	кот • ч/т	01,09
9184110000	Солод пивоваренный	кВт · ч/т	311
9210580000	Мясо (включая субпродукты 1 категории)	кВт · ч/т	280,26

Окончание табл. 3

Код продук- ции по ОКП	Наименование вида продукции (работ, услуг)	Единица измерения	Норма расхода		
9227000000	Консервы мясные	кВт · ч/тыс.	194,4		
		усл. банок			
9221010000	Масло животное – всего	кВт • ч/т	393		
9225000000	Сыры жирные – всего	кВт • ч/т	474,128		
9223010000	Сухие молочные изделия и смеси	кВт • ч/т	559,95		
9213000000	Колбасные изделия	кВт · ч/т	776,086		
9184200000	Пиво	кВт · ч/тыс. дал	1533		
9185010000	Безалкогольные напитки	кВт · ч/тыс. дал	329,5667		
2114510000	Углекислота	кВт · ч/т	201		
9100110000	Кондитерские изделия	кВт · ч/т	1439,133		
9182100000	Спирт этиловый – всего	кВт · ч/дал	1,3		
9980000177	Очистка зерна	кВт • ч/т	4,084		
9980000096	Сушка зерна	кВт · ч/т	6,614		
9290270000	Мука – всего	кВт · ч/т	105,61		
9294000000	Крупа – всего	кВт ч/т	164,24		
9149000000	Макаронные изделия	кВт ч/т	367		
9290830000	Комбикорма сухие, гранулированные	кВт · ч/т	112,71		
220030000	и комбинированные	KD1 4/1	112,71		
9110050000	Хлеб и хлебобулочные изделия	кВт · ч/т	276,54		
9980000181	Содержание свиней	кВт · ч/гол.	136,9333		
9980000180	Содержание крупного рогатого скота	кВт · ч/гол.	227,286		
9229110000	Производство казеина сухого технического	кВт · ч/т	715,7333		
	Производство яиц	кВт · ч/тыс. шт.	76,7		
9990000171	Подъем и подача воды	$\kappa \text{BT} \cdot \text{ч/тыс. M}^3$	768,036		
	Прием, очистка и подача сточных вод	кВт · ч/тыс. м ³	524,8444		
9980000170	Строительно-монтажные работы, выполненные	кВт · ч/усл. ед.	69,5		
	собственными силами	-			
	Ремонтные работы	кВт · ч/усл. рем.	2000		
	Погрузочно-разгрузочные работы	кВт · ч/тыс. · т	0,005666		
9980000040	Отопление теплиц	$\kappa \mathrm{B} \mathrm{T} \cdot \mathrm{ч}/\mathrm{m}^2$	9,85		
	Инкубация яиц	кВт · ч/тыс. шт.	136,85		
	Сельскохозяйственная техника	кВт · ч/усл. ед.	9286,5		
4600000000	Подшипники – всего	кВт · ч/усл. ед.	34		
	Станки металлообрабатывающие – всего	кВт · ч/усл. ед.	6139000		
9980000121	Транспортировка нефти	кВт · ч/тыс.	147,1		
	П	T·KM	202.25		
	Приборы, средства автоматизации и связи и запасные части к ним	кВт · ч/усл. ед.	303,25		
	Электрохимические изделия	кВт · ч/усл. шт.	7674		
	Кабели и проволока электротехническая	кВт · ч/усл. км	19		
	Продукция машиностроения, запчасти	кВт · ч/усл. ед.	1071,683		
	и комплектующие		,		
	Гидрооборудование	кВт · ч/усл. шт.	48,5		
	Капитальный и восстановительный ремонт	кВт · ч/усл.	7698		
	подвижного состава и его составных частей	рем.			
	Заготовка и первичная обработка древесины	кВт · ч/тыс. м ³	0,035		
5550000000	Спички	кВт · ч/тыс.	0,0035		
		усл. ящ.			

Эти нормы в сравнении с фактически достигнутым удельным расходом в определенной степени могут характеризовать эффективность использования электроэнергии при производстве конкретной продукции или выполняемой работы субъектом хозяйствования.

При решении конкретных задач (мероприятий) по энергосбережению, направленных на оптимизацию режимов работы энергооборудования, использовании их по мощности и по времени и при учете различных влияющих факторов существенную роль оказывает моделирование энергопотребления. Оно позволяет решать в первую очередь следующие задачи:

- определять объем выпуска продукции, при котором удельный расход энергоресурсов будет минимален;
- рассчитывать плановую потребность в ТЭР в условиях меняющегося объема производства;
 - оценивать эффективность внедрения энергосберегающих мероприятий;
 - определять оптимальную загрузку оборудования;
 - рассчитывать целевой показатель энергопотребления в сопоставимых условиях.

Системный подход к решению вопросов энергосбережения позволит устранить также такие недостатки, как неучет требований по энергоэффективности при осуществлении государственных закупок; неравномерность в течение года бюджетного финансирования на внедрение технологий энергосбережения (часто основные объемы бюджетного финансирования приходятся на отопительный период, что делает технически невозможным реализацию целого ряда энергосберегающих мероприятий); отсутствие адресной ответственности и материального стимулирования за рациональное использование ТЭР; недостаточно качественные энергетические обследования и полнота выявляемых резервов экономии ТЭР.

Заключение

Повышение эффективности работы по энергосбережению возможно за счет системного подхода к этой деятельности.

Предложены: матричная декомпозиция системы потребления и использования ТЭР, позволяющая выявить наибольшую полноту мероприятий по энергосбережению; классификация по функциональным признакам мероприятий по экономии энергоресурсов, дающая возможность наметить конкретный объем работы по вопросам энергосбережения для различных органов и подразделений.

Разработаны: база данных мероприятий по энергосбережению, значительно повышающая эффективность проведения экспресс-энергоаудитов; база данных удельных норм расхода ТЭР для региона Гомельской области в соответствии с классификатором Департамента по энергоэффективности, позволяющая оценивать эффективность использования энергоресурсов при производстве конкретной продукции или выполняемой работы.

Литература

- 1. Энергосбережение. Основные термины и определения: СТБ П 1770–2007. Введ. 01.12.07 до 01.12.09. Минск : БелГИСС, 2007. 6 с.
- 2. О порядке проведения энергетического обследования предприятий, учреждений, организаций: постановление Совета Министров Респ. Беларусь от 16.10.1998 г. № 1583. Минск, 1998.

Получено 23.02.2010 г.