УДК 537.874.7

ВЛИЯНИЕ ВЛАЖНОСТИ НА ЭКРАНИРУЮЩИЕ ХАРАКТЕРИСТИКИ РАДИОПОГЛОЩАЮЩИХ МАТЕРИАЛОВ

Н. В. НАСОНОВА, Т. А. ПУЛКО, Я. Т. А. АЛЬ-АДЕМИ, А. А. АХМЕД, Л. М. ЛЫНЬКОВ

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники», г. Минск

Введение

Эксплуатация материалов в условиях повышенной влажности (обусловленных, например, особенностями климата или производственными процессами) имеет большое значение, особенно для экранирующих материалов, из-за высоких диэлектрических потерь воды в диапазоне СВЧ. Исследованию проблем изменения свойств или разрушения материалов вследствие микробиологической коррозии и защите от нее посвящено большое количество работ [1]—[3]. Большинство пористых тел с той или иной степенью гигроскопичности сорбируют воду, что приводит к изменению их электромагнитных характеристик в зависимости от количества воды. На этом явлении основаны основные принципы СВЧ-влагометрии, изучающей зависимости диэлектрических свойств пористых сред от влажности и распределения влаги в объеме. Вода является жидким полярным диэлектриком с высоким значением диэлектрической проницаемости, максимум диэлектрических потерь которого приходится на диапазон СВЧ.

Для экранирующих материалов, среди которых достаточно много пористых сред — волокнистые материалы, порошковые композиты с гигроскопичным связующим — повышение влажности является критичным фактором, способным значительно изменить их экранирующие характеристики.

Целью работы является исследование влияния влажности на изменение экранирующих характеристик композиционных экранирующих материалов.

Теория

Ферритовые материалы для экранирования электромагнитного излучения (ЭМИ) используются в виде порошковых наполнителей (с различным размером частиц, формой, концентрацией) для полимерных связующих, в виде спеченных ферритовых пластин, закрепляемых на металлических листах [4], [5]. Рабочий диапазон частот ферритовых поглотителей зависит от вида и состава феррита, размеров частиц, толщины покрытия.

Для достижения минимального отражения ЭМВ от поверхности экрана необходимо, чтобы входное сопротивление однослойного материала на металлической поверхности [6] было во всем частотном диапазоне равным волновому сопротивлению свободного пространства:

$$Z_{\text{BX}} = \frac{Z_1 - jZ_2 \text{tg}(k_2 d)}{Z_2 - jZ_1 \text{tg}(k_2 d)} Z_2,$$

где Z_1 — волновое сопротивление металла; Z_2 — волновое сопротивление материала; k — волновое число; d — толщина однослойного материала.

Эффективность ферритовых поглотителей основана на том, что волновое сопротивление непроводящего материала определяется выражением $Z_2 = \sqrt{\frac{\mu}{s}}$. Синтез

ферритовых материалов и композитов на их основе направлен на достижение нужных значений магнитной и диэлектрической проницаемости в некотором диапазоне частот так, чтобы волновое сопротивление композита было равным сопротивлению свободного пространства. Если характер частотных дисперсий μ и ϵ одинаков и отношение μ / ϵ одно и то же в диапазоне частот, то отражение будет минимальным. Ослабление электромагнитного излучения в этом случае обеспечивается за счет магнитных и диэлектрических потерь материала, преобразующих электромагнитную энергию в тепловую при практически нулевом отражении [7].

В [8] приведена математическая модель конструкции радиопоглотителя, основанной на изменении свойств пористой матрицы гексаферрита типа Co_2Z при заполнении ее водно-спиртовой смесью. Коэффициент отражения ЭМИ такой конструкцией менее -10 дБ в диапазоне частот 2–40 ГГц. Матрица изготавливается таким образом, чтобы в нижней части рабочего диапазона частот поглотитель работал как однослойный материал с эффективной диэлектрической проницаемостью, удовлетворяющей условию согласования волновых сопротивлений свободного пространства и материала, а в верхней части – как градиентный поглотитель, в котором плавное изменение ϵ обеспечивается за счет формы и размеров каналов пор [9].

В настоящей работе исследуется влияние изменения влажности на экранирующие характеристики композиционных ферритовых материалов.

Экспериментальная часть

Использование тканых полотен в качестве основы для экранов и поглотителей ЭМИ позволяет обеспечить высокую эластичность, гибкость и механическую прочность, предоставляет возможности получения изделий с различными параметрами структуры, а также сложной формы.

Исследовались образцы экранирующих материалов в виде тканых полотен с вплетенным ферромагнитным микропроводом. Ткань включает нити, выполненные из наноструктурного ферромагнитного микропровода в стеклянной изоляции, которые скручены при 100–800 кр/м с основными и уточными нитями из натуральных и/или химических волокон и составляют 1,0–3,2 % от поверхностной плотности ткани [10]. Аморфный наноструктурный ферромагнитный микропровод в стеклянной изоляции состоит из ферромагнитного сплава Fe, Co, Ni и металлоида B, Si, C. В низкочастотном диапазоне 30–100 МГц ослабление ЭМИ такой тканью составляет 20–40 дБ.

Для исследований использовались образцы с различной концентрацией ферритового материала в объеме ткани (в образце 1 – концентрация феррита 5 мас. %, в образце 2 – концентрация феррита 10 мас. %).

Затем образцы пропитывались дистиллированной водой для изучения влияния влажности на экранирующие характеристики композиционных ферритовых материалов. Образцы ткани погружались в ванну с водой на 8 ч и взвешивались для определения величины влагопоглощения, которое определялось следующим образом [11]:

$$B\pi_{coa} = \frac{G_{B} - G_{C}}{G} 100 \%,$$

где $G_{\rm B}$ — вес образца с водой, г; $G_{\rm c}$ — начальная масса сухого образца, г; G — масса пропитанного образца, г.

Влагосодержание образцов составило 53,75 мас. %.

При заполнении межволоконных и межнитевых промежутков ткани водой жидкость оказывается структурированной порами-капиллярами ткани и силами притяжения твердой поверхности материала волокон. Тканый волокнистый материал имеет развитую систему пор с большой удельной площадью поверхности. В результате большая доля молекул воды оказывается «связанной» ван-дер-ваальсовыми силами с поверхностью волокон (до 20 % в зависимости от вида материала [12]). «Связанное»

состояние воды изменяет ее физические свойства и влияет на макроскопическую диэлектрическую проницаемость получаемого композиционного материала. Толщина слоя «связанной» воды составляет до 10 монослоев, что для воды составляет около $10 \times 0,3$ нм. Это позволяет говорить о наноструктурированности воды в объеме композиционного материала, особенно при высокой пористости и маленьком размере пор. Использование тканых полотен с различными параметрами пористости и поверхностной плотности позволяет получать различные величины доли «связанной» воды, а значит, и изменять диэлектрическую проницаемость композиционного материала.

При падении электромагнитной волны на поверхность экрана из-за разницы волновых сопротивлений воздуха и материала происходит частичное отражение доли энергии обратно в экранируемую область пространства. Остальная часть электромагнитной энергии, распространяясь в экранирующем материале, при наличии у него диэлектрических, магнитных или резистивных потерь, преобразуется в тепловую и рассеивается. Эффективность экранирования определяется ослаблением А энергии электромагнитной волны в результате ее отражения-рассеяния поверхностью экрана и преобразованием в тепловую энергию в самом материале. В случае радиопоглощающих материалов важной экранирующей характеристикой кроме ослабления ЭМИ является также коэффициент отражения R.

Измерение экранирующих характеристик проводилось на автоматизированном измерителе модуля коэффициентов передачи и отражения SNA 0.01-18 оценкой коэффициентов передачи и отражения волноводного тракта с рупорными антеннами 6Π -23M, в раскрыве рупора антенны, в диапазоне частот 2–17 $\Gamma\Gamma$ ц (рис. 1). Ослабление, вносимое исследуемым образцом, определяется отношением напряженностей волн, падающей и прошедшей через образец, выделяемых блоками A и B. Коэффициент отражения R характеризует долю падающей энергии ЭМИ, отраженную от образца. Напряженности поля волн измеряются блоками A и B, затем блок обработки сигналов производит вычисление отношений. Коэффициент отражения ЭМИ измерялся в режимах согласованной нагрузки и тракта, нагруженного на металлическую отражающую пластину (КЗ).

$$A = 20 \log \left(\sqrt{\frac{E_{\text{пад}}}{E_{\text{прош}}}} \right), \text{ дБ};$$

$$R = 20 \log \left(\sqrt{\frac{E_{\text{отр}}}{E_{\text{пад}}}} \right)$$
, дБ,

где $E_{\text{отр}}$, $E_{\text{пад}}$ — напряженность поля, выделенного детектором отраженной и падающей волн A/R; $E_{\text{прош}}$ — напряженность поля волны, прошедшей через образец, выделенная блоком B.

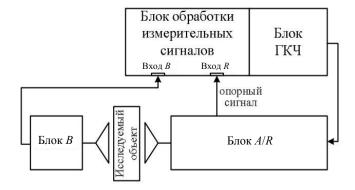


Рис. 1. Схема установки в режиме измерения ослабления ЭМИ

Результаты и обсуждение

Результаты измерений ослабления ЭМИ и коэффициента отражения ЭМИ ткаными материалами с вплетенным ферритовым микропроводом приведены на рис. 2.

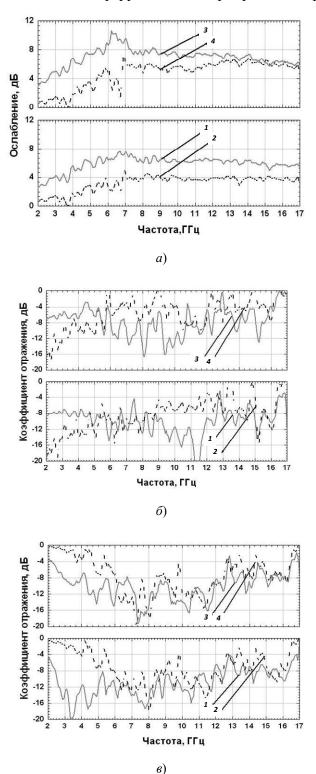


Рис. 2. Частотная зависимость экранирующих характеристик ослабления ЭМИ (a) и коэффициента отражения ЭМИ в режиме согласованной нагрузки (δ) и КЗ (ϵ) композиционных ферритовых материалов: I – образец 1, пропитанный водой; 2 – образец 1; 3 – образец 2, пропитанный водой; 4 – образец 2

Как видно из результатов измерений, ослабление ЭМИ композиционными материалами с ферромагнитным микропроводом в диапазоне частот 2–17 ГГц составляет 1–7 дБ. При этом коэффициент отражения ЭМИ в режиме КЗ изменяется от 0 в области низких частот до –8— –18 дБ. Поглощение электромагнитной энергии ферритами связано с естественным ферромагнитным резонансом, положение которого на частотной оси связано с физико-химическими и структурными параметрами материалов – в данном случае определяется их химическим составом, диаметром микропровода и его степенью скрутки, т. е. концентрацией феррита в объеме полотна.

Заполнение тканых полотен водой до 53,75 мас. % привело к изменению их экранирующих характеристик (рис. 1, кривые I, J): ослабление ЭМИ увеличилось на 1–4 дБ из-за дополнительного влияния диэлектрических потерь воды, распределенной в поровом объеме ткани. Падающая электромагнитная волна вызывает возникновение токов смещения, обусловленных диэлектрическими и магнитными характеристиками композиционного материала, что приводит к преобразованию части электромагнитной энергии в тепловую. При этом доля отражаемой энергии мала – коэффициент отражения ЭМИ композиционными материалами, содержащими ферритовый материал и воду, снизился в среднем на 4 дБ и для образца с меньшей концентрацией феррита находится на уровне -12–-10 дБ в диапазоне частот 3–12 ГГц. Это может быть связано с совпадением поведения характеристик дисперсии диэлектрической проницаемости наноструктурированной воды и магнитной проницаемости ферромагнитной структуры, распределенных в тканом полотне.

Заключение

Область частот поглощения электромагнитного излучения исследованных композиционных материалов с ферритовым микропроводом лежит в диапазоне 7–12 ГГц. Введение в состав композита частиц диэлектрика с потерями позволяет расширить рабочий диапазон в области низких частот до 3 ГГц и уменьшить коэффициент отражения до -8--16 дБ из-за улучшения согласования волновых характеристик материала с волновыми параметрами свободного пространства.

Литература

- 1. Биоповреждение полимеров и полимерных композиционных материалов / В. Ф. Строганов [и др.] // Клеи, герметики, технологии. 2009. № 2. С. 21–25.
- 2. Gao, N. Effect of Water Absorption on Dielectric Properties of EPDM/AI(OH) Composites / N. Gao, H. Xie, Z. Peng // Proc. of The 6th International Conference on Properties and Applications of Dielectric Materials, June 21–26, 2000, Xi'an Jiaotong University, Xi'an, China. 2000. Vol. 2. P. 905–907.
- 3. Effect of humidity on the high voltage characteristics of epoxy/glass insulation / T. Pham Hang [et al.] // 2004 International Conference on Solid Dielectrics, Toulouse, France, July 5–9, 2004. 2004. Vol. 2. P. 628–631.
- 4. Zekun, Feng. Wide-band electromagnetic wave absorber of rubber-ferrite / Zekun, Feng; Aiping, Huang; Huahui He // 3rd International Symposium on Electromagnetic Compatibility. 2002. P. 420–423.
- 5. Kotsuka, Y. Fundamental Investigation on a Weakly Magnetized Ferrite Absorber / Y. Kotsuka, H. Yamazaki // IEEE Transactions on electromagnetic compatibility. 2000. Vol. 42, № 2. P. 116–124.
- 6. Казанцева, Н. Е. Перспективные материалы для поглотителей электромагнитных волн сверхвысокочастотного диапазона / Н. Е. Казанцева, Н. Г. Рывкина, И. А. Чмутин // Радиотехника и электроника. − 2003. − Т. 48, № 2. − С. 196–209.

- 7. Characterization of electromagnetic radiation absorber materials / E. J. Rocha [et al.] // IEEE MTT-S International Conference on Microwave and Optoelectronics. 2005. P. 326–329.
- 8. Modeling of electrodynamic properties control in liquid-impregnated porous ferrite media / A. T. Ponomarenko [et al.] // Proc. of SPIE. 1999. Vol. 3667. P. 785–796.
- 9. Computation of electrodynamic properties of structures with liquid components / A. T. Ponomarenko [et al.] // Proc. of SPIE. 1996. Vol. 2722. P. 256–265.
- 10. Ткань для защиты от электромагнитных излучений: пат. 2 411 315 RU. МПК D03D 15/00, B82B 1/00 / B. А. Грищенкова, Д. Н. Владимиров, В. А. Фукина, Е. Н. Хандогина, Е. И. Шаповалова // ОАО «ЦНИИ Комплексной автоматизации легкой промышленности». Заявка № 2010104869/12, заявл. 12.02.2010, опубл. 10.02.2011. Бюл. № 4.
- 11. Полотна текстильные. Методы определения гигроскопических и водоотталкивающих свойств : ГОСТ 3816–81. М. : Изд-во стандартов, 1981. 16 с.
- 12. Табарин, В. А. Определение содержания связанной воды в кернах на СВЧ / В. А. Табарин, С. Д. Демьянцева // Нефтегазовое дело : электрон. науч. журн. 2009. Вып. 1. С. 1–28. Режим доступа: http://www.ogbus.ru/authors/Tabarin/Tabarin_1.pdf].

Получено 22.03.2013 г.