УДК 629.114.2-182.8

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ПОДЪЕМНО-НАВЕСНОГО УСТРОЙСТВА В СОСТАВЕ ИСПЫТАТЕЛЬНОГО СТЕНДА

В. Б. ПОПОВ, О. В. РЕХЛИЦКИЙ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Подъемно-навесное устройство (ПНУ) – обязательный элемент машинно-тракторного агрегата, предназначенный для связи мобильного энергетического средства с рабочим орудием. ПНУ состоит из гидропривода (ГП) и механизма навески (МН). Для исследования функционирования ПНУ в режиме перевода навесных машин из рабочего положения в транспортное был спроектирован испытательный стенд, в состав которого включено ПНУ универсального энергетического средства УЭС-350.

Цель настоящей работы – анализ выходных параметров подъемно-навесного устройства УЭС-350, агрегатируемого с комбайном навесным кормоуборочным КНК-500, создающего наибольшую нагрузку со стороны оси подвеса МН.

Основная часть

Механизм навески – основная составляющая ПНУ, определяющая характер взаимодействия УЭС с навесными машинами. Это рычажный механизм, шарнирно закрепленный на раме УЭС. Тяги МН через присоединительный треугольник связаны с КНК-500, принимаемым за выходное звено МН. Представленный тип агрегатирования УЭС с комбайном характерен для большинства колесных тракторов и мобильных энегосредств как отечественного, так и зарубежного производства. Рама УЭС, звенья МН и комбайн вместе образуют замкнутую кинематическую цепь.

Расчет выходных параметров МН проводится на базе его плоского аналога, полученного из 3D-модели проецированием центров шарниров МН на его продольную плоскость симметрии.

Структурно плоский аналог МН включает четырехзвенник, к которому последовательно присоединены две группы Ассура 2-го порядка, 1-го вида. МН и НМ формируют замкнутую кинематическую цепь в виде одноподвижного восьмизвенного рычажного механизма (рис. 1). Изменение входной координаты (ΔS) МН однозначно связано с изменением его выходных координат ($\Delta \varphi_6$, ΔY_{s6} , ΔX_{s6}).

Плоские аналоги механизмов навески УЭС отличаются лишь ориентацией 1-го четырехзвенника – механизма с качающимся цилиндром. Анализ замкнутой кинематической цепи выполняется последовательно, в соответствии с ее структурой и на основании метода замкнутых векторных контуров [1]. Так, например, анализ замкнутого контура Π_{01} , Π_{23} , Π_{03} , Π_{34} позволяет определить его выходные параметры: углы φ_{12} , φ_3 , φ_{34} и координаты центров подвижных шарниров Π_{23} и Π_{34} в зависимости от обобщенной координаты *S*.

Рис. 1. Схема перевода навесной машины в транспортное положение

В системе координат, связанной с УЭС-350 определяются координаты подвижных шарниров МН и характерных точек замкнутой кинематической цепи. В частности, координаты оси подвеса МН Π_{56} определяются по выражениям:

$$X_{56}(S) = X_{05} + L_{56}\cos\varphi_5(S), \quad Y_{56}(S) = Y_{05} + L_{56}\sin\varphi_5(S), \tag{1}$$

где X_{05} , Y_{05} – координаты неподвижного шарнира Π_{05} на раме трактора; φ_i – угол, образуемый соответствующим звеном, в правой декартовой системе координат.

Координаты характерной точки – центра тяжести рабочего орудия определяются в соответствии с выражениями:

$$X_{s6}(S) = X_{56}(S) + L_{s6}\cos[\varphi_6(S) + \varphi_{s6}];$$
(2)

$$Y_{S6}(S) = Y_{56}(S) + L_{S6} \sin[\phi_6(S) + \phi_{S6}], \qquad (3)$$

где L_{s6} и ϕ_{s6} – характеристики вектора, проведенного от оси подвеса в центр тяжести рабочего орудия.

Аналитические выражения (2)–(3) представляют собой функции положения для центра тяжести КНК-500, одновременно необходимые для формирования процедур кинематического и силового анализа [2].

Процедура кинематического анализа формируется в соответствии со структурой МН путем дифференцирования по независимой переменной (*t*) уравнений, описывающих замкнутые векторные контуры [1]. Определение аналогов угловых скоростей звеньев МН ведется в прямом порядке, начиная с поворотного рычага $(\Pi_{03}\Pi_{34}\Pi_{23})$. Так, дифференцируя по обобщенной координате выражение для угла $\varphi_3(S)$ [3], получим аналог угловой скорости подъемного рычага:

$$\varphi_3'(S) = \frac{d\varphi_3}{dS} = \frac{2S}{\sqrt{4L_{13}^2 L_3^2 - \left[S^2 - (L_{13}^2 + L_3^2)\right]^2}} \,. \tag{4}$$

Передаточные отношения $U_{53}(S)$ и $U_{65}(S)$, связывающие между собой угловые скорости (или аналоги этих скоростей) звеньев L_{56} и L_3 , а также L_{56} и L_6 , опреде-

ляются в результате последовательного кинематического анализа замкнутых контуров $\Pi_{03}\Pi_{34}\Pi_{45}\Pi_{05}$ и $\Pi_{07}\Pi_{67}\Pi_{56}\Pi_{05}$ (рис. 1):

$$U_{53}(S) = \frac{d\varphi_5(S)}{d\varphi_3(S)} = \frac{L_{34}\sin[\varphi_{34}(S) - \varphi_4(S)]}{L_5\sin[\varphi_5(S) - \varphi_4(S)]};$$
(5)

$$U_{65}(S) = \frac{d\varphi_6(S)}{d\varphi_5(S)} = \frac{L_{56}\sin[\varphi_5(S) - \varphi_7(S)]}{L_6\sin[\varphi_7(S) - \varphi_6(S)]}.$$
(6)

Кроме того, для данной структурной схемы МН справедливы следующие соотношения:

$$\varphi_5'(S) = \varphi_3'(S)U_{53}(S), \quad U_{63}(S) = U_{53}(S)U_{65}(S), \quad \varphi_6'(S) = \varphi_3'(S)U_{63}(S), \tag{7}$$

где $\phi'_5(S)$ и $\phi'_6(S)$ – аналоги угловых скоростей звеньев L_{56} и L_6 ; $U_{63}(S)$ – передаточное отношение, связывающее угловые скорости подъемного рычага и рабочий орган.

Передаточное число МН представляет собой аналог вертикальной скорости центра тяжести КНК-500 [3], зависящий только от внутренних параметров МН и КНК-500:

$$I_{S6}(S) = \phi_3' U_{53} [L_{56} \cos \phi_5 + U_{65} L_{S6} \cos (\phi_6 + \phi_{S6})].$$
(8)

В соответствии с установившейся практикой проектирования ПНУ [4] был определен аналогичный кинематический параметр – передаточное число МН на оси его подвеса – $I_m(S)$, которое представлено первым слагаемым в выражении (8).

Расчет передаточных чисел МН УЭС-350 был выполнен в соответствии с полученными аналитическими выражениями. Диаграммы изменения передаточных чисел МН представлены на рис. 2.

Рис. 2. Зависимости передаточных чисел МН на оси подвеса (сплошная линия) и на расстоянии *S*₆ от нее (пунктирная линия) от обобщенной координаты

Формализация описания силового анализа МН состоит в определении сил, действующих в шарнирах звеньев, и выполняется по группам Ассура в порядке, обратном кинематическому анализу, по известной методике [2], [4]. При этом не учитывается вес звеньев МН и возникающие в процессе движения звеньев силы инерции. Результаты силового анализа МН представлены в табл. 2 и в дальнейшем используются для прочностного анализа звеньев.

Расчет приведенной к штоку гидроцилиндра силы трения выполняется, исходя из того, что она равна отношению от деления суммы мгновенных мощностей трения,

затрачиваемых в шарнирах МН, на скорость поршня гидроцилиндра (ГЦ) \hat{S} плюс трение манжеты поршня о гильзу ГЦ ($F_{\text{тр. II}}$):

$$F_{\rm rp}^{\rm np}(S) = F_{\rm rp,u} + rf_{\rm rp} \left\{ \sum_{i=1}^{7} R_{0i}(S) \varphi_i'(S) + \sum R_{ij}(S) [\varphi_i'(S) \pm \varphi_{i+1}'(S)] \right\},\tag{9}$$

где r – радиус шарниров тяг; $f_{\rm тp}$ – коэффициент трения; $R_{0i}(S)$, $R_{ij}(S)$ – силы, действующие соответственно в неподвижных и подвижных шарнирах МН; ϕ'_i , ϕ'_{i+1} – аналоги угловых скоростей звеньев МН.

Для упрощения расчета в выражении (9) полагаем радиусы шарниров и коэффициенты трения одинаковыми для всех пар.

Силу трения манжеты поршня о внутреннюю поверхность гильзы гидроцилиндра (ГЦ) определяем по выражению, полученному из [5]:

$$F_{\rm TP,II} = \pi D l f_c p_m, \qquad (10)$$

где D – диаметр поршня ГЦ; l – ширина манжеты; f_c – коэффициент трения манжеты о гильзу ГЦ; p_m – среднее давление в напорной полости ГЦ.

Анализ выражения (9) и (10) показывает, что потери на трение в шарнирах не зависят от скорости поршня ГЦ и определяются внутренними параметрами МН и ГЦ.

Величина приведенной к поршню ГЦ нагрузки $F_{np}(S)$ состоит из полезной со-

ставляющей F(S), а также приведенных сил трения (F_{Tp}^{np}) и инерции (F_{HH}^{np}) [2]:

$$F_{\rm np}(S) = F(S) + F_{\rm uH}^{\rm np}(S) + F_{\rm rp}^{\rm np}(S), \tag{11}$$

где *S* – обобщенная координата MH.

Полезная нагрузка на ГЦ пропорциональна передаточному числу МН $I_{S6}(S)$ [2]:

$$F(S) = P_6 I_{S6}(S), \tag{12}$$

где P_6 – вес комбайна КНК-500.

Максимальная движущая сила, развиваемая на штоке ГЦ для преодоления приведенной к ГЦ нагрузки, определяется по выражению:

$$F_{\rm IIIT}^{\rm max} = p_{\rm rII}^{\rm max} \cdot F_c, \qquad (13)$$

где F_c – площадь поршня ГЦ; p_{ru}^{max} – максимальное давление в ГЦ.

Максимальное давление в ГЦ ограничено настройкой предохранительного клапана и потерями давления в гидроприводе:

$$p_{\rm ru}^{\rm max} = p_{\rm n.\kappa} - (\Delta p_{\rm dp} + \Delta p_{\rm rm}), \tag{14}$$

где $p_{\text{п.к}}$ – давление настройки предохранительного клапана гидропривода; $\Delta p_{\text{др}}$ – потери давления на дросселе в магистрали слива; $\Delta p_{\text{гм}}$ – потери давления в магистрали.

Динамический анализ ГП, связанного с рабочим орудием через МН, дает возможность определить закон движения нагруженного поршня ГЦ и потери давления. Для этого была сформирована математическая модель динамического анализа [2] в виде системы нелинейных дифференциальных уравнений:

$$\begin{cases} \dot{p}_{1} = \frac{E_{\rm np}}{V_{0} + F_{c}(S - S_{0})} Q - \frac{F_{c}E_{\rm np}}{V_{0} + F_{c}(S - S_{0})} \dot{S}, \\ p_{2} = p_{1} - (a_{1}\ddot{S} + a_{2}\dot{S} + a_{3}\dot{S}^{2}), \\ m(S)\ddot{S} + \frac{1}{2}m'(S)\dot{S}^{2} = p_{2}F_{c} - [F(S) + F_{\rm np}^{\rm np}(S)], \end{cases}$$
(15)

где E_{np} – приведенный модуль объемной упругости рабочей жидкости; V_0 – начальный объем рабочей жидкости в напорной магистрали; S, S_0 – текущее и начальное значения обобщенной координаты; a_1, a_2, a_3 – коэффициенты, пропорциональные различным видам потерь давления; m(S), m'(S) – приведенная масса и ее производная по обобщенной координате; Q – объемный расход рабочей жидкости.

Выражение в левой части третьего уравнения системы представляет собой приведенную силу инерции. В результате решения системы численным методом (например, Рунге-Кутта 4-го порядка) определяется закон движения поршня ГЦ: $S(t) = f(S_0, \dot{S}, \ddot{S}, t)$, а также изменение давления у насоса p_1 и в полости ГЦ со стороны напорной магистрали p_2 .

Изменение грузоподъемности ПНУ при переводе КНК-500 из рабочего положения в транспортное обусловлено, главным образом, изменением передаточного числа МН, тогда как выходные параметры гидросистемы, инерционные и диссипативные потери предполагаются неизменными. Грузоподъемность ПНУ определяется по формулам:

$$G_m(S) = \frac{p_2^{\max} \eta S_{\Gamma \amalg}}{I_m(S)}; \quad G_{S6}(S) = \frac{p_2^{\max} \eta S_{\Gamma \amalg}}{I_{S6}(S)},$$
(16)

где $G_m(S)$ – грузоподъемность ПНУ на оси подвеса; $G_{S6}(S)$ – грузоподъемность ПНУ, соответствующая расположению центра тяжести КНК-500; p_c^{max} – максимально возможное давление в гидроцилиндре МН; η – КПД МН; $S_{\Gamma \downarrow}$ – суммарная площадь поршней рабочих гидроцилиндров.

Как следует из выражения (16), грузоподъемность ПНУ – это интегральный показатель, зависящий одновременно от параметров гидропривода, механизма навески и массово-геометрических характеристик навесного комбайна.

На основе выражения для определения грузоподъемности и принятого КПД МН ($\eta = 0,85$) была определена грузоподъемность ПНУ УЭС-350 на оси подвеса и на расстоянии S_6 от нее. Расчет показал, что грузоподъемность ПНУ на расстоянии S_6 от оси подвеса составляет 62,02 кН. Запас грузоподъемности ПНУ в этом случае равен 29,8 %, поэтому момент нагрузки со стороны P_6 относительно оси подвеса МН может быть увеличен почти на 30 %.

Результаты расчета выходных параметров ПНУ УЭС-350, агрегатируемого с навесным кормоуборочным комбайном КНК-500, выполненного на сформированной функциональной математической модели (ФММ), представлены в табл. 1, 2 и на рис. 3.

Таблица 1

	Геометри	ические па	раметры		Кинематические параметры				
S	$Y_{56}(S)$	$X_{S6}(S)$	$Y_{S6}(S)$	φ ₆ (S)	φ ₃ ′(S)	$U_{53}(S)$	φ ₆ ′(S)	$I_m(S)$	$I_{S}(S)$
[М]	[M]	[M]	[M]	[град]	[1/м]	[-]**	[1/м]	[-]	[-]
0,571*	_	—		—	_	—	—	_	_
0,596	0,320	2,447	0,571	90,019	4,844	0,726	-0,131	3,454	3,291
0,621	0,404	2,468	0,652	89,869	4,425	0,747	-0,082	3,312	3,210
0,646	0,486	2,480	0,732	89,780	4,175	0,760	-0,044	3,218	3,164
0,671	0,566	2,486	0,810	89,741	4,022	0,768	-0,011	3,149	3,135
0,696	0,644	2,485	0,889	89,746	3,935	0,772	0,018	3,095	3,118
0,721	0,720	2,478	0,966	89,794	3,896	0,773	0,048	3,048	3,107
0,746	0,796	2,466	1,044	89,884	3,896	0,771	0,079	3,003	3,102
0,771	0,870	2,447	1,121	90,021	3,932	0,766	0,113	2,959	3,100
0,796	0,944	2,423	1,199	90,209	4,003	0,759	0,162	2,911	3,101
0,821	1,016	2,392	1,277	90,459	4,112	0,748	0,199	2,858	3,106

Геометрические и кинематические выходные параметры механизма навески УЭС-350

^{*}Подсоединение навесного кормоуборочного комбайна КНК-500 выполняется, когда высота оси подвеса (Y_{56}) составляет 0,33 м, что соответствует S = 0,599 м.

**Безразмерная величина.

Таблица 2

S	$G_m(S)$	$G_{\rm S6}(S)$	$R_{34}(S)$	$R_{56}(S)$	$R_{23}(S)$	$F_g(S)$	$p_2(S)$
[м]	[кН]	[кН]	[кН]	[кН]	[кН]	[ĸH]	[МПа]
0,571	_	_	-	_	_	-	-
0,596	59,101	62,05	52,798	44,217	157,931	157,931	14,313
0,621	61,635	63,597	52,019	45,446	154,092	154,092	13,963
0,646	63,440	64,536	51,349	46,890	151,849	151,849	13,760
0,671	64,824	65,118	50,754	48,508	150,490	150,490	13,637
0,696	65,967	65,480	50,214	50,288	149,658	149,658	13,561
0,721	66,989	65,699	49,720	52,237	149,159	149,159	13,516
0,746	67,977	65,821	49,270	54,372	148,884	148,884	13,491
0,771	69,003	65,867	48,866	56,724	148,779	148,779	13,482
0,796	70,136	65,843	48,518	59,337	148,833	148,833	13,487
0,821	71,445	65,732	48,245	62,271	149,086	149,086	13,509

Силовые параметры подъемно-навесного устройства УЭС-350

Результаты силового воздействия со стороны КНК-500 на раму стенда приведены на рис. 3.

Рис. 3. Графики силового воздействия со стороны звењев МН на раму стенда: $R_{03}(S)$ – реакция со стороны поворотного рычага; $R_{05}(S)$ – реакция со стороны нижней тяги; $R_{07}(S)$ – реакция со стороны верхней (центральной) тяги

Заключение

Проведенные расчеты позволяют сделать вывод о том, что заложенные в конструкции испытательного стенда параметры ПНУ УЭС-350 позволяют проводить исследования для всех навесных машин, агрегатируемых с серийным и перспективным УЭС, включая наиболее энергоемкий процесс перевода из рабочего в транспортное положение комбайна навесного кормоуборочного КНК-500

Представленная методика анализа процесса подъема НМ и определения грузоподъемности ПНУ УЭС-350 позволяет оценить характеристики агрегатирования и других навесных машин с другими моделями УЭС, имеющими идентичные по структуре подъемно-навесные устройства.

Литература

- 1. Артоболевский, И. И. Теория механизмов и машин / И. И. Артоболевский. М. : Машиностроение, 1988. С. 640.
- 2. Попов, В. Б. Расчет грузоподъемности подъемно-навесного устройства универсального энергетического средства третьего поколения / В. Б. Попов // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2012. – № 3. – С. 43–48.
- 3. Попов, В. Б. Аналитические выражения кинематических передаточных функций механизмов навески энергоносителей / В. Б. Попов // Вестн. Гомел. гос. техн. унта им. П. О. Сухого. 2000. № 2. С. 25–29.
- 4. Гуськов, В. В. Тракторы. Ч. III. Конструирование и расчет / В. В. Гуськов. Минск : Выш. шк., 1981. С. 383.
- 5. Озол, О. Г. Теория механизмов и машин : пер. с латыш. / под ред. С. Н. Кожевникова. – М. : Наука, Гл. ред. физ.-мат. лит., 1984. – С. 432.

Получено 15.05.2013 г.