Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

УТВЕРЖДАЮ
Первый проректор ГГТУ
им. П.О. Сухого
_____ О.Д. Асенчик

07. 07. 2020
Регистрационный № УД-41-43 /уч.

ЭЛЕМЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-53 01 05 «Автоматизированные электроприводы»

Учебная программа составлена на основе образовательного стандарта высшего образования первой ступени ОСВО 1-53 01 05 - 2019, учебных планов учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» по специальности 1-53 01 05 «Автоматизированные электроприводы» № I 53-1-09/уч. от 06.02.2019 г. и № I 53-1-21/уч. от 06.02.2019 г.

СОСТАВИТЕЛИ:

М.Н. Погуляев, доцент кафедры «Автоматизированный электропривод» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого», кандидат технических наук, доцент

РЕЦЕНЗЕНТЫ:

А.Л. Аникейчик, заместитель главного конструктора ОАО «СтанкоГомель», Ю.А. Рудченко, доцент кафедры «Электроснабжение» УО «Гомельский государственный технический университет им. П.О.Сухого», кандидат технических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Автоматизированный электропривод» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 12 от « $\underline{25}$ » $\underline{05}$ $\underline{2020}$ г.);

Научно-методическим советом факультета автоматизированных и информационных систем учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

(протокол № $\underline{10}$ от « $\underline{01}$ » $\underline{06}$ $\underline{2020}$ г.);

Научно-методическим советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 5 от «26 » 06 2020 г.)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Вступление

Дисциплина «Элементы автоматизированного электропривода» входит в государственный компонент цикла общепрофессиональных и специальных дисциплин подготовки специалистов по специальности 1–53 01 05 «Автоматизированные электроприводы.

Цель и задачи учебной дисциплины

Целью курса «Элементы автоматизированного электропривода» (ЭАЭП) является получение студентами знаний о статических и динамических свойствах силовых и управляющих элементов, являющихся составными частями автоматизированного электропривода.

Основной задачей изучения дисциплины является овладение теоретическими знаниями и практическими навыками по расчету параметров и характеристик элементов автоматизированного электропривода, конструктивным и схемным особенностям силовых и управляющих элементов, правильному выбору серийных элементов для различных систем автоматизированного электропривода.

Место учебной дисциплины в системе подготовки специалистов, связи с другими учебными дисциплинами

Дисциплина базируется на знаниях, полученных при изучении таких дисциплин как:

- теоретические основы электротехники;
- электроника;
- силовая преобразовательная техника.

Знания и умения, полученные при изучении данной дисциплины, необходимы для освоения последующих специальных дисциплин и дисциплин специализации, связанных с проектированием, моделированием, расчетом систем электропривода и автоматизации.

Требования к освоению учебной дисциплины и компетентности специалиста

В результате изучения дисциплины будущий специалист должен:

знать:

- устройство и принцип действия силовых и управляющих элементов автоматизированного электропривода;
- основные типы датчиков и схемы их подключения к системе управления;
- характеристики управления, внешние характеристики элементов АЭП;

математическое описание элементов в форме уравнений и передаточных функций;

уметь:

- рассчитать и выбрать технические средства информационноизмерительной подсистемы промышленного электропривода;
- описать взаимосвязь входных и выходных величин элемента, составить его функциональную и структурную схемы;
 - рассчитать статические и динамические характеристики элементов.

владеть методами расчета:

- статических и динамических характеристик элементов АЭП;
- режимов работы электромеханических и механических систем электропривода.

Изучение и освоение дисциплины «Элементы автоматизированного электропривода» должно обеспечить формирование у будущего специалиста необходимых академических и профессиональных компетенций, таких как:

- умение работать с научной, технической и патентной литературой,
- —умение применять базовые научно-теоретические знания для решения для решения теоретических и практических задач;
- владение системным и сравнительным анализом, исследовательскими навыками;
 - владение междисциплинарным подходом при решении проблем;
- владение навыками работы с компьютером и другими техническими устройствами;
- умение определять энергетические и технико-экономические показатели проектных решений;
- умение разрабатывать техническую документацию на проектируемый автоматизированный электропривод и систему автоматизации;
- умение использовать теоретические основы и прикладные методы программирования с использованием компьютерной техники, вычислительные методы и моделирование при решении проектно-конструкторских задач;

Общее количество часов и количество аудиторных часов

Для специальности 1–53 01 05 «Автоматизированные электроприводы» дневной формы обучения учебная программа дисциплины рассчитана на 136 часов, в том числе 84 часа аудиторных занятий. Трудоёмкость дисциплины 3,0 зачетные единицы.

Форма получения высшего образования: дневная.

Распределение аудиторного времени по видам занятий, курсам и семестрам

Форма обучения	Дневная
Форма обучения	
Курс	3
Семестр	5
Лекции (часов)	51
Практические (семинарские) занятия (часов)	17
Лабораторные занятия (часов)	16
Всего аудиторных (часов)	84

Формы текущей аттестации по учебной дисциплине

Экзамен	5 семестр
Зачет	_
Тестирование	_
Курсовая работа	5 семестр

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Тема 1. Понятие и классификация элементов автоматизированного электропривода.

Понятие и классификация элементов систем автоматики, их место в системах автоматизированного электропривода (АЭП). Функциональные схемы, параметры и характеристики силовых и управляющих элементов АЭП. Основные координаты элементов Входное и выходное сопротивления элементов

Teма 2. Электромагнитные процессы и характеристики систем электропривода постоянного тока с полупроводниковыми преобразователями.

Конструктивные и схемные особенности тиристорных преобразователей напряжения (ТП) переменного тока в постоянный промышленных серий. Силовые схемы нереверсивных и реверсивных преобразователей. Схемы и основные характеристики.

Системы импульсно-фазового управления (СИФУ) трехфазных ТП. Типовые блоки СИФУ. Функциональные схемы типовых трехфазных ТП

Внешние характеристики ТП. Динамические свойства ТП как звена систем автоматического регулирования. Структурные схемы и передаточные функции преобразователя. Предельная полоса пропускания ТП.

Индуктивно-емкостные преобразователи тока. Назначение и применение. Схемы и основные характеристики.

Тема 3. Электромагнитные процессы и характеристики систем электропривода с тиристорными и транзисторными импульсными преобразователями постоянного тока.

Широтно-импульсные преобразователи постоянного тока. Назначение и применение. Схемы и основные характеристики широтно-импульсных преобразователей постоянного тока.

Тема 4. Электромагнитные процессы и характеристики систем электропривода постоянного тока с тиристорными преобразователи переменного тока.

Тиристорные регуляторы напряжения переменного тока (ТРН). Назначение, схемы, режимы работы. Характеристики управления тиристорными регуляторами напряжения переменного тока

Тема 5. Электромагнитные процессы и характеристики систем электропривода переменного тока с полупроводниковыми преобразователями частоты.

Преобразователи частоты (ПЧ) с автономными инверторами напряжения и тока. Основные схемы и принцип действия. Параметры, характеризующие ПЧ. Структурные схемы каналов управления напряжением (током) и частотой. Силовые схемы трехфазных автономных инверторов

Непосредственные преобразователи частоты. Схемы, принцип действия, характеристики.

Тема 6. Логические и цифровые элементы управления дискретного действия.

Типовые логические элементы и их функции. Типовые цифровые узлы: триггеры, дешифраторы, шифраторы, счетчики, регистры и др.

Тема 7. Задающие и согласующие элементы электропривода

Операционные усилители (ОУ), устройство, принцип действия, основные параметры. Функциональные устройства на основе ОУ.

Унифицированные блоки управления в системах управления. Регуляторы координат в электроприводе. Схемы и характеристики регуляторов.

Задатчики интенсивности (ЗИ). Назначение, схемы и диаграммы работы аналогового и цифрового ЗИ. Фазовые детекторы (ФД).

Схема замещения и диаграммы работы двухполупериодного ФД Схема интегрального ФД.

Цифроаналоговые и аналогоцифровые преобразователи. Основные схемы, характеристики и особенности работы

Тема 8. Датчики регулируемых координат в электроприводе

Классификация и общая характеристика датчиков в электроприводе. Датчики механических координат в электроприводе. Датчики угла и рассогласования на сельсинах и вращающихся трансформаторах (ВТ). Цифровой датчик угла поворота. Датчики скорости на основе тахогенераторов постоянного и переменного токов.

Цифровые датчики скорости (ЦДС). Функциональная схема цифрового датчика. Диаграммы работы ЦДС на основе фотоэлектрического кодового диска

Тема 9. Датчики электрических координат

Структурные схемы аналоговых и цифровых датчиков напряжения и тока. Принципы построения датчиков ЭДС и мощности. Датчики проводимости вентилей. Схема и принцип действия дискретного датчика проводимости вентилей преобразователя.

ХАРАКТЕРИСТИКА КУРСОВОЙ РАБОТЫ

Главной целью курсового проектирования является получение инженерных навыков расчета и выбора схемных реализаций элементов автоматизированного электропривода. Для проектирования предлагается 10 различных устройств, являющимися элементами АЭП. При его выполнении требуется:

- составить функциональную схему устройства;
- произвести расчет основных узлов и блоков устройства;
- разработать принципиальную электрическую схему устройства, рассчитать и выбрать его элементы;
 - разработать схему цифровой индикации требуемого параметра;
 - построить временные диаграммы работы устройства;
 - описать работу схемы в различных режимах её работы.

Исходными данными, определяющими различные варианты проекта, являются:

- серия используемых микросхем;
- тип применяемых цифровых индикаторов;
- диапазон изменения входных параметров;
- выходные параметры рассчитываемых устройств;
- параметры питающей сети.

Курсовая работа заканчивается написанием пояснительной записки, в которой должны быть обоснованы и описаны все принятые решения, приведены структурная и принципиальная схемы разработанного устройства, показаны диаграммы его работы.

Примерный объем курсовой работы $-20\div30$ страниц, количество часов на выполнение в соответствии с учебным планом университета по специальности составляет 40 часов, трудоёмкость 1,0 зачетная единица.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ «ЭЛЕМЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА»

(дневная форма получения образования)

темы			Количество аудиторных часов				COB	ЯП
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР*	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Понятие и классификация элементов систем автоматики, их место в системах автоматизированного электропривода (АЭП).	1	~		100			Экза- мен
	Функциональные схемы, параметры и характеристики силовых и управляющих элементов. Основные координаты элементов Входное и выходное сопротивления элементов	2	2					Экза- мен
2	Конструктивные и схемные особенности тиристорных преобразователей напряжения (ТП) переменного тока в постоянный промышленных серий. Классификация тиристорных преобразователей	2						Экза- мен
	Силовые схемы нереверсивных и реверсивных преобразователей. Схемы и основные характеристики.	2						Экза- мен
	Системы импульсно-фазового управления (СИФУ) трехфазных ТП. Типовые блоки СИФУ. Функциональные схемы типовых трехфазных ТП	2	2		2			Защи-
	Внешние характеристики ТП. Динамические свойства ТП как звена систем автоматического регулирования. Структурные схемы и передаточные функции преобразователя. Предельная полоса пропускания ТП.	2	2					Защи- та л.р.
K	Индуктивно-емкостные преобразователи тока. Назначение и применение. Схемы и основные характеристики	2	2					Экза- мен
3	Широтно-импульсные преобразователи постоянного тока. Назначение и применение	2						Экза- мен

Темы		Количество аудиторных часов					асов	ЯПЯ
Номер раздела, темы	Название раздела, темы		Практические занятия	Cer	Лабораторные занятия	Иное	Количество часов УСР*	Форма контроля знаний
1	2	3	4	5	6	7	8	9
	Схемы и основные характеристики широтно-импульсных преобразователей постоянного тока	2	2		2			Защи- та л.р.
4	Тиристорные регуляторы напряжения переменного тока (ТРН). Назначение, схемы, режимы работы	2	4					Экза-
	Диаграммы выходных напряжения и тока ТРН. Характеристики управления тиристорными регуляторами напряжения переменного тока	2	2		2			Защи-та л.р.
5	Преобразователи частоты (ПЧ) с автономными инверторами напряжения и тока. Основные схемы и принцип действия	2						Экза- мен
	Параметры, характеризующие ПЧ. Структурные схемы каналов управления напряжением (током) и частотой. Силовые схемы трехфазных автономных инверторов	2						Экза- мен
	Непосредственные преобразователи частоты. Схемы, принцип действия, характеристики	2						Экза-
6	Логические и цифровые элементы управления дискретного действия. Типовые логические элементы и их функции.	2						Экза- мен
	Типовые цифровые узлы: триггеры, дешифраторы, шифраторы, счетчики, регистры и др.	2						Экза- мен
7	Операционные усилители (ОУ), устройство, принцип действия, основные параметры. Функциональные устройства на основе ОУ	2			2			Защи-та л.р.
	Унифицированные блоки управления в системах управления. Регуляторы координат в электроприводе Схемы и характеристики регуляторов	2	2		2			Защи-та л.р.
	Задатчики интенсивности (ЗИ). Назначение, схемы и диаграммы работы аналогового и цифрового ЗИ	2	2		2			Защи-та л.р.

семы	Название раздела, темы	Количество аудиторных часов				20B	ИЯ	
Номер раздела, темы		Лекции	Практические занятия	ж	Лабораторные занятия	Иное	Количество часов УСР*	Форма контроля знаний
1	2	3	4	5	6	7	8	9
	Фазовые детекторы (ФД). Схема замещения и диаграммы работы двух-полупериодного ФД. Схема интегрального ФД	2			2			Защи- та л.р.
	Цифроаналоговые и аналогоцифровые преобразователи. Основные схемы, характеристики и особенности работы	2	W ,		2			Защи-та л.р.
8	Классификация и общая характеристика датчиков в электроприводе. Датчик угла и рассогласования на сельсинах и вращающихся трансформаторах (ВТ). Цифровой датчик угла поворота	2						Экза- мен
	Датчики скорости на основе тахоге- нераторов постоянного и переменного токов.	2						Экза- мен
	Цифровые датчики скорости (ЦДС). Функциональная схема цифрового датчика. Диаграммы работы ЦДС на основе фотоэлектрического кодового диска	2	1					Экза- мен
9	Датчики электрических координат. Структурные схемы аналоговых и цифровых датчиков напряжения и тока. Принципы построения датчиков ЭДС и мощности	2						Экза- мен
	Датчики проводимости вентилей. Схема и принцип действия дискретного датчика проводимости вентилей преобразователя	2						Экза- мен
	Итого	51	17		16			

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Терехов, В.М. Элементы автоматизированного электропривода/ В.М. Терехов. Москва: Энергоатомиздат, 1987. 224 с.
- 2. Терехов, В.М. Системы управления электроприводов: учебник для студ. высш. учеб. заведений/ В.М. Терехов, О.И. Осипов; под ред. В.М. Терехова. Москва: Издательский центр «Академия», 2005. 304 с.
- 3. Симаков, Г.М. Цифровые устройства и микропроцессоры в автоматизированном электроприводе: учебное пособие/Г.М. Симаков, Ю.В. Панкрац. Новосибирск: Новосибирский государственный технический университет, 2013. 211 с. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=228924.
- 4. Греков, Э. Исследование системы автоматического управления электроприводом постоянного тока: учебное пособие / Э. Греков, В. Фатеев; Оренбургский государственный университет. Оренбург: Оренбургский государственный университет, 2011. 108 с. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=259140

Дополнительная литература

- 5. Макаров, В.Г. Проектирование цифровой системы управления автоматической линии станков: учебное пособие / В.Г. Макаров; Министерство образования и науки России, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технологический университет». Казань: Казанский научно-исследовательский технологический университет (КНИТУ), 2014. 240 с.: схем., ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=428036
- 6. Горбачев, Г.Н. Промышленная электроника: учебник для вузов/Г.Н. Горбачев, Е.Е. Чаплыгин; под ред. В.А. Лабунцова. Москва: Энергоатомиздат, 1988. 320 с.
- 7. Крупович, В.И. Справочник по проектированию электропривода и систем управления технологическими процессами: изд. 3-е, перераб. и доп /Под ред. В.И. Круповича, Ю.Г. Барыбина, М.Л. Самовера. Москва: Энергоиздат, 1982. 486 с.

Электронные учебно-методические комплексы

8. Погуляев, М. Н. Элементы автоматизированного электропривода: электронный учебно-методический комплекс дисциплины/М.Н. Погуляев. – Гомель: ГГТУ им. П.О. Сухого, 2011. – Режим доступа: elib.gstu.by/ handle /220612/1925

Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения

- 9. Элементы автоматизированного электропривода [Электронный ресурс]: метод. указания к курсовому проектированию по одноим. дисциплине для студентов специальности 1-53 01 05 «Автоматизированные электроприводы» днев. и заоч. форм обучения/М. Н. Погуляев. Гомель: ГГТУ им. П. О. Сухого, 2012. 49 с. Режим доступа: elib.gstu.by/handle/220612/2015.
- 10. Элементы автоматизированного электропривода: лабораторный практикум по одноименной дисциплине для студентов дневного и заочного отделений спец. 1-53 01 05 «Автоматизированные электроприводы»/ М.Н. Погуляев, А.В. Козлов. Гомель: ГГТУ им. П.О. Сухого, 2010. 24 с.

Программы Mathcad, Matlab Simulink, Electronics Workbench Multisim. Стенды для проведения лабораторных работ по дисциплине. Мультимедийный проектор.

Примерный перечень лабораторных занятий

- 1. Аналоговые регуляторы систем управления тиристорного преобразователями.
 - 2. Аналоговые схемы с нелинейными обратными связями.
 - 3. Преобразователи ток-напряжение и напряжение-ток.
 - 4. Преобразователи напряжения в частоту.
 - 5. Импульсные модуляторы.
 - 6. Система модулятор-демодулятор.
- 7. Изучение электрической схемы серийного тиристорного преобразователя постоянного тока.

Примерный перечень практических занятий

- 1. Определение внешних и внутренних параметров элементов, их входных и выходных сопротивлений.
 - 2. Расчет характеристик управления и коэффициентов усиления ТП.
- 3. Расчет регулировочных и внешних характеристик нереверсивных ТП в режимах непрерывного и прерывистого токов.
 - 4. Расчет параметров схем с ШИП.
 - 5. Расчет характеристик управления тиристорных регуляторов.
- 6. Расчет параметров схем с индуктивно-емкостными преобразователями тока.
 - 7. Расчет функциональных узлов на основе аналоговых усилителей.
- 8. Расчет функциональных регуляторов на основе операционных усилителей
 - 9. Расчет параметров задатчика интенсивности.
 - 10. Расчет характеристик управления тахогенераторов постоянного тока.

Примерный перечень тем для курсового проектирования

- 1. Цифровой задатчик интенсивности. Индикация выходного напряжения.
- 2. Цифровая система импульсно-фазового управления. Индикация угла отпирания.
- 3. Цифровой датчик скорости и направления. Цифровая индикация скорости и направления.
- 4. Генератор и распределитель импульсов для трехфазного АИ с углом проводимости 120. Индикация выходной частоты.
- 5. Генератор и распределитель импульсов для трехфазного. АИ с углом проводимости 180°. Индикация выходной частоты.
- 6. Цифровой датчик напряжения с гальванической развязкой цепей. Индикация выходного напряжения.
- 7. Цифровой датчик тока с гальванической развязкой цепей. Цифровая индикация тока.
- 8. Логическое переключающее устройство. Индикация включенного комплекта.
- 9. Цифровой интегрирующий регулятор. Индикация выходного напряжения.
- 10. Цифровой датчик угла поворота и направления. Цифровая индикация угла поворота и направления.

Методы (технологии) обучения

Основными методами (технологиями) обучения, отвечающими целям изучения дисциплины, являются:

- элементы проблемного обучения (проблемное изложение), реализуемое на лекционных занятиях;
- внедрение элементов научных исследований и патентного поиска при проектировании конкретного объекта, при выполнении практических заданий, а также при самостоятельной работе.

Характеристика рекомендуемых методов и технологий обучения

Теоретические лекционные занятия чередуются с практическими и лабораторными занятиями. Учебно-методическое обеспечение ориентировано на освоение студентами основ инновационных технологий, умение работать с научной и технической литературой.

Организация самостоятельной работы студентов

При изучении дисциплины рекомендуется использовать следующие формы самостоятельной работы:

– контролируемая самостоятельная работа в виде решения индивидуальных задач в аудитории во время проведения практических занятий под контролем преподавателя, в соответствии с расписанием;

управляемая самостоятельная работа, в том числе в виде выполнения индивидуальных расчетных заданий с консультациями у преподавателя.

Диагностика компетенций студента

Оценка уровня знаний студентов производится по десятибалльной шкале. Для оценки достижений студента рекомендуется использовать следующий диагностический инструментарий:

- проведение текущих контрольных опросов по отдельным темам курса с использованием модульно-рейтинговой системы;
 - отчеты по лабораторным работам с устной их защитой;
 - выступление студента на конференциях;
 - сдача экзамена по дисциплине.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Микропроцес- сорные средст- ва в автомати- зированном электроприводе	АЭП	Нет	Программу утвердить. Протокол № 12 от 25. 05. 2020 г.
Системы управления электроприво- дами	АЭП	Нет	

Зав. кафедрой АЭП

В.В. Тодарев