РАЗРАБОТКА МЕТОДОВ ТЕПЛОВОГО И КОНСТРУКТИВНОГО РАСЧЕТОВ ЭФФЕКТИВНЫХ ТЕПЛООБМЕННИКОВ С ТЕРМОСИФОНАМИ, ЗАПРАВЛЕННЫМИ ОЗОНОБЕЗОПАСНЫМИ ХЛАДАГЕНТАМИ

Т. Н. Никулина, Л. В. Романенко, О. А. Кныш, А. А. Шкробот

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. В. Шаповалов

Расчет теплообмена теплообменных аппаратов на основе термосифонов похож на расчет рекуперативных теплообменников с промежуточным теплоносителем. Отличие между ними заключается в том, что каждый термосифон в теплообменном аппарате является самостоятельным контуром циркуляции промежуточного теплоносителя, испытывающего фазовые переходы (испарение—конденсация), причем для осуществления данной циркуляции не нужно тратить внешнюю энергию. Преимущество теплообменников на основе термосифонов состоит в том, что они не имеют подвижных частей и могут использоваться в широком температурном диапазоне [1].

Одной из возможных областей применения теплообменных аппаратов на основе термосифонов являются установки кондиционирования воздуха.

Приведем конструктивный расчет теплообменника для охлаждения воздуха и последующего его осушения с помощью холодильной машины, принципиальная схема и описание работы установки представлены в [2] (рис. 1).

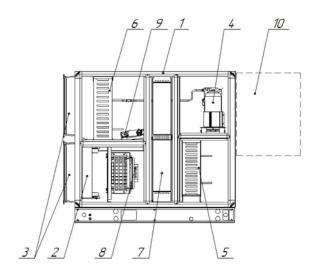


Рис. 1. Внешний вид установки:

1 – корпус установки; 2 – фильтр воздушный панельный;

3 – вставки гибкие для присоединения к воздуховодам;

4 – агрегат компрессорный; 5 – испаритель воздушный;

6 – конденсатор воздушный; 7 – теплообменник на тепловых трубах;

8 – вентилятор; 9 – клапан воздушный; 10 – шкаф системы автоматического управления

При тепловом конструктивном расчете задаются следующие параметры проектируемого теплообменника:

- 1) параметры воздуха на входе в установку: $t_1 = 28$ °C, $\varphi = 60$ %;
- 2) теплофизические свойства промежуточного теплоносителя (фреон R134a) [3];

- 3) объемный расход воздуха через установку: $w = 3000 \text{ m}^3/\text{ч}$;
- 4) скорость воздуха через установку: v = 3 м/с;
- 5) геометрические параметры теплообменника (табл. 1);
- 6) геометрические параметры ламели [4];
- 7) плотность теплового потока;
- 8) температурный напор $\Delta t = 10$ °C.

Таблица 1

Геометрические параметры проектируемого теплообменника

Параметр	Единицы измерения	Значение
Ширина	MM	450
Высота	MM	1200
Высота каждой зоны	MM	600
Расстояние между ламелями	MM	5
Количество ламелей в каждой зоне	ШТ.	118
Количество труб в нечетном ряду	ШТ.	9
Количество труб в четном ряду	ШТ.	8
Шаг между трубами	MM	50
Шаг между рядами труб	MM	25
Диаметр трубы	MM	12,7
Диаметр отверстия ламели	MM	12
Толщина ламели	MM	0,1

Расчет осушителя воздуха на основе термосифонов, заправленных озонобезопасным хладагентом R134a представлен в табл. 2.

Тепловой и конструктивный расчет осушителя воздуха на основе термосифонов, заправленных озонобезопасным хладагентом R134a

Таблица 2

1 1 / 1		
Определяемый параметр	Формула	Результат
Массовый расход воздуха через установку, кг/с	$G = \frac{w\rho}{3600}$	0,977
Проходное сечение канала установки, м ²	$F = \frac{w}{3600v}$	0,278
Высота каждой зоны, м	$h_{\rm l} = \frac{F}{b} = \frac{0,278}{0,45}$	0,6
Проверяем скорость движения воздуха через установку, м/с	$v = \frac{w}{3600h_1b}$	3,086
Общее число труб, шт.	$n = n_1 m_1 + n_2 m_2$	110

Окончание табл. 2

Определяемый параметр	Формула	Результат
Длина ламели, мм	$L_{_{\Pi}}=s_{_{1}}(r-1)+2s$	325
Общая площадь поверхности труб теплообменника, м ²	$F_{\scriptscriptstyle ext{Tp}} = \pi n d_{\scriptscriptstyle m H} l_{\scriptscriptstyle ext{Tp}}$	2,633
Общая площадь поверхности ламелей тепло- обменника, м ²	$F_{_{\rm I}} = n_{_{\rm I}} \left(bl_{_{\rm I}} - n \frac{\pi}{4} d_{_{\rm ors}}^2 \right)$	15,789
Площадь поверхности теплообменника, м ²	$F = F_{\rm rp} + F_{\rm n}$	18,432
Термическое сопротивление теплообменного аппарата, (м $^2 \cdot {}^{\circ}$ C)/Вт	<i>R</i> определено на основе методики, изложенной в [2]	0,0149
Коэффициент теплопередачи, $Bt/(m^2 \cdot {}^{\circ}C)$	$K = \frac{1}{R}$	67,211
Мощность теплообменника, Вт	$P = KF\Delta t$	12382,06
Разность удельных энтальпий на теплообменнике, кДж/кг с.в.	$\Delta h = \frac{P}{G}$	12,68
Удельная энтальпия воздуха на выходе из теплообменного аппарата, кДж/кг с.в.	$h_2 = h_1 - \Delta h$	51,82
Количество удаленной влаги, г/кг с.в.	$\Delta d = d_1 - d_2$	1,25
Скорость осушения, л/сут	$v_{\text{осуш}} = \frac{\Delta d}{\rho}$	97,16

В результате проведенного расчета спроектирован осушитель воздуха на основе термосифонов, представленный на рис. 3.

Рис. 3. Внешний вид теплообменника на тепловых трубах: площадь поверхности нагрева $-18,432 \text{ м}^2$, количество рядов труб -13 шт.; шаг оребрения -3,5 мм; трубка - медь с внутренним оребрением $12,0 \times 0,35 \text{ мм}$; количество трубок -110 шт.; оребрение - алюминий 0,15 мм

Литература

- 1. Васильев, Л. Л. Теплообменники на тепловых трубах / Л. Л. Васильев. Минск : Наука и техника, 1981. 143 с.
- 2. Применение термосифонов для осушения воздуха / Л. Л. Васильев [и др.] // Агротехника и энергообеспечение. 2018. № 2 (19). С. 7–16.
- 3. Безродный, М. К. Процессы переноса в двухфазных термосифонных системах. Теория и практика / М. К. Безродный, И. Л. Пиоро, Т. О. Костюк. 2-е изд., доп. и перераб. К. : Факт, 2005. 704 с. : ил.
- 4. Varman. Режим доступа: http://Varmann.ru/heavearmann/. Дата доступа: 01.04.2020.

ОПТИМАЛЬНЫЕ РЕЖИМЫ ТЕПЛОФИКАЦИОННОГО КОМПЛЕКСА Г. ГОМЕЛЯ

В. В. Глущенко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научные руководители: А. В. Шаповалов, Н. З. Заглубоцкий

Цель исследования: разработка решений по оптимизации и улучшению работы теплофикационного комплекса г. Гомеля при наименьших материальных затратах.

Основными объектами исследования являются характеристики теплофикационной системы, определяющие надежность системы и качество ее работы.

По данным РУП «Гомельэнерго» около 60 % г. Гомеля обеспечивается централизованным теплоснабжением и входит в теплофикационный комплекс г. Гомеля

Сам город можно поделить на районы, которые отапливаются двумя основными производителями теплоты: ТЭЦ-1, находящаяся в центре города, и ТЭЦ-2, находящаяся около а.г. Урицкое.

Теплофикационный комплекс работает по следующей схеме: ТЭЦ-2 является основным производителем тепла для нужд города, и она работает в связке с пиковыми котлами в городе, находящимися в районных котельных «Западная», «Северная» и «ЗЛиН». ТЭЦ-1 вместе с «Черниговской» котельной обеспечивает теплом район Новобелицы и часть центрального района, тогда как ТЭЦ-2 весь остальной город.

Скорый ввод Белорусской АЭС окажет большое влияние на энергосистему Республики Беларусь из-за необходимости изменять параметры выработки электроэнергии, покрывая ночные и дневные минимумы (рис. 1). Основные поставщики теплоэнергии не имеют возможности изменять свои параметры в требуемом диапазоне. Данный факт может привести к большому перерасходу топливно-энергетических ресурсов (рис. 2).

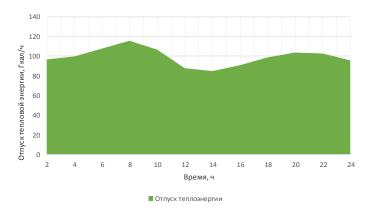


Рис. 1. Почасовой отпуск в отопительный период 2018 г.