ТЕХНОЛОГИИ ИНТЕНСИФИКАЦИИ ПРИТОКА С ИСПОЛЬЗОВАНИЕМ ПУЛЬСАТОРА-КАВИТАТОРА

В. Н. Пинчук

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. С. Шепелева

На современном этапе нефтедобычи наблюдается ряд проблем, среди которых можно выделить: усложнение горно-геологического строения залежей, снижение продуктивности пластов, большие объемы вновь разведываемых запасов сосредоточены в породах полуколлекторах и сланцевых породах.

Падение дебитов эксплуатационных скважин заставляет искать более эффективные методы воздействия на пласт, при этом уделяя внимание современным технологиям интенсификации добычи нефти и повышения нефтеотдачи пласта за счет физических, химических и комплексных методов воздействия.

Цель исследования: повышение дебитов эксплуатационных и приемистости нагнетательных скважин требует вложения больших средств, так как зачастую для этого необходимо применять дорогостоящее оборудование и значительные объемы химических реагентов. К числу наиболее перспективных способов интенсификации добычи нефти и повышения нефтеотдачи пласта относятся технологии волнового воздействия на прискважинную зону и пласт. Кроме того, популярность таких методов обусловливается их простотой, дешевизной и оперативностью применения, при этом обеспечивающих высокий экономический эффект от внедрения.

Методика проведения исследований. В разработанном оборудовании вихревой поток жидкости является усилителем низкочастотных колебаний рабочих параметров жидкости (давления и скорости). Гидродинамический пульсатор-кавитатор обеспечивает создание и вынос за пределы устройства кавитационных пузырьков и каверн, где, попадая в зону высокого давления, они схлопываются, создавая пульсационные потоки высокой интенсивности. При входе в поровый канал возникает эффект «фокусировки» ударной микроволны, за счет чего происходит декольматация прискважинной зоны.

На первом этапе, непосредственно перед созданием опытного образца пульсатора, было выполнено численное динамическое моделирование работы устройства и процессов, протекающих в скважинных условиях при его работе [4].

В целях оптимизации конструктивных параметров и изучения возможности возникновения кавитационных пульсаций в скважинных условиях проведено исследование влияния расхода жидкости через пульсатор и гидростатического (пластового) давления на гидродинамические характеристики потока. Для описания структуры турбулентного движения жидкой среды используют осредненные уравнения неразрывности и Навье—Стокса, которые позволяют вычислить среднее давление и компоненты вектора средней скорости рабочей среды в моделируемой области.

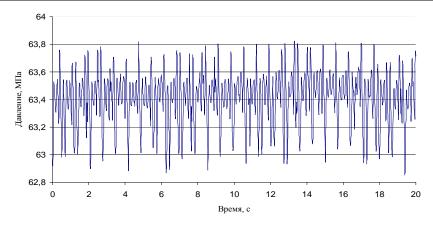
По модельным исследованиям были определены оптимальные режимы, при которых возможно образование устойчивой кавитации, и динамические параметры кавитационных процессов.

Из расчетов сделан вывод, что получить эффект развитой кавитации на глубине свыше 2000 м затруднительно при использовании в качестве рабочей жидкости воду [2]. В этом случае целесообразно применять пакерное оборудование, чтобы снизить воздействие гидростатического давления, а также проводить дополнительное насыщение рабочей жидкости газом для стимуляции образования кавитацион-

ных полостей. Однако наилучший эффект достигается при совмещении кавитационно-импульсной обработки с реагентной, так как давление насыщенных паров раствора соляной кислоты значительно выше, чем у воды и, соответственно, увеличивается содержание парогазовой фракции, а следовательно, и эффект воздействия кавитации.

Следующий этап работ заключался в создании опытного образца пульсатора и проведении его стендовых испытаний, с целью проверки работоспособности и безаварийности работы устройства, возможности создания режима устойчивой пульсации рабочей среды, изучения особенностей функционирования устройства в различных режимах, а также определения рабочих параметров полученных режимов и их соответствия модельным испытаниям.

Переходя к стадии промысловых испытаний, технологическая схема работ в скважинных условиях может быть выполнена тремя способами:


- обработка интервала перфорации путем перемещения кавитатора на подвеске НКТ (БДТ) при циркуляции рабочей жидкости по затрубному пространству с расходом 3-10 л/с;
- закачка реагента в пласт в режиме развитой кавитации при закрытом затрубном пространстве или посаженном пакере;
- комплексная обработка пласта путем последовательной реализации первых двух типов.

Результаты исследований. Селективно-точечную обработку пласта путем перемещения кавитатора проводят с шагом 0,5–1 м с воздействием в течение 10–30 мин при постоянной циркуляции, при этом расход жидкости создают в пределах 3–10 л/с.

Воздействие осуществлялось на компоновке НКТ (снизу вверх) с пульсатором ПГД-3, регистратором забойных параметров РЗП-100 и пакером ПРО-ЯМО2-ЯГ1(М). После посадки пакера в пласт в импульсном режиме закачивали ПАВ-кислотный состав при различных режимных характеристиках 2–7 л/с. Высокие значения давления закачки рабочей жидкости (30–40 МПа) соответствовали расчетным при заданных расходах (2,5–5,5 л/с), что подтверждает значительный перепад давления при прохождении рабочей жидкости через пульсатор (перепад давления на пульсаторе порядка 18–20 МПа). Полученный перепад давления на пульсаторе также соответствовал результатам стендовых испытаний.

Данные, полученные в результате расшифровки манометрической записи, показывают наличие пульсаций давления рабочей жидкости (рис. 1) с частотами в диапазоне 1–25 Гц и амплитудой 0,2–1,1 МПа. При этом необходимо учитывать тот факт, что регистратор забойного давления при проведении кавитационно-импульсного воздействия был расположен выше гидродинамического пульсатора ПГД-3 (чтобы не препятствовать формированию очагов высокого давления и не нарушать линий тока рабочей жидкости после пульсатора) и регистрировал незначительную разрядку давления внутри НКТ, тогда как максимум амплитуды пульсации давления рабочей жидкости происходил ниже пульсатора и приходился на интервал перфорации.

Таким образом, зарегистрированные перепады давления малой амплитуды свидетельствуют в пользу создания режима устойчивой кавитации и работоспособности устройства, но не могут отразить энергетику процесса в целом.

Puc. 1. График пульсации давления рабочей жидкости в скважине 155 Н.-Давыдовского месторождения

Дополнительная добыча за счет внедрения технологии кавитационно-импульсного воздействия на пяти объектах составила около 6640 т. Принимая в расчет эффективные и среднеэффективные работы, успешность составляет 80 %. Прирост коэффициента продуктивности в относительном выражении до 60 %. Наибольший эффект достигается в скважинах с продуктивностью ниже 1 м³/(сут · МПа). Эффективность работ увеличивается при нормальной энергетике залежи, что характерно для ГТМ по интенсификации. Сравнительный анализ эффективности от кавитационно-импульсного воздействия с традиционными технологиями: простыми и направленными кислотными обработками, по объектам на аналогичных месторождениях и залежах, показал эффект от кавитационно-импульсного воздействия в среднем выше на 30 %.

Литература

- 1. Повышение продуктивности и реанимация скважин с применением виброволнового воздействия / В. П. Дыбленко [и др.]. М.: Недра, 2000. 382 с.
- 2. Ибрагимов, Л. Х. Интенсификация добычи нефти / Л. Х. Ибрагимов, И. Т. Мищенко, Д. К. Челоянц. М. : Наука, 2000. 414 с.
- 3. Омельянюк, М. В. Гидравлические генераторы колебаний в нефтегазовом деле / М. В. Омельянюк // Оборудование и технологии для нефтегазового комплекса. 2011. № 3. С. 54–60.
- 4. Моделирование гидродинамических процессов при кавитационно-импульсной кислотной обработке нефтедобывающих скважин / Д. В. Ткачев [и др.] // Современные проблемы машиноведения: тез. докл. Х Междунар. науч.-техн. конф. (науч. чтения, посвящ. П. О. Сухому), Гомель, 23–24 окт. 2014 г. / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого, ОАО «Компания «Сухой»; под общ. ред. С. И. Тимошина. Гомель: ГГТУ им. П. О. Сухого, 2014. С. 79–80.

ГЕОФИЗИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ ЗАСОЛОНЕННЫХ КОЛЛЕКТОРОВ

В. А. Семенова, С. Л. Порошина, С. В. Козырева

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель В. Д. Порошин

Для подсолевых, межсолевых и внутрисолевых отложений Припятского прогиба характерно присутствие галита в поровом пространстве. Заполнение пор и вторичных пустот солью резко снижает фильтрационно-емкостные свойства (ФЕС) пород.