

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Электроснабжение»

УПРАВЛЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТЬЮ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ

ПРАКТИКУМ

по одноименной дисциплине для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» дневной формы обучения

УДК 621.311(075.8) ББК 31.28я73 У-67

Рекомендовано научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол № 3 от 02.12.2019 г.)

Составители: Т. В. Алферова, О. Ю. Пухальская

Рецензент: зав. каф. «Промышленная теплоэнергетика и экология» ГГТУ им. П. О. Сухого, канд. техн. наук, доц. А. В. Шаповалов

Управление энергоэффективностью в электрических сетях : практикум по У-67 одноим. дисциплине для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» днев. формы обучения / сост.: Т. В. Алферова, О. Ю. Пухальская. – Гомель : ГГТУ им. П. О. Сухого, 2021. – 29 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Практикум содержит пять тем практических занятий, в которых приведены краткие теоретические сведения, примеры решения задач и задания для самостоятельной работы.

Для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» дневной формы обучения.

УДК 621.311(075.8) ББК 31.28я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2021

1 АКТИВНОЕ УПРАВЛЕНИЕ ЭЛЕКТРОПОТРЕБЛЕНИЕМ

Теоретические сведения

Формирование графиков электрической нагрузки потребителей-регуляторов по закону встречного регулирования.

Аналитическую связь между желаемым совмещенным графиком нагрузки и графиками, суммой которых он является, устанавливает противоподобное преобразование функций. В математике это преобразование называют контрморфным, или КМ-преобразованием.

Покажем возможность использования КМ-преобразования функций для вычисления графика нагрузки потребителя-регулятора.

Заданы:

 $P_{\text{\tiny HP}}(t)$ – график нерегулируемой нагрузки;

 $P_{\text{пр}}(t)$ — график нагрузки потребителя-регулятора;

 $P_{\Sigma}(t)$ — график совмещенной нагрузки потребителя-регулятора и нерегулируемой нагрузки.

$$P_{\Sigma}(t) = P_{\rm Hp}(t) + P_{\rm np}(t). \tag{1.1}$$

Требуется найти график нагрузки $P_{\rm np}^{\rm K}(t)$ потребителя-регулятора противоподобный (КМ-преобразованный) по отношению к графику нерегулируемой нагрузки $P_{\rm hp}(t)$.

График нагрузки $P_{\rm np}^{\rm K}(t)$ потребителя-регулятора будет иметь вид:

$$P_{\rm np}^{\kappa}(t) = \overline{P_{\Sigma}} - P_{\rm hp}(t). \tag{1.2}$$

График совмещенной нагрузки при этом будет представлять собой прямую линию на уровне средней мощности $\overline{P_{\Sigma}}$.

В более общем случае, когда желаемой формой совмещенного графика нагрузки является не прямая линия, а некоторая кривая $P_{\Sigma}^{\text{жел}}(t)$, график нагрузки потребителя-регулятора можно вычислить по выражению

$$P_{\text{пр}}^{\text{K}}(t) = P_{\Sigma}^{\text{жел}}(t) - P_{\text{нр}}(t). \tag{1.3}$$

Если продифференцировать (1.3), то получим выражение:

$$\frac{dP_{\rm np}^{\rm men}(t)}{dt} = -\frac{dP_{\rm hp}(t)}{dt},\tag{1.4}$$

из которого вытекает *принцип встречного регулирования нагрузки:*

для обеспечения равномерности суммарного графика электрической нагрузки необходимо, чтобы составляющие его регулируемая и нерегулируемая нагрузки изменялись с одинаковой скоростью и в разных направлениях. При этом площадь под кривой мощности потребителя-регулятора (потребляемая энергия) до и после регулирования должна оставаться неизменной:

$$W_{\rm np} = \int_{0}^{T} P_{\rm np}(t) dt = \text{const}.$$
 (1.5)

- Из (1.3) вытекает геометрический способ построения графика нагрузки потребителя-регулятора, удовлетворяющего принципу встречного регулирования:
- необходимо инвертировать в отрицательную полуплоскость график нерегулируемой нагрузки ($-P_{\rm hp}(t)$) и
- сместить его вверх по оси ординат (оси мощности) на величину ΔP , равную средней мощности совмещенной нагрузки $\Delta P = P_{\Sigma}$.

При наличии на периоде регулирования нагрузки M интервалов, на которых $P_{\rm hp}(t) \ge \overline{P_\Sigma}$, величина смещения ΔP идеального графика потребителя-регулятора (1.3) и реально возможный график $P_{\rm np}^{\rm жел}(t)$ могут быть найдены в результате выполнения итерационных вычислений.

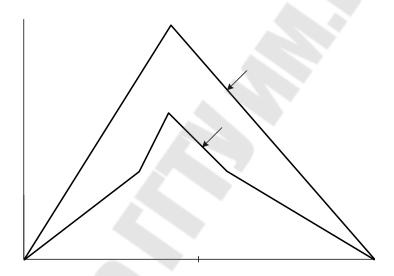
Начальным приближением графика нагрузки потребителярегулятора $P_{\text{пр}}^{\text{жел}(0)}(t)$ является график, вычисленный по выражению (1.2).

Если построение графика нагрузки потребителя-регулятора выполняется графическим способом, то достаточно ограничиться

вычислением только первой итерации. Тогда график потребителярегулятора:

$$P_{\text{пр}}^{\text{жел}}(t) = -P_{\text{нр}}(t) + \overline{P_{\Sigma}} - \frac{1}{T - \sum_{j}^{M} \left(t_{j}^{\kappa} - t_{j}^{\text{H}}\right)} \cdot \sum_{j}^{M} W_{\text{ген}_{j}}, \qquad (1.6)$$

где $t_j^{\text{H}}, t_j^{\text{K}}$ — начальный и конечный моменты j-го интервала работы потребителя-регулятора в режиме генератора с $P_{\text{пр}}(t) \le 0$;


 $W_{{{\mathop{\rm ren}}}_j}-$ энергия генерации на j-м интервале работы потребителярегулятора в режиме генератора;

T – период регулирования.

Задание для самостоятельной работы №1

По заданному графику суммарной $P_{\text{сум}}$ и нерегулируемой $P_{\text{нр}}$ нагрузки определить график нагрузки потребителя-регулятора $P_{\text{пр}}$, обеспечивающий максимально возможное выравнивание совмещенной нагрузки $P_{\text{сум}}$.

Графики нагрузки задаются в виде непрерывных функций $P_{\text{сум}}(t)$, $P_{\text{нр}}(t)$, аппроксимированных ломаными линиями с заданными координатами вершин (рис.1.1).

Puc.1.1. График суммарной $P_{\text{сум}}$ и нерегулируемой $P_{\text{нр}}$ нагрузки.

Исходные данные по вариантам представлены в таблице 1.1.

P

b

Таблица 1.1 Исходные данные задания для самостоятельной работы №1

	Координаты вершин графиков нагрузки							
	A	1	а		b		c	
Вариант	t	P(t)	t	P(t)	t	P(t)	t	P(t)
1	2	8	2	3	3	6	7	2
2	3	8	2	2	4	6	8	2
3	5	8	3	2	6	6	6	1
4	8	8	5	2	8	6	8	3
5	3	10	2	3	4	8	9	2
6	5	10	4	3	5	8	7	4
7	8	10	5	3	7	7	10	2
8	10	10	4	3	8	7	10	2
9	2	8	2	1	3	5	7	1
10	3	8	3	2	3	5	7	2
11	5	8	2	2	5	7	8	1
12	8	8	4	3	7	5	9	2
13	3	10	3	4	5	7	8	3
14	5	10	5	4	5	8	9	3
15	8	10	6	2	7	8	9	3
16	10	10	3	1	9	8	11	2
17	4	12	3	5	4	8	9	1
18	4	12	2	2	5	8	7	5
19	10	12	3	2	9	9	11	3
20	10	12	4	4	8	8	10	2

2 ТАРИФЫ НА ЭЛЕКТРОЭНЕРГИЮ И УПРАВЛЕНИЕ ЭЛЕКТРОПОТРЕБЛЕНИЕМ

Теоретические сведения

Двухставочный тариф на активную электрическую мощность и энергию с основной платой за фактическую величину наибольшей потребляемой активной мощности в часы максимальных нагрузок энергосистемы.

Плата рассчитывается:

$$\Pi_{\Lambda} = a \cdot P_{\phi}^{\text{max}} + b \cdot W \,, \tag{2.1}$$

где a — основная ставка двухставочного тарифа, руб./кВт;

 $P_{\phi}^{\rm max}$ — фактическая величина наибольшей потребляемой активной мощности за расчётный период, кВт;

b – дополнительная ставка двухставочного тарифа, руб./(кВт·ч);

W — количество активной энергии, потреблённой за расчётный период, к $\mathrm{Br}\cdot\mathrm{v}$.

Двухставочно-дифференцированный по зонам суток тариф на активную электрическую мощность и энергию с основной платой за фактическую величину наибольшей потребляемой активной мощности в часы максимальных нагрузок энергосистемы

Плата составляет:

$$\Pi_{\text{дд}} = a \cdot k_{\text{a}} \cdot P_{\phi}^{\text{max}} + b \cdot \left(k_{\text{H}} \cdot W^{\text{H}} + k_{\text{пп}} \cdot W^{\text{пп}} + k_{\text{п}} \cdot W^{\text{п}}\right), \tag{2.2}$$

где a — основная ставка двухставочного тарифа, руб./кВт;

 $k_{\rm a}$ — понижающий коэффициент к основной ставке двухставочного тарифа ($k_{\rm a}=0.5$);

 P_{ϕ}^{\max} — фактическая величина наибольшей потребляемой активной мощности в пиковой зоне.

b — дополнительная ставка двухставочного тарифа, руб./(кВт·ч);

 $k_{_{
m H}}, k_{_{
m III}}, k_{_{
m I}}$ — соответственно ночной, полупиковый и пиковый тарифные коэффициенты к дополнительной ставке двухставочного тарифа;

 $W^{\rm H},W^{\rm nn},W^{\rm n}$ — количество активной энергии, потребленной соответственно в ночной (23.00 — 6.00), полупиковой (остальное время) и пиковой (8.00 — 11.00) тарифных зонах суток, кВт·ч.

Тарифный коэффициент полупиковой зоны фиксирован и принят равным $k_{\rm nn}=1$. Коэффициенты для пиковой $k_{\rm n}$ и ночной $k_{\rm h}$ зон суток зависят от соотношения основной (a) и дополнительной (b) ставок двухставочного тарифа, календарного количества дней в расчётном периоде $(d_{\rm k}=28-31)$, и продолжительности пиковой $(t_{\rm n}=3$ ч) и ночной $(t_{\rm h}=7$ ч) тарифных зон. Расчётные формулы для тарифных коэффициентов следующие:

$$k_{_{\rm H}} = 1 - \frac{a \cdot (1 - k_{_{a}}) \cdot \left(4 \cdot t_{_{\rm I}} - t_{_{\rm H}}\right)}{b \cdot d_{_{\rm K}} \cdot \left(t_{_{\rm H}}^2 - t_{_{\rm II}}^2\right)}; \qquad k_{_{\rm II}} = 1 + \frac{a \cdot (1 - k_{_{a}}) \cdot \left(4 \cdot t_{_{\rm H}} - t_{_{\rm II}}\right)}{b \cdot d_{_{\rm K}} \cdot \left(t_{_{\rm H}}^2 - t_{_{\rm II}}^2\right)}. \tag{2.3}$$

Тарифные коэффициенты для тарифов на электрическую энергию, действующих с 1.01.2020, приведены в таблице 2.1.

Таблица 2.1 Расчётные значения тарифных коэффициентов $(a = 22,64016 \text{ руб/кВт}, b = 0,19146 \text{ руб/кВт} \cdot \text{ч})$

Календарное	Тарифный коэффициент						
количество дней в							
расчётном периоде,	$k_{_{\mathrm{H}}}$	$k_{ m mn}$	$k_{_{\Pi}}$				
d_{κ}	н	IIII	11				
28	0,736 048 932	1,0	2,319 755 339				
29	0,745 150 693	1,0	2,274 246 534				
30	0,753 645 670	1,0	2,231 771 649				
31	0,761 592 584	1,0	2,192 037 080				

Если имеется среднестатистический график нагрузки за $N_{\rm cyr}$ суток в виде массива математически ожидаемых осредненных на интервале Δt мощностей $\{P_i\}$ (i=1÷24/ Δt), то электроэнергия внутри тарифной зоны $W_{\rm 3}$ с началом в момент $t_{\rm H}$ и продолжительностью $T_{\rm 3}$ за расчётный период с количеством дней $N_{\rm дH}$ определяется следующим выражением:

$$\begin{cases} W_{3} = N_{\text{дH}} \cdot \Delta t \cdot \sum_{j=N}^{M} P_{i}, \\ N = \frac{t_{\text{H}}}{\Delta t} + 1; \quad M = \frac{t_{\text{H}} + T_{3}}{\Delta t}. \end{cases}$$

$$(2.4)$$

Максимальная мощность определяется наибольшим значением из ряда мощностей, расположенных в пиковой зоне, при этом значение максимальной мощности определяется как верхний предел доверительного интервала для среднего значения

$$P_{\max} = \max \left\{ P_i + t_{\alpha,k} \cdot \sigma_i \right\}, \quad \text{при } t_{\text{H}}^{\text{пик}} < i \cdot \Delta t \le t_{\text{K}}^{\text{пик}},$$
 (2.5)

где σ_i – среднее квадратическое отклонение мощности на i-м интервале;

 $t_{\alpha,k}$ — коэффициент Стьюдента при доверительной вероятности α и $k=N_{\text{сут}}-1$ степенях свободы;

 $t_{\rm H}^{\rm пик}, t_{\rm K}^{\rm пик}$ — начальный и конечный момент пиковой зоны.

3 УПРАВЛЕНИЕ РЕАКТИВНОЙ МОЩНОСТЬЮ В УЗЛЕ НАГРУЗКИ С БАТАРЕЯМИ СТАТИЧЕСКИХ КОНДЕНСАТОРОВ (БСК)

Теоретические сведения

Для большинства потребителей подключение нагрузки 0,4 кВ к энергосистеме производится через трансформатор (рис. 3.1).

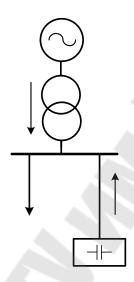


Рис. 3.1. Схема узла нагрузки

Подключение к трансформатору БСК снижает его нагрузочные потери, но приводит к возникновению дополнительных потерь в самих конденсаторах, которые характеризуются тангенсом угла диэлектрических потерь $tg\delta_{\text{бск}}$ ($tg\delta_{\text{бск}}=0{,}0025\text{-}0{,}004$ кВт/квар).

Батарея статических конденсаторов как источник реактивной мощности (ИРМ) для потребителя будет характеризоваться потрежим к) активной мощности:

$$\Delta P_{\text{6ck}}(Q) = \text{tg}\delta_{\text{6ck}} \cdot Q, \qquad (3.1)$$

где Q – реактивная мощность БСК, квар; $\operatorname{tg}\delta_{\operatorname{бck}}$ – тангенс угла диэлектрических потерь, кВт/квар.

Суммарные потери в системе "трансформатор-БСК" будут определяться следующим выражением:

P+J

$$\Delta P_{\text{cym}}(\beta_{\kappa}) = \left[\alpha^2 + (\beta - \beta_{\kappa})^2\right] \cdot \Delta P_{\kappa_3} + \beta_{\kappa} \cdot S_{\text{H}} \cdot \text{tg}\delta_{6c\kappa}, \qquad (3.2)$$

где $\alpha = \frac{P}{S_{_{\rm H}}}$ — коэффициент загрузки по активной мощности P трансформатора с номинальной мощностью $S_{_{\rm H}}$;

 $\beta = \frac{Q}{S_{_{\rm H}}} - \ \mbox{коэффициент} \ \ \mbox{загрузки} \ \ \mbox{по} \ \ \mbox{реактивной мощности} \ \ \end{Q}$ трансформатора;

 $\beta_{\rm \tiny K} = \frac{Q_{\rm \tiny K}}{S_{\rm \tiny H}}$ — реактивная мощность БСК, выраженная в долях от $S_{\rm \tiny H}$;

 ΔP_{κ_3} – потери короткого замыкания в трансформаторе, кВт;

 $tg\delta_{\text{бск}}$ — тангенс угла диэлектрических потерь в БСК.

Снижение потерь мощности в узле нагрузки δP за счет подключения БСК при неизменной активной нагрузке (α =const), выраженное в долях от номинальных нагрузочных потерь трансформатора, можно записать как:

$$\delta P = \frac{\Delta P_{\text{сум}}(0) - \Delta P_{\text{сум}}(\beta_{\text{K}})}{\Delta P_{\text{K3}}} = \beta^2 - \left[(\beta - \beta_{\text{K}})^2 + \beta_{\text{K}} \cdot \text{tg} \delta_{\text{6cK}} \cdot \frac{S_{\text{H}}}{\Delta P_{\text{K3}}} \right]$$
(3.3)

ИЛИ

$$\delta P(\beta') = \beta^2 - {\beta'}^2 - (\beta - \beta') \cdot \frac{\operatorname{tg}\delta_{6c\kappa}}{\Delta P_{\kappa}}, \tag{3.4}$$

где $\beta' = \beta - \beta_{\kappa}$ — коэффициент загрузки трансформатора по реактивной мощности после подключения БСК;

 $\Delta P_{_{\rm K}}$ – потери короткого замыкания, выраженные в долях от номинальной мощности $S_{_{\rm H}}$.

Эффект от КРМ зависит от реактивной нагрузки на шинах ТП и степени компенсации. Максимум снижения потерь будет достигаться при поддержании реактивной нагрузки трансформатора на уровне

$$\beta'_{\text{ont}} = \frac{\operatorname{tg}\delta_{\text{6ck}}}{2 \cdot \Delta P_{\kappa}} \tag{3.5}$$

и составит

$$\delta P_{\text{max}} = \left(\beta - \beta'_{\text{ont}}\right)^2. \tag{3.6}$$

Зная оптимальное значение загрузки трансформатора по реактивной мощности (3.5) можно определить значение оптимального соѕф для автоматического регулятора мощности БСК при известном коэффициенте загрузки по активной мощности α:

$$\cos \varphi_{\text{oht}} = \cos \left[\arctan \left(\frac{tg\delta_{\text{6ck}}}{2 \cdot \Delta P_{\text{k}} \cdot \alpha} \right) \right]. \tag{3.7}$$

Задание для самостоятельной работы №2

Для заданного графика активной нагрузки цехового трансформатора рассчитать оптимальные значения коэффициента мощности $\cos \phi_{\text{опт}}$ автоматического регулятора, среднее снижение потерь мощности в трансформаторе.

В качестве исходных данных принять:

- график нагрузки в соответствии с вариантом из таблицы 3.1 (коэффициенты загрузки трансформатора по активной α и реактивной мощности β , %).
 - трансформатор марки:

ТМЗ-630 – для нечётных вариантов,

ТМЗ-1000 – для чётных вариантов;

- тангенс угла диэлектрических потерь БСК:

 ${
m tg}\delta_{
m 6ck}=0{,}003~{
m kBT/kBap}-{
m для}~{
m нечётных}~{
m вариантов},$

 ${
m tg}\delta_{
m 6ck}=0{,}004~{
m kBT/kBap}-$ для чётных.

Исходные данные задания для самостоятельной работы №2 (α и β, %)

Таблица 3.1

	(α и р, %)											
$N_{\underline{0}}$	Интервал времени											
вар	1		2	2	3				4	5	6	5
	α	β	α	β	α	β	α	β	α	β	α	β
1	30	20	40	30	70	60	20	15	30	20	50	40
2	40	20	20	15	30	20	70	50	30	25	40	35
3	20	10	25	10	70	60	30	25	80	50	70	60
4	60	40	20	10	30	25	70	55	70	40	60	30
5	30	15	70	50	30	20	60	45	60	35	50	30
6	50	30	80	60	80	60	80	55	50	40	60	50
7	30	20	80	40	60	40	60	30	80	50	80	60
8	40	20	70	60	70	50	60	40	30	20	80	50
9	50	25	30	20	50	35	60	40	70	60	20	30
10	80	60	20	15	40	10	50	40	70	60	50	30
11	30	20	50	40	30	20	70	50	30	20	80	60
12	70	50	40	30	80	60	70	40	80	45	25	20
13	80	50	50	30	70	60	60	35	30	25	70	45
14	75	60	20	10	60	30	40	35	60	55	50	30
15	70	40	50	40	70	35	50	40	30	20	50	15
16	60	50	30	10	30	20	80	60	70	65	80	40
17	50	30	90	70	30	20	20	15	90	30	30	25
18	40	25	30	25	40	20	50	30	40	35	60	50
19	30	10	70	40	75	35	40	20	50	40	60	30
20	20	10	65	35	60	30	70	50	50	20	80	50

4 УПРАВЛЕНИЕ РЕАКТИВНОЙ МОЩНОСТЬЮ В УЗЛЕ НАГРУЗКИ С СИНХРОННЫМИ ДВИГАТЕЛЯМИ

Теоретические сведения

Пусть группа из n синхронных двигателей (СД) подключена к шинам с реактивной нагрузкой $Q_{\rm H}$ (см. рис. 4.1). Определим значения реактивных мощностей каждого из (СД), при которых из сети потребляется экономическое значение реактивной мощности $Q_{\rm 3}$ и при этом обеспечивается минимум потерь активной мощности в СД на компенсацию реактивной мощности.

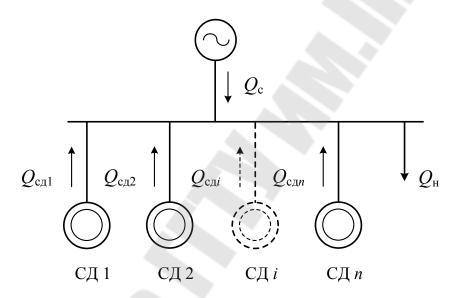


Рис. 4.1. Схема узла сети с синхронной и асинхронной нагрузкой.

Суммарные потери в группе из n синхронных двигателей, кВт:

$$\Delta P_{\rm c,m}^{\rm cym} = \sum_{i}^{n} \left[\alpha_{i}^{2} \cdot A_{i} + \alpha_{i} \cdot B_{i} + C_{i} \right]$$
 (4.1)

где α_i – коэффициент загрузки по реактивной мощности i-го СД, квар; A_i , B_i , C_i – квадратичная, линейная и постоянная составляющие потерь активной мощности в i-м СД, кВт (см. табл. 4.1);

Таблица 4.1

Справочные	данные по	показателям	потерь	в СЛ
Chipubo inibio	Accident in	110114541 0017111	110102	

No	Тип двигателя	А, кВт	В, кВт
1	СТД-1000	3,99	3,39
2	СТД-1250	3,93	3,54
3	СТД-1600	4,93	4,13
4	СТД-2000	5,94	5,48
5	СТД-2500	6,74	5,53
6	СТД-3200	7,87	6,94
7	СТД-4000	10	8,99
8	СТД-5000	11,9	10,5
9	СТД-6300	11,6	10,3
0	СТД-8000	15	12,5

Оптимальные коэффициенты загрузки по реактивной мощности синхронных двигателей α^{onm}_{i} , при которых потери (4.1) будут минимальны:

$$\alpha_i^{\text{OHT}} = \left(\frac{\Delta Q + \sum d_i \cdot \text{tg}\delta_{\text{cg}i}}{\sum d_i} - \text{tg}\delta_{\text{cg}i}\right) \cdot \frac{d_i}{Q_{\text{HOM}_i}}$$
(4.2)

при

$$d_i = \frac{Q_{\text{HOM}_i}^2}{2 \cdot A_i}; \quad tg\delta_{\text{CA}_i} = \frac{B_i}{Q_{\text{HOM}_i}}, \tag{4.3}$$

где d_i – вспомогательный коэффициент, квар 2 /кВт;

 $\operatorname{tg}\delta_{\scriptscriptstyle{\operatorname{cn}}i}$ – тангенс угла диэлектрических потерь в i-м СД, кВт/квар;

 ΔQ — небаланс между заданным экономическим значением реактивной мощности $Q_{_{9}}$ и фактической реактивной нагрузкой $Q_{_{\rm H}}$, квар:

$$\Delta Q = Q_{\rm H} - Q_{\rm a}. \tag{4.4}$$

Оптимальные реактивные мощности $Q_{\rm cd}^{\rm ont}$ определяются как

$$Q_{\text{с}_{\mathcal{I}_{i}}}^{\text{опт}} = \alpha_{i}^{\text{опт}} \cdot Q_{\text{ном}i}, \tag{4.5}$$

где $Q_{{\scriptscriptstyle {
m HOM}}i}$ – номинальная реактивная мощность i-го СД, квар.

Если в результате расчёта оптимальные реактивные мощности некоторых СД окажутся отрицательными $Q_{\rm cd}^{\rm ont} < 0$, то необходимо принять для таких СД $Q_{\rm cd}^{\rm ont} = 0$ и повторить расчёт без учета этих двигателей.

Задача № 4.1

Рассчитать оптимальный режим компенсации реактивной мощности по критерию минимума потерь мощности в узле нагрузки с синхронными СТД-800, тремя двигателями СТД-1600, СТД-2500. В исходном режиме из энергосистемы потребляется реактивная мощность $Q_c = 300$ квар, экономическое $Q_{2} = 200$ квар. мощности реактивной Коэффициенты значение загрузки СД по реактивной мощности в исходном режиме $\alpha_1 = 0.6$, $\alpha_2 = 0.4$, $\alpha_3 = 0.3$. Для всех СД принять номинальное значение $\cos \varphi_{H} = 0.9$. По результатам расчётов оценить эффективность оптимизации.

Решение.

1. Определяем номинальную и фактическую реактивную мощность СД с учетом коэффициента загрузки α:

$$Q_{_{\mathrm{HOM}i}} = P_{_{\mathrm{HOM}i}} \cdot \mathrm{tg} \phi_{_{\mathrm{H}}};$$
 $Q_{_{\mathrm{C}\mathrm{Z}i}} = lpha_{_i} \cdot Q_{_{\mathrm{HOM}i}}.$

$$Q_{\text{ном1}} = P_{\text{ном1}} \cdot \text{tg}\phi_{\text{н}} = 800 \cdot \text{tg}(\text{arccos}\phi_{\text{н}}) = 800 \cdot 0,484 = 387,2$$
 квар, $Q_{\text{сд1}} = \alpha_{\text{1}} \cdot Q_{\text{ном1}} = 0,6 \cdot 387,2 = 232,32$ квар;

для СД-2
$$Q_{_{\mathrm{HOM2}}} = P_{_{\mathrm{HOM2}}} \cdot \mathrm{tg} \phi_{_{\mathrm{H}}} = 1600 \cdot \mathrm{tg} (\mathrm{arccos} \phi_{_{\mathrm{H}}}) = 1600 \cdot 0,484 = 774,4 \ \mathrm{kBap},$$

$$Q_{_{\mathrm{CД2}}} = \alpha_{_{2}} \cdot Q_{_{\mathrm{HOM2}}} = 0,4 \cdot 774,4 = 309,76 \ \mathrm{kBap};$$

для СД-3

$$Q_{{}_{\text{НОМ}3}} = P_{{}_{\text{НОМ}3}} \cdot \text{tg}\phi_{{}_{\text{H}}} = 2500 \cdot \text{tg}(\text{arccos}\phi_{{}_{\text{H}}}) = 2500 \cdot 0,484 = 1210$$
 квар, $Q_{{}_{\text{СД}3}} = \alpha_{{}_{3}} \cdot Q_{{}_{\text{НОМ}3}} = 0,3 \cdot 1210 = 363$ квар.

2. Для оценки эффективности оптимизации по выражению (4.1) определим потери мощности в каждом синхронном двигателе в исходном режиме и суммарные потери $\Delta P_{\rm c, T}^{\rm cym}$. Так как необходимо определить *изменение потерь мощности*, а не их абсолютное значение, то постоянными потерями C в синхронных двигателях пренебрегаем, т.е. C=0. Потери мощности в СД-1 – СД-3:

$$\begin{split} &\Delta P_{\text{cm1}} = \alpha_{\text{1}}^{\ 2} \cdot A_{\text{1}} + \alpha_{\text{1}} \cdot B_{\text{1}} = 0,6^2 \cdot 3,52 + 0,6 \cdot 2,91 = 3,013 \text{ kBt;} \\ &\Delta P_{\text{cm2}} = \alpha_{\text{2}}^{\ 2} \cdot A_{\text{2}} + \alpha_{\text{2}} \cdot B_{\text{2}} = 0,4^2 \cdot 4,93 + 0,4 \cdot 4,13 = 2,441 \text{ kBt;} \\ &\Delta P_{\text{cm3}} = \alpha_{\text{3}}^{\ 2} \cdot A_{\text{3}} + \alpha_{\text{3}} \cdot B_{\text{3}} = 0,3^2 \cdot 6,74 + 0,3 \cdot 5,53 = 2,266 \text{ kBt;} \end{split}$$

Суммарные потери мощности в синхронных двигателях в исходном режиме:

$$\Delta P_{\text{c}_{\text{T}}}^{\text{MCX}} = \Delta P_{\text{c}_{\text{T}}1} + \Delta P_{\text{c}_{\text{T}}2} + \Delta P_{\text{c}_{\text{T}}3} = 3,013 + 2,441 + 2,266 = 7,72 \text{ kBt.}$$

3. Определяем значение реактивной мощности нагрузки $Q_{\rm H}$. Из условия баланса реактивных мощностей в узле в соответствии со схемой узла нагрузки (рис. 4.1):

$$Q_{\rm H} = Q_{\rm c} + \sum Q_{\rm cg} = 300 + (232,32 + 309,76 + 363,0) = 1205,08$$
 квар.

4. Определяем небаланс по реактивной мощности ΔQ в узле нагрузки:

$$\Delta Q = Q_{\rm H} - Q_{\rm h} = 1205,08 - 200 = 1005,08$$
 квар

5. Рассчитываем вспомогательные коэффициенты d_i и $tg\delta_{{
m c}{}_{{
m c}{}_{{
m d}}}}$: для СД-1

$$d_1 = \frac{Q_{\text{ном1}}^2}{2 \cdot A_1} = \frac{387, 2^2}{2 \cdot 3,52} = 21296 \text{ квар}^2/\text{кВт,}$$

$$tg\delta_{\text{сд1}} = \frac{B_1}{Q_{\text{ном1}}} = \frac{2,91}{387,2} = 0,0075 \text{ кВт/квар;}$$

для СД-2

$$d_2 = \frac{Q_{\text{ном2}}^2}{2 \cdot A_2} = \frac{774,4^2}{2 \cdot 4,93} = 60821 \text{ квар}^2/\text{кВт,}$$

$$tg\delta_{\text{сд2}} = \frac{B_2}{Q_{\text{ном2}}} = \frac{4,13}{774,4} = 0,0053 \text{ кВт/квар;}$$

для СД-3

$$d_3 = \frac{Q_{\text{ном3}}^2}{2 \cdot A_3} = \frac{1210^2}{2 \cdot 6,74} = 108613 \text{ квар}^2/\text{кВт,}$$

$$tg\delta_{\text{сд3}} = \frac{B_3}{Q_{\text{ном3}}} = \frac{5,53}{1210} = 0,0046 \text{ кВт/квар;}$$

6. Определяем оптимальные коэффициенты загрузки синхронных двигателей по реактивной мощности $\alpha_i^{\text{опт}}$, обеспечивающие минимум потерь в двигателях и поддержание $Q_{\mathfrak{p}}$.

Оптимальный коэффициент загрузки по реактивной мощности для СД-1:

$$\begin{split} &\alpha_{1}^{\text{ont}} = \left(\frac{\Delta Q + \sum d_{i} \cdot \text{tg}\delta_{\text{c,d}i}}{\sum d_{i}} - \text{tg}\delta_{\text{c,d}1}\right) \cdot \frac{d_{1}}{Q_{\text{hom}_{1}}} = \\ &= \left(\frac{1005,08 + \left(21296 \cdot 0,0075 + 60821 \cdot 0,0053 + 108613 \cdot 0,0046\right)}{21296 + 60821 + 108613} - 0,0075\right) \times \\ &\times \frac{21296}{387,2} = \left(0,01042 - 0,0075\right) \cdot \frac{21296}{387,2} = 0,161; \\ &\alpha_{2}^{\text{ont}} = \left(0,01042 - 0,0053\right) \cdot \frac{60821}{774,4} = 0,402; \end{split}$$

$$\alpha_3^{\text{OIIT}} = (0.01042 - 0.0046) \cdot \frac{108613}{1210} = 0.522.$$

Определяем по выражению (4.5) оптимальные реактивные мощности $Q_{\text{сn}i}^{\text{опт}}$:

для СД-1
$$Q_{\rm cд1}^{\rm ont} = \alpha_1^{\rm ont} \cdot Q_{\rm hom1} = 0,161 \cdot 387,2 = 62,34$$
 квар; для СД-2 $Q_{\rm cд2}^{\rm ont} = \alpha_2^{\rm ont} \cdot Q_{\rm hom2} = 0,402 \cdot 774,4 = 311,31$ квар; для СД-3 $Q_{\rm cд3}^{\rm ont} = \alpha_3^{\rm ont} \cdot Q_{\rm hom3} = 0,522 \cdot 1210 = 631,62$ квар.

Для проверки правильности расчётов сравним сумму оптимальных реактивных мощностей двигателей и величину небаланса ΔQ , который они должны компенсировать:

 $\Delta Q = \sum Q_{\text{сд}i}^{\text{опт}} = 62,34 + 311,31 + 631,62 = 1005,27$ квар $\approx 1005,08$ – верно, расчёт выполнен правильно.

Рассчитаем значение реактивной мощности $Q_{\rm c}$ в оптимальном режиме:

$$Q_{\rm c}=Q_{\rm h}-\sum Q_{{
m c}{\it n}i}^{{
m ont}}=$$
1205,08 $-$ 1005,27 $=$ 199,81 квар т.е. $Q_{\rm c}pprox Q_{
m o}$, что и требовалось обеспечить.

Аналогично п. 2 определяем суммарные потери мощности в СД $\Delta P_{\rm cn}^{\rm ont}$ в оптимальном (по критерию минимума потерь) режиме:

$$\begin{split} & \Delta P_{\text{cg1}}^{\text{oiit}} = \left(\alpha_{1}^{\text{oiit}}\right)^{2} \cdot A_{1} + \alpha_{1}^{\text{oiit}} \cdot B_{1} = 0,161^{2} \cdot 3,52 + 0,161 \cdot 2,91 = 0,56 \text{ kBt}; \\ & \Delta P_{\text{cg2}} = \left(\alpha_{1}^{\text{oiit}}\right)^{2} \cdot A_{2} + \alpha_{1}^{\text{oiit}} \cdot B_{2} = 0,402^{2} \cdot 4,93 + 0,402 \cdot 4,13 = 2,457 \text{ kBt}; \\ & \Delta P_{\text{cg3}} = \left(\alpha_{3}^{\text{oiit}}\right)^{2} \cdot A_{3} + \alpha_{3}^{\text{oiit}} \cdot B_{3} = 0,522^{2} \cdot 6,74 + 0,522 \cdot 5,53 = 4,723 \text{ kBt}; \end{split}$$

Суммарные потери мощности в синхронных двигателях в оптимальном режиме

$$\Delta P_{\rm c,1}^{\rm max} = \Delta P_{\rm c,1}^{\rm ont} + \Delta P_{\rm c,1}^{\rm ont} + \Delta P_{\rm c,2}^{\rm ont} = 7,74~{\rm kBt}.$$

Задание для самостоятельной работы №3

К шинам узла нагрузки подключены три синхронных электродвигателя (СД) и некоторая реактивная нагрузка $Q_{\rm H}$. Известны параметры исходного режима электропотребления: коэффициенты загрузки по реактивной мощности СД а, значение реактивной мощности потребляемой из сети $Q_{\rm c}$, а также экономическое значение реактивной мощности Q_3 . Значения коэффициентов мощности для синхронных всех двигателей принимаются $\cos \phi_{\text{ном}} = 0.9$.

Необходимо найти:

- 1. Оптимальные коэффициенты загрузки СД по реактивной мощности по критерию минимума потерь в узле нагрузки.
- 2. Потери активной мощности в СД в исходном и оптимальном режимах.

Таблица 4.2 Исходные данные задания для самостоятельной работы №3

	не задании дли	Camocionic	JIBHOH PAOOTBI	
№ ЭД из табл.				
4.1	α	$Q_{\mathfrak{I}}$, квар	$Q_{ m c}$, квар	
1	0,1			
3	0,3	300	200	
7	0,7			
2	0,2			
3	0,3	200	250	
8	0,8			
3	0,3			
4	0,4	250	340	
9	0,9			
4	0,4			
5	0,5	400	450	
6	0,6			
1	0,1			
4	0,4	150	170	
5	0,5			
1	0,1			
6	0,6	200	240	
7	0,7			
2	0,2			
4	0,4	300	270	
7	0,7			
	№ ЭД из табл. 4.1 1 3 7 2 3 8 3 4 9 4 5 6 1 4 5 1 6 7 2 4	№ ЭД из табл. 4.1	4.1 α Q₃, квар 1 0,1 3 0,3 300 7 0,7 2 0,2 3 0,3 200 8 0,8 3 0,3 250 9 0,9 4 0,4 5 5 0,5 400 6 0,6 1 5 0,5 1 1 0,1 1 4 0,4 150 5 0,5 200 7 0,7 2 2 0,2 300	

Продолжение таблицы 4.2

	T			Прос
Вариант	№ ЭД из табл. 5.1	α	$Q_{\scriptscriptstyle 9}$	$Q_{\rm c}$
	1	0,1		
8	8	0,8	350	200
	0	0,3		
	2	0,2		
9	5	0,5	200	150
	0	0,4		
	4	0,4		
10	7	0,7	300	360
	0	0,2		
	1	0,3		
11	3	0,5	100	170
	0	0,6		
	2	0,2		
12	5	0,5	350	250
	8	0,8		
	1	0,1	7//	
13	3	0,3	450	100
	9	0,9		
14	1	0,1	_	
	5	0,5	200	140
	0	0,6	200 140	
	1	0,1		
15	2	0,2	250	200
	5	0,5		
	4	0,4		
16	6	0,6	400	300
	8	0,8		
	2	0,4		
17	3 7	0,8	200	300
		0,2		
	3	0,3		
18	4	0,7	100	200
	8	0,5		
4	3	0,8		
19	7	0,4	200	450
	0	0,2		
	4	0,5		
20	5	0,2	200	350
	9	0,5		

5 ОПТИМИЗАЦИЯ РЕЖИМОВ РАБОТЫ ТРАНСФОРМАТОРНОЙ ПОДСТАНЦИИ

Теоретические сведения

Потери мощности в трансформаторах определяются по следующим выражениям:

$$\Delta P_{\mathrm{T}} = \frac{1}{n} \cdot k_{_{3}}^{2} \cdot \Delta P_{_{K}} + n \cdot \Delta P_{_{X}} = \frac{1}{n} \cdot \left(\frac{S}{S_{_{\mathrm{H}}}}\right)^{2} \cdot \Delta P_{_{K}} + n \cdot \Delta P_{_{X}}; \tag{5.1}$$

$$\Delta Q_{\mathrm{T}} = \frac{I_{\mathrm{x}} \cdot S_{\mathrm{H}}}{100} \cdot n + \frac{1}{n} \cdot \frac{U_{\mathrm{K}}}{100} \cdot \frac{S^{2}}{S_{\mathrm{H}}}.$$
 (5.2)

где $S_{_{\rm H}}$ – номинальная мощность трансформатора, кВ \square A;

S – мощность нагрузки, кВ \square A;

 $k_{_{\scriptscriptstyle 3}}$ – коэффициент загрузки трансформатора;

 ΔP_{κ} – потери короткого замыкания, кВт;

 $\Delta P_{\rm x}$ – потери активной мощности холостого хода, кВт;

 U_{κ} – напряжение короткого замыкания, %;

 $I_{\rm x}$ – ток холостого хода, %;

n – количество трансформаторов, работающих параллельно.

Потери активной электроэнергии в трансформаторах рассчитываются по формуле:

$$\Delta W_{_{\mathrm{T}}} = \frac{1}{n} \left(\frac{S_{_{\mathrm{p}}}}{S_{_{\mathrm{H}}}} \right)^{2} \Delta P_{_{\mathrm{K}}} \cdot \tau + n \cdot \Delta P_{_{\mathrm{X}}} \cdot T_{_{\Gamma}}, \tag{5.3}$$

где т – время максимальных потерь, ч;

 $T_{_{\Gamma}}$ – продолжительность работы трансформаторов в течение года, ч.

Определение диапазона нагрузки потребителя, при котором целесообразна работа одного (двух) трансформаторов выполняется, исходя из равенства:

$$\left(\frac{S}{S_{_{\rm H}}}\right)^2 \cdot \Delta P_{_{\rm K}} + \Delta P_{_{\rm X}} = \frac{1}{2} \left(\frac{S}{S_{_{\rm H}}}\right)^2 \cdot \Delta P_{_{\rm K}} + 2 \cdot \Delta P_{_{\rm X}}, \tag{5.4}$$

$$S_{r} = S_{H} \cdot \sqrt{\frac{2 \cdot \Delta P_{x}}{\Delta P_{K}}}, \qquad (5.5)$$

где S_{Γ} – граничная мощность нагрузки потребителя электроэнергии.

При $S > S_{_\Gamma}$ целесообразна работа 2-х трансформаторов, если же $S < S_{_\Gamma}$, то следует использовать в работе один трансформатор.

Задача № 5.1

На трансформаторной подстанции установлены два трансформатора ТМ-100/10, работающие на общую нагрузку. Трансформаторы имеют следующие параметры: $S_{_{\rm H}}=100~{\rm kB\cdot A},$ $\Delta P_{_{\rm X}}=0.36~{\rm kBt},~\Delta P_{_{\rm K}}=1.97~{\rm kBt},~U_{_{\rm BH}}=10~{\rm kB},~U_{_{\rm HH}}=0.4~{\rm kB}.$

Определить нагрузку ТП, при которой целесообразно отключить один трансформатор с целью снижения суммарных потерь мощности.

Решение.

Граничная мощность нагрузки потребителя электроэнергии по формуле (5.5):

$$S_{_{\Gamma}} = S_{_{\rm H}} \cdot \sqrt{\frac{2 \cdot \Delta P_{_{\rm X}}}{\Delta P_{_{\rm K}}}} = 100 \cdot \sqrt{\frac{2 \cdot 0.36}{1.97}} = 60.46 \text{ kB·A}.$$

Таким образом, при нагрузке трансформаторной подстанции, менее 60,46 кВ·А, целесообразна работа одного трансформатора подстанции. При нагрузке потребителя, более 60,46 кВ·А, целесообразна работа двух трансформаторов подстанции.

Задание для самостоятельной работы №4

Для двухтрансформаторной подстанции цеха промышленного предприятия определить потери активной и реактивной мощности и годовые потери активной энергии в трансформаторах. Определить границу нагрузки ТП, при которой целесообразно отключить один трансформатор. Принять непрерывную работу трансформаторов в течение года. Расчётная мощность нагрузки цеха — $S_{\rm p}$.

Построить зависимость потерь мощности в двухтрансформаторной подстанции от её загрузки для двух случаев:

- а) в работе один трансформатор;
- б) в работе оба трансформатора.

Исходные данные приведены в таблице 5.1.

Таблица 5.1. Исходные данные задания для самостоятельной работы №4

№ варианта	1	2	3	4	5	6	7	8	9	10
Тип трансф.	TM3-250	TM3-400	TM3-630	TM3-1000	TM3-1600	TM3-2500	ТСЗЛ-630	ТСЗЛ-1000	ТСЗЛ-1600	ТСЗЛ-2500
$U_{ m BH}/U_{ m HH}$, к ${ m B}$	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4
S_{p} , к $B \square A$	170	280	420	650	1100	1800	440	670	1200	2000
$T_{_{ m M}}$, ч	3000	3200	3500	4000	4400	4700	3800	4500	4800	4900
№ варианта	11	12	13	14	15	16	17	18	19	20
Тип трансф.	TM3-250	TM3-400	TM3-630	TM3-1000	TM3-1600	TM3-2500	ТСЗЛ-630	ТСЗЛ-1000	ТСЗЛ-1600	ТСЗЛ-2500
$U_{ m BH}/U_{ m HH}$, к ${ m B}$	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4	10/0,4
$S_{ m p}$, к ${ m B}\Box{ m A}$	140	210	350	570	880	1200	400	310	930	1500
$T_{_{ m M}}$, ч	3300	3500	3700	3900	4300	4800	3300	4000	4700	5000

ЛИТЕРАТУРА

- 1. Сычёв, А.В. Управление электропотреблением: курс лекций / А.В. Сычёв. Гомель: УО ГГТУ им. П.О. Сухого, 2006. 101 с.
- 2. Сычёв А.В. Управление электропотреблением: практическое руководство к практическим занятиям по одноименному курсу для студентов специальности 1-43 01 03 «Электроснабжение» / А.В. Сычёв. Гомель: УО ГГТУ им. П.О. Сухого, 2005. 33 с.
- 3. Прокопчик, В.В. Повышение качества электроснабжения и эффективности работы электрооборудования предприятий с непрерывными технологическими процессами / В.В. Прокопчик. Гомель: ГГТУ им. П.О. Сухого, 2002. 283 с.
- 4. Михайлов, В.В. Тарифы и режимы электропотребления / В.В. Михайлов. Москва: Энергоатомиздат, 1986. 214 с.
- 5. Инструкция по применению двухставочного и двухставочнодифференцированного СУТОК тарифов на ПО зонам активную электрическую энергию с основной платой мощность И наибольшей фактическую величину потребляемой активной мощности в часы максимальных нагрузок энергосистемы / Пост. Министерства энергетики РБ 16.10.2002 №17.
- 6. О внесении изменений и дополнений в Инструкцию по применению двухставочного и двухставочно-дифференцированного по зонам суток тарифов на активную электрическую мощность и энергию с основной платой за фактическую величину наибольшей потребляемой активной мощности в часы максимальных нагрузок энергосистемы / Пост. Министерства энергетики РБ 28.02.2007 №4.

СОДЕРЖАНИЕ

1. Активное управление электропотреблением	3
2. Тарифы на электроэнергию и управление	
электропотреблением	8
3. Управление реактивной мощностью в узле нагрузки с	
батареями статических конденсаторов	11
4. Управление реактивной мощностью в узле нагрузки с	
синхронными двигателями	15
5. Определение потерь мощности и электроэнергии в	
элементах системы электроснабжения	23
Литература	27

УПРАВЛЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТЬЮ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ

Практикум по одноименной дисциплине для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» дневной формы обучения

Составители: **Алферова** Тамара Викторовна **Пухальская** Ольга Юрьевна

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 31.03.21.

Рег. № 57E.

http://www.gstu.by