Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

УТВЕРЖДАЮ			
Первый проректор			
ГГТУ им.П.О.Сухог	O'		
	О.Д.	Асенчик	
28.06.2019			
Регистрационный N	₂УД	<u> 26 - 22</u> /уч.	

ПРИКЛАДНАЯ МЕХАНИКА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-53 01 05 «Автоматизированные электроприводы»

Учебная программа составлена на основе: образовательного стандарта высшего образования ОСВО 1-53 01 05-2019; учебных планов учреждения образования «Гомельский государственный технический университет имени П.О.Сухого» по специальности 1-53 01 05 «Автоматизированные электроприводы» № I 53-1-09/уч. от 06.02.2019, № I 53-1-21/уч. от 06.02.2019

СОСТАВИТЕЛИ:

Н.В. ИНОЗЕМЦЕВА, к.т.н., доцент кафедры «Механика» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

С.И. ПРАЧ, ассистент кафедры «Механика» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

РЕЦЕНЗЕНТЫ:

А. О. Шимановский, заведующий кафедрой «Техническая физика и теоретическая механика» учреждения образования «Белорусский государственный университет транспорта», доктор технических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ УЧЕБНОЙ:

Кафедрой «Механика» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 7 от 11.04.2019);

Научно-методическим советом машиностроительного факультета учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 5 от 13.05.2019) УД-М-304/уч;

Научно-методическим советом факультета автоматизированных информационных систем учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 10 от 03.06.2019);

Научно-методическим советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 6 от 26.06.2019).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа «Прикладная механика» разработана на основе образовательного стандарта высшего образования, учебных планов учреждения образования «Гомельский государственный технический университет имени П.О.-Сухого»

Курс «Прикладная механика» является общеинженерной дисциплиной и охватывает вопросы теоретической механики, механики материалов, а также раздел соединения курса деталей машин.

Цель изучения дисциплины - формирования у будущих специалистов технического мышление и приобретение знаний для дальнейшего выполнения курсового проекта.

Задача курса «Прикладная механика» - обеспечение общеинженерной подготовки по определению кинематических и динамических показателей механической системы, а также по расчетам на прочность, жесткость и устойчивость при гарантированной долговечности.

В результате изучения дисциплины студент должен: **ЗНАТЬ:**

- основные понятия законы и модели механики, способы и методы прочностных и кинематических расчетов, структуру и виды механизмов;
- конструкции, типаж, материалы и способы изготовления деталей машин общего назначения;
- инженерные методы расчета деталей и узлов машин, обеспечивающих требуемую их надежность;

УМЕТЬ:

- выполнять инженерные расчеты деталей и узлов машин, обеспечивающих требуемую их надежность и долговечность;
- конструировать детали, узлы и приводы общемашиностроительного назначения;
- выполнять конструкторскую разработку деталей, узлов и приводов с применением норм проектирования, типовых проектов, стандартов и других нормативных материалов;

ВЛАДЕТЬ:

- основными понятиями сопротивления материалов;
- навыками методами структурного анализа и кинематического исследования механизмов;
- навыками расчета и конструирования соединений, зубчатых и червячных передач, валов и их опор, муфт, корпусных деталей и направляющих.

Освоение данной учебной дисциплины обеспечивает формирование следующих компетенций:

- CK 3 специализированная конференция: знать основные детали и механизмы машин и приборов, уметь рассчитывать и разработать их конструкцию;
 - уметь работать самостоятельно;

- владеть междисциплинарным подходом при решении проблем;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
 - уметь работать в команде.
- решать инженерные задачи, возникающие при проектировании и конструировании узлов и механизмов машин;
- готовить доклады, материалы к презентациям и представительствовать на них.

Изучение дисциплины «Прикладная механика» опирается на использование знаний, полученных студентами по математике и физике.

Общее количество часов и распределение аудиторного времени по видам занятий

Общее количество часов, отводимое на изучение учебной дисциплины «Прикладная механика», в соответствии с учебными планами по специальности: 1-53 01 05 «Автоматизированные электроприводы» (план набора с 2019 г. / план набора 2018 г.) — 284/164 часа (9/5 з.е.).

Общее количество часов, отводимое на курсовой проект, составляет 60 часов, трудоемкость курсового проектирования – 2 з.е.

Распределение аудиторного времени по видам занятий, курсам и семестрам

Форма получения высшего образования: дневная (с 2019 г)

Φορικο οδεινονικα	Дневная				
Форма обучения	набор с 2019 г.	набор 2018 г.			
Курс	2	2			
Семестр	3,4	3,4			
Лекции (часов)	68	51			
Практические	34	34			
занятия (часов)	34	34			
Лабораторные	17	16			
занятия (часов)	1/	10			
Всего аудиторных	119	101			
(часов)	_				
Формы текущей аттестации по учебной дисциплине					
Зачет (семестр)	4	4			
Экзамен (семестр)	3	3			
Курсовой проект (семестр)	-	4			

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. МЕХАНИКА МАТЕРИАЛОВ

Тема 1.1. Общие сведения о машинах и механизмах

Основные характеристики и требования, предъявляемые к изделиям машиностроения. Критерии работоспособности деталей. Классификация нагрузок. Основные допущения. Метод сечений. Внутренние усилия. Виды нагружения. Понятия о напряжениях и деформациях.

Тема 1.2. Центральное растяжение – сжатие

Продольная сила. Нормальные напряжения. Напряжения в наклонных площадках. Деформации. Работа внешних сил и потенциальная энергия деформации. Диаграмма растяжения. Расчет на прочность и жесткость при растяжении и сжатии.

Тема 1.3. Геометрические характеристики плоских сечений

Статические моменты сечений. Определение центра тяжести сечения. Моменты инерции сечения. Определение моментов инерции простых геометрических сечений. Главные оси и главные моменты инерции сечений. Моменты сопротивлений плоских сечений.

Тема 1.4. Теория напряженного состояния

Закон парности касательных напряжений. Главные площадки и главные напряжения. Виды напряженного состояния тела. Линейное напряженное состояние. Плоское напряженное состояние. Объемное напряженное состояние. Обобщенный закон Гука. Теории прочности.

Тема 1.5. Сдвиг

Чистый сдвиг. Деформация при чистом сдвиге. Закон Гука при сдвиге.

Тема 1.6. Кручение

Определение крутящих моментов в сечениях вала. Построение эпюр крутящих моментов. Напряжения в поперечных сечениях. Условие прочности при кручении вала. Рациональная форма сечения вала. Деформации при кручении и условия жесткости.

Тема 1.7. Изгиб балок

Прямой изгиб, чистый и поперечный. Построение эпюр поперечных сил и изгибающих моментов. Основные расчетные предпосылки и формулы при изгибе. Определение нормальных и касательных напряжений. Условия прочно-

сти балки по нормальным и касательным напряжениям. Деформация балки. Расчет на жесткость.

Тема 1.8. Сложное сопротивление

Косой изгиб. Внецентренное растяжение (сжатие). Изгиб с кручением.

Раздел 2. ДЕТАЛИ МАШИН Тема 2.1. Резьбовые соединения

Типы резьбы. Основные типы крепежных деталей. Способы стопорения резьбы. Зависимость между моментом, приложенным к гайке и осевой силой винта. Самоторможение и КПД винтовой пары. Расчет резьбовых соединений с установкой болтов с зазором и без зазора. Расчет группы болтов. Эффект эксцентричного нагружения болта. Материалы, допускаемые напряжения резьбовых соединений. Клеммовые соединения и их расчет.

Тема 2.2. Шпоночные и шлицевые соединения

Типы шпонок. Области их применения. Напряженные соединения: призматической, цилиндрической и сегментной шпонками. Материалы шпонок. Классификация шлицевых соединений. Расчет на прочность шпоночных и шлицевых соединений.

Тема 2.3. Сварные соединения

Виды сварных соединений и типы сварных швов. Расчет стыковых швов. Расчет угловых швов. Расчет углового комбинированного шва. Допускаемые напряжения.

Тема 2.4. Соединения деталей с натягом

Способы соединения деталей. Расчет на прочность соединения и деформации деталей. Соединения деталей посадкой на конус.

Тема 2.5. Заклепочные соединения

Общие сведения. Типы заклепок. Конструкции швов. Расчет деталей заклепочного соединения на прочность. Материалы и допускаемые напряжения.

Тема 2.6. Общие сведения о механических передачах

Типы передач, классификация и их основные характеристики. Принципы работы основных типов передач. Образование механического привода. Кинематические схемы приводов и их краткая характеристика. Энергетические и кинематические соотношения.

Тема 2.7. Зубчатые передачи

Критерии работоспособности и расчета. Силы в зацеплении цилиндрических передач, нагрузки на валы. Определение допускаемых напряжений. Расчет зубчатых цилиндрических передач на контактную выносливость. Расчет зубьев цилиндрических колес на сопротивление усталости при изгибе. Проектировочные расчеты. Особенности расчета косозубых и шевронных цилиндрических передач. Зубчатые передачи с коническими колесами. Геометрические и кинематические параметры. Силы в зацеплении с прямыми и криволинейными зубъями. Особенности расчетов на контактную и на гибкую прочность.

Тема 2.8. Червячные передачи

Критерии работоспособности и расчета. Силы в зацеплении. Определение расчетной нагрузки. Расчеты червячных передач на контактную прочность и на сопротивление усталости при изгибе зубьев червячных колес. Тепловой расчет. КПД червячных передач.

Тема 2.9. Инновационные зубчатые передачи

Виды современных зубчатых передач. Зубчатые передачи с зацеплением Новикова, циклоидальные, цевочные, торцевые передачи. Передача Нечаева. Зубчатые передачи с эллиптическим профилем зуба. Арочные передачи. Мотор-редуктор. Изучение методов проектирования инновационных зубчатых передач с повышенной нагрузочной способностью с использованием современных пакетов прикладных программ 3D-моделирования. Освоение принципов построения трехмерных узлов инновационной планетарной передачи с пониженным уровнем шума в системах САПР и получение навыков проектирования узлов машин на основе встроенных библиотек. Изучение технологии построения анимации разработанных передач в графическом редакторе Компас-3D.

Тема 2.10. Ременные передачи

Виды и области применения. Основные геометрические и кинематические соотношения. Предварительное натяжение ремня. Нагрузка на валы передачи. Методика расчета клиноременной ременной передачи.

Тема 2.11. Цепные передачи

Основные характеристики и области применения. Силы в цепной передаче. Критерии работоспособности и расчета. Методика расчета цепной передачи.

Тема 2.12. Валы и оси

Общие сведения. Способы передачи нагрузок на валы. Критерии работоспособности валов и осей. Проектировочный и проверочный расчеты валов.

Тема 2.13. Подшипники

Общие сведения о подшипниках скольжения. Подшипники качения и их классификация. Кинематика подшипника качения. Расчет подшипников качения на статическую и динамическую грузоподъемность. Особенности определения осевых сил, нагружающих радиально-упорные подшипники.

Тема 2.14. Муфты

Общие сведения. Назначение и классификация. Расчетный момент. Муфты: упругие, компенсирующие жесткие, упругие, управляемые или сцепные.

Тема 2.15. Метрология и технические измерения

Основные понятия о допусках и посадках. Номинальные и действительные размеры. Отклонения. Предельные размеры. Поле допуска и ее величина. Квалитеты. Выбор посадки и квалитета точности. Обозначение допусков и посадок на чертежах. Отклонения формы и расположения поверхностей. Обозначения допусков формы и расположения поверхностей на чертежах. Шероховатость поверхности и ее параметры. Обозначение шероховатости поверхности на чертежах.

ХАРАКТЕРИСТИКА КУРСОВОГО ПРОЕКТА

Целью выполнения курсового проекта является приобретение инженерных навыков по расчету и конструированию типовых механизмов, узлов и отдельных деталей на основе ранее полученных теоретических знаний по общеобразовательным и общетехническим дисциплинам.

Тематика курсовых проектов определяется кафедрой в соответствии с настоящей программой.

Курсовой проект предусматривается в объеме 3 листов формата А1 (общий вид привода, чертеж сборочной единицы, чертежи 2—3 деталей) и пояснительной записки объемом 35-40 страниц.

Количество часов на курсовой проект - 60. Трудоемкость курсового проекта выражается в зачетных единицах - 2.

Содержание расчетно-пояснительной записки:

Введение

- 1. Энергетический и кинематический расчеты привода.
- 2. Расчет открытой передачи привода.
- 3. Предварительный расчет приводного вала.
- 4. Конструктивные размеры деталей открытой передачи.
- 5. Эскизная компоновка привода.
- 6. Проверка долговечности подшипников приводного вала по динамической грузоподъемности.
 - 7. Проверка прочности шпоночных соединений.
 - 8. Уточненный расчет приводного вала.
 - 9. Сборка привода.

Литература

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(Дневная форма получения образования)

		Количество аудиторных часов				
12	(набор с 2019/ набор до 2019 г.)				ИЙ	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Лабораторные занятия		Форма контроля знаний
1	2	3	4	5	6	7
1	Механика материалов					экзамен
1.1	Общие сведения о машинах и меха- низмах	4/4				УО
1.2	Центральное растяжение – сжатие	2/2	2/2	2/2		ППЗ, ЗЛР
1.3	Геометрические характеристики плоских сечений	2/2	2/2			ПП3
1.4	Теория напряженного состояния	4/3				УО
1.5	Сдвиг	2/2				УО
1.6	Кручение	2/2	2/2			ПП3
1.7	Изгиб балок	4/4	2/2			ПП3
1.8	Сложное сопротивление	4/2	2/2			ПП3
2	Детали машин					экзамен
2.1	Резьбовые соединения	4/2	2/2	2/2		ППЗ, ЗЛР
2.2	Шпоночные и шлицевые соединения	2/2	2/2			
2.3	Сварные соединения	2/2	2/2			ПП3
2.4	Соединения деталей с натягом	2/2				УО
2.5	Заклепочные соединения	2/2	2/2			ПП3
2.6	Общие сведения о механических передачах	4/2	2/2			ППЗ
2.7	Зубчатые передачи	4/2	4/4	4/4		ППЗ,ЗЛР
2.8	Червячные передачи	2/2		2/2		УО, ЗЛР
2.9	Инновационные зубчатые передачи	2/2				УО
2.10	Ременные передачи	4/2	2/2			ППЗ
2.11	Цепные передачи	4/2	2/2			ППЗ
2.12	Валы и оси	4/2	2/2			ППЗ
2.13	Подшипники	2/2	2/2	4/4		ППЗ, ЗЛР
2.14	Муфты	2/2				УО
2.15	Метрология и технические измерения	4/2	2/2	3/2		ППЗ,ЗЛР
Итого		68/51	34/34	17/16		

Условные обозначения, принятые в учебно-методической карте: УО – устный опрос; ППЗ – прием практических занятий; ЗЛР – защита лабораторной работы.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Список литературы

Основная литература

- 1. Сурин, В.М. Прикладная механика: учебное пособие для вузов / В. М. Сурин. 3-е изд., испр.. Минск: Новое знание, 2008. 387 с.. (Техническое образование) УДК 621.01:531.8(075.8) ББК 34
- 2. Подскребко, М.Д. Сопротивление материалов: учебник для вузов / М.Д. Подскребко. Минск: Вышэйшая школа, 2007. 797 с. УДК 620.1(075.8) ББК 3
- 3. Иванов, М.Н. Детали машин: учебник для втузов / М.Н. Иванов; под ред. В.А. Финогенова. 6-е изд., перераб.. Москва: Высшая школа, 2000. 383 с. УДК 621.81(075.8) ББК 34
- 4. Дунаев, П.Ф. Конструирование узлов и деталей машин: учебное пособие для вузов / П.Ф. Дунаев, О.П. Леликов. 7-е изд.. Москва: Высшая школа, 2001. 448 с. УДК 621.81.001.63(075.8) ББК 346.
- 5. Завистовский, В.Э. Техническая механика. Детали машин: учебное пособие / В.Э. Завистовский. Минск: Беларуская Энцыклапедыя, 2010. 349 с. УДК 621.01:531.8(075.32) УДК 621.81(075.32) ББК 34

Дополнительная литература

- 1. Иосилевич, Г.Б. Прикладная механика: учебник для немашиностр. спец. втузов / Г.Б. Иосилевич, Г.Б. Строганов, Г.С. Маслов; под ред. Г.Б. Иосилевича. Москва: Высшая школа, 1989. 348 с. УДК 621.01:531.8(075.8) ББК 34
- 2. Феодосьев, В.И. Сопротивление материалов: учебник для втузов. 9-е изд., перераб.. Москва: Наука, 1986. 512с. УДК 620.1(075.8)
- 3. Кудрявцев, В.Н. Детали машин: учебник для студ. машиностр. спец. вузов / В.Н. Кудрявцев. Ленинград: Машиностроение, 1980. 464 с УДК 621.81(075.8) ББК 34
- 4. Решетов, Д.Н. Детали машин: учебник для вузов / Д.Н. Решетов. 4е изд.. - Москва: Машиностроение, 1989. - 496 с. УДК 621.81(075.8)
- 5. Чернин, И.М. Расчеты деталей машин: справочное пособие. 2-е изд., перераб. и доп.. Минск: Вышэйшая школа, 1978. 472 с. УДК 621.81.001.24 (035)
- 6. Расчет и проектирование деталей машин / К. П. Жуков [и др.]; под ред. Г.Б. Столбина, К.П. Жукова. Москва: Высшая школа, 1978. 247 с. УДК 621.81.001.63(075.8) ББК 34
- 7. Анурьев, В.И. Справочник конструктора-машиностроителя: в 3 т. / В.И. Анурьев. 6-е изд.. Москва: Машиностроение, 1982. 576 с. УДК [621.001.2+658.512.23] (035) ББК 34
- 8. Бейзельман, Р.Д. Подшипники качения: Справочник / Р.Д. Бейзельман, Б.В. Цыпкин, Л.Я. Перель. Изд. 6-е. Москва: Машиностроение, 1975. 576 с УДК 621.822.6(035) ББК 34.
- 9. Винокуров, Е.Ф. Сопротивление материалов: расчетно-проектировочные работы / Е.Ф. Винокуров, А.Г. Петрович, Л.И. Шевчук. Минск: Вышэйшая школа, 1987. 227 с. УДК 620.1(075.8) ББК 3

- 10. Руденок, Е.Н. Техническая механика: сборник заданий: учеб. пособие для сред. спец. учеб. заведений / Е.Н. Руденок, В.П. Соколовская. Минск: Вышэйшая школа, 1990. 237 с. УДК 531.8(075.32) ББК 22
- 11. Прикладная механика: курс лекций по одноименной дисциплине для студентов электротехнических специальностей дневной и заочной форм обучения / А.Т. Бельский, Г.П. Тариков. Гомель: ГГТУ им. П. О. Сухого, 2009. 136 с.
- 12. Островская, Э.Н. Прикладная механика: учебное пособие / Э.Н. Островская, О.Р. Каратаев; Министерство образования и науки России, Казанский национальный исследовательский технологический университет. Казань: Казанский научно-исследовательский технологический университет, 2017. 108 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php? раде=book&id=561115. Библиогр. в кн. ISBN 978-5-7882-2283-7. Текст: электронный.
- 13. Глухов, Б.В. Прикладная механика: учебное пособие / Б.В. Глухов, Д.С. Воронцов. Москва; Берлин: Директ-Медиа, 2016. 188 с.: ил., схем., табл. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php? раде=book&id=437454. Библиогр.: с. 165. ISBN 978-5-4475-6919-8. DOI 10.23681/437454. Текст: электронный.
- 14. Механика. Сопротивление материалов (теория и практика): учебное пособие / О.М. Болтенкова, О.Ю. Давыдов, В.Г. Егоров, С.В. Ульшин. Воронеж: Воронежский государственный университет инженерных технологий, 2013. 121 с. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=141640 (дата обращения: 04.12.2019). ISBN 978-5-89448-971-1. Текст: электронный.

Литература по курсовой работе

- 1. Разработка привода с одноступенчатым редуктором: практическое руководство и задания к курсовому проектированию по курсам "Детали машин", "Прикладная механика", "Механика" для студентов технических специальностей дневной и заочной форм обучения / Н.В. Акулов, Э.Я. Коновалов; кафедра "Детали машин". Гомель: ГГТУ, 2005. 151 с. УДК 621.81(075.8)
- 2. Расчет и конструирование открытых механических передач: метод, указания к курсовому проекту но дисциплинам «Детали машин», «Прикладная механика» и «Механика» для студентов техн. специальностей днев. и заоч. форм обучения/ П.В. Акулов, Е.М. Глушак. Гомель: ПТУ им. И.О. Сухого, 2009.-47 с (м/у №3754).
- 3. Расчет и конструирование приводного вала: методические указания к курсовому проекту по дисциплинам "Прикладная механика" и "Механика" для студентов технических специальностей дневной и заочной форм обучения / В.А. Барабанцев; каф."Детали машин". Гомель: ГГТУ, 2009. 39 с. УДК 621.81.001.66(075.8) (м/у №3774).
- 4. Механика [Электронный ресурс]: учебно-методическое пособие по курсовому проектированию для студентов специальностей 1-43 01 03 "Электроснабжение" и 1-43 01 05 "Промышленная теплоэнергетика" дневной и заочной форм обучения / составители: Н.В. Иноземцева, С.И. Прач, Н.В. Прядко; Мини-

- стерство образования Республики Беларусь, Учреждение образования "Гомельский государственный технический университет имени П. О. Сухого", Кафедра "Детали машин". Гомель: ГГТУ, 2016. 80 с. УДК 621.81(075.8) ББК 22.2я73
- 5. Механика [Электронный ресурс]: учебно-методическое пособие по одноименному курсу для студентов специальностей 1-43 01 03 "Электроснабжение и 1-43 01 05 "Промышленная теплоэнергетика" дневной и заочной форм обучения. Ч. 2 / составители: Н.В. Иноземцева, С.И. Прач, Н.В. Прядко; Министерство образования Республики Беларусь, Учреждение образования "Гомельский государственный технический университет имени П. О. Сухого", Кафедра "Техническая механика". Гомель: ГГТУ, 2017. 128 с. УДК 621.8(075.8) ББК 34.44я73
- 6. Курсовое проектирование деталей машин: учебное пособие для машиностр. спец. техникумов / С.А. Чернавский [и др.]. 2-е изд.. Москва: Машиностроение, 1987. 414 с. УДК 621.81.001.63(075.32) ББК 34

Методы (технологии) обучения

Основными методами (технологиями) обучения, отвечающими целям изучения дисциплины, являются:

- чередование теоретических лекционных занятий с практическими занятиями, а также с управляемой самостоятельной работой;
- использование во время теоретических занятий современных средств, презентаций и обучающих программ;
- использование модульно-рейтинговой системы оценки знаний и автоматизированного тестирования;
- внедрение элементов научных исследований и патентного поиска при проектировании конкретного объекта.

Методические рекомендации по организации и выполнению самостоятельной работы студентов

При изучении дисциплины используются следующие формы самостоятельной работы:

- контролируемая самостоятельная работа в виде решения индивидуальных заданий в аудитории во время проведения практических занятий;
- управляемая самостоятельная работа при выполнении курсового проекта по индивидуальным заданиям;
- подготовка рефератов различного уровня по индивидуальным темам, тезисов докладов для участия в научно-технических конференциях.

Перечень рекомендуемых средств диагностики

Типовым учебном планом специальности в качестве формы итогового контроля по дисциплине «Прикладная механика» предусмотрен экзамен / зачет. Оценка учебных достижений студента на экзамене осуществляется по десятибалльной шкале.

Для текущего контроля и самоконтроля знаний и умений студентов по данной дисциплине можно использовать следующий диагностический инструментарий:

- проведение коллоквиума;
- собеседование;
- защита курсового проекта;
- защита рефератов;
- письменные контрольные работы;
- письменные отчеты по аудиторным (домашним) практическим заданиям
- устный опрос;
- защита лабораторных работ;
- проведение текущих опросов по отдельным разделам (темам) дисциплины;
- критериально-ориентированные тесты по отдельным разделам (темам) дисциплины;
 - выступление студента по разработанной им теме;
 - оценивание на основе модульно-рейтинговой системы.

Примерный перечень тем практических занятий

- 1. Расчет резьбовых соединений при различных случаях нагружения.
- 2. Расчет шпоночных, шлицевых и клеммовых соединений вала и ступицы.
 - 3. Расчет сварных соединений при различных случаях нагружения.
 - 4. Расчет заклепочных соединений.
 - 5. Расчет передачи винт-гайка.
 - 6. Энергетический и кинематический расчеты приводов машин.
 - 7. Уточненный расчет валов передач на прочность и жесткость.
 - 8. Выбор муфт и конструирование валов.
- 9. Расчет открытых зубчатых передач (цилиндрической и конической).
 - 10. Расчет цепной передачи.
 - 11. Расчет ременной передачи.
 - 12. Подбор подшипников качения.
 - 13. Разработка эскизной компоновки привода.
 - 14. Разработка сборочного чертежа приводного вала.

Примерный перечень тем лабораторных работ

- 1. Определение механических характеристик материалов при растяжении.
- 2. Изучение конструкции подшипников и подшипниковых узлов.
- 3. Изучение конструкции цилиндрического редуктора.
- 4. Изучение конструкции конического редуктора.
- 5. Изучение конструкции червячного редуктора.
- 6. Определение коэффициента трения в резьбе и на торце гайки.
- 7. Система допусков и посадок.

Критерии оценок результатов учебной деятельности

При оценке знаний студента в баллах по десятибалльной шкале применяются критерии оценки результатов деятельности обучающихся в учреждениях высшего образования по десятибалльной шкале (письмо Министерства образования республики Беларусь от 28.05.2013 г. №09-10/53-ПО).

Примерный перечень контрольных вопросов по дисциплине

- 1. Основные характеристики и требования, предъявляемые к изделиям машиностроения.
 - 2. Критерии работоспособности деталей.
 - 3. Классификация нагрузок.
 - 4. Метод сечений.
 - 5. Виды нагружения.
 - 6. Понятия о напряжениях и деформациях.
 - 7. Продольная сила и нормальные напряжения.
 - 8. Работа внешних сил и потенциальная энергия деформации.
- 9. Диаграмма растяжения. Основные механические характеристики материалов.

- 10. Допускаемые напряжения.
- 11. Расчет на прочность и жесткость при растяжении и сжатии.
- 12. Статические моменты сечения. Определение центра тяжести сечения.
- 13. Моменты инерции сечения.
- 14. Главные оси и главные моменты инерции сечения.
- 15. Моменты сопротивления плоских сечений.
- 16. Закон парности касательных напряжений.
- 17. Главные площадки и главные напряжения.
- 18. Виды напряженного состояния тела.
- 19.Обобщенный закон Гука.
- 20. Теории прочности.
- 21. Деформация при чистом сдвиге. Закон Гука при сдвиге.
- 22. Построение эпюр крутящих моментов.
- 23. Условия прочности при кручении вала.
- 24. Деформации при кручении и условие жесткости.
- 25. Построение эпюр поперечных сил и изгибающих моментов.
- 26. Основные расчетные предпосылки и формулы при изгибе.
- 27. Определение нормальных и касательных напряжений.
- 28. Условие прочности балки по нормальным и касательным напряжениям.
- 29.Сложное сопротивление. Косой изгиб.
- 30.Изгиб с кручением.
- 31.Основные критерии работоспособности и расчета деталей машин (прочность, жесткость, износостойкость, теплостойкость, виброустойчивость)
- 32. Резьбовые соединения. Геометрические параметры, характеризующие резьбу. Основные типы резьб, их классификация.
- 33. Расчет на прочность стержня винта (на стержень винта действует только внешняя растягивающая нагрузка).
- 34. Расчет на прочность стержня винта (болтовое соединение нагружено силами, сдвигающими детали в стыке. Два случая: болт поставлен с зазором; болт поставлен без зазора).
 - 35. Материалы резьбовых деталей и допускаемые напряжения.
- 36.Заклепочные соединения (достоинства, недостатки). Область практического применения. Виды заклепок. Классификация.
 - 37. Расчет на прочность элементов заклепочного шва.
 - 38. Материалы заклепок и допускаемые напряжения.
- 39.Сварные соединения (достоинства, недостатки). Виды сварки. Типы сварных швов, их особенности.
 - 40. Соединение встык и расчет на прочность
 - 41. Соединение внахлестку и расчет на прочность.
 - 42. Тавровые соединения и расчет на прочность.
 - 43. Соединение контактной сваркой, расчет на прочность.
 - 44. Допускаемые напряжения сварных соединений.
- 45.Шпоночные соединения. Соединения призматическими шпонками. Расчет на прочность.
- 46.Соединения сегментными шпонками (достоинства, недостатки). Расчет на прочность.

- 47.Соединения круглыми шпонками (достоинства, недостатки). Расчет на прочность.
- 48.Соединения клиновыми шпонками (достоинства, недостатки). Расчет на прочность.
- 49.Шпонка на лыске, фрикционная шпонка (достоинства, недостатки). Расчет на прочность.
- 50.Тангенциальные шпонки достоинства, недостатки). Расчет на прочность.
 - 51. Материалы и допускаемые напряжения для шпонок.
- 52.Шлицевые (зубчатые) соединения (достоинства, недостатки). Типы соединений.
- 53. Расчет на прочность шлицевых соединений (упрощенный расчет по критерию смятия; на изгиб и на срез)
 - 54. Штифтовые соединения. Классификация. Расчет соединений.
 - 55. Профильные соединения. Классификация и расчет соединений.
 - 56.Общие сведения о механических передачах
 - 57. Расчетная нагрузка для расчета зубчатых колес.
 - 58.Силы в зацеплении цилиндрической зубчатой передаче
- 59. Расчет прочности зубьев прямозубых цилиндрических колес по контактным напряжениям
- 60. Расчет прочности зубьев прямозубых цилиндрических колес по напряжениям изгиба.
 - 61. Конические зубчатые передачи. Достоинства и недостатки
 - 62. Геометрические параметры прямозубой конической зубчатой передачи.
 - 63.Силы в зацеплении прямозубой конической передач.
- 64. Расчет зубьев конической зубчатой передачи на прочность по изгибным и контактным напряжениям.
 - 65. Червячные передачи, достоинства и недостатки.
 - 66.Классификация червячных передач. Виды червяков.
 - 67. Геометрия червячного зацепления
 - 68. Кинематические параметры червячной передачи
 - 69.Силы в зацеплении червячной передачи.
 - 70. Расчет червячной передачи по контактным напряжениям
 - 71. Расчет червяка по напряжениям изгиба
 - 72. Тепловой расчет червячной передачи.
 - 73. Цепные передачи. Принцип действия классификация цепных передач.
 - 74. Достоинства и недостатки цепных передач, область применения
- 75.Конструкция основных элементов (приводные цепи, звездочки). Материалы цепей и звездочек.
 - 76. Основные геометрические параметры цепных передач.
- 77.Силы в цепной передаче. Кинематика и динамика цепной передачи (неравномерность движения и колебания цепи; удар шарнира о зуб и ограничение шага цепи).
- 78. Критерии работоспособности и расчета цепной передачи. Износ шарниров цепи.
- 79.Допускаемая величина износа цепи и выбор числа зубьев звездочек. Допускаемое давление в шарнирах цепи.

- 80. Ременные передачи. Общая характеристика и применение. Классификация.
 - 81. Область применения ременных передач, достоинства и недостатки
- 82. Геометрические параметры ременной передачи. Определение угла обхвата. Расчет требуемой длины ремня.
 - 83.Силы в ветвях ременной передачи.
- 84.Определение нагрузки от действия центробежных сил в ременной передаче.
 - 85. Напряжения в ременной передаче.
- 86. Расчет плоскоременной передачи по тяговой способности и на долговечность
- 87. Расчет клиноременной передачи по тяговой способности и на долговечность
- 88.Передача винт-гайка. Типы передач. Достоинства и недостатки передачи винт-гайка скольжения.
 - 89. Разновидности передач винт-гайка, их достоинства и недостатки.
- 90. Конструкция и материалы передач «винт-гайка» и силовые соотношения в винтовой паре передачи
 - 91. Расчет передачи винт-гайка скольжения.
 - 92. Валы и оси. Классификация валов и осей.
 - 93. Этапы проектирования вала и расчетная схема вала.
- 94. Расчеты валов и осей на прочность. Расчет валов и осей на статическую прочность.
 - 95. Расчет валов и осей на усталостную прочность (выносливость)
 - 96. Расчет валов и осей на жесткость.
 - 97. Расчет валов и осей на колебания
- 98.Подшипники качения. Классификация подшипников и область их применения.
 - 99. Обозначение подшипников качения
 - 100. Кинематика подшипников качения
 - 101. Динамика подшипников качения
 - 102. Расчет подшипника на долговечность
 - 103. Определение эквивалентной динамической нагрузки.
- 104. Муфты приводов. Классификация. Определение расчетного крутящего момента.
- 105. Муфты, постоянно соединяющие валы. Глухие муфты (втулочные, фланцевые). Компенсирующие муфты. Свойства и назначение.
 - 106. Компенсирующая зубчатая муфта. Кулачково-дисковая муфта.
- 107. Упругие соединительные муфты. Свойства и назначение. Упругая втулочно-пальцевая муфта и упругая со звездочкой.
 - 108. Муфты сцепные управляемые. Муфты сцепные кулачковые.
 - 109. Муфты сцепные фрикционные. Расчеты.
 - 110. Дисковые муфты. Пневмокамерные муфты. Конические муфты
 - 111. Муфты сцепные самоуправляемые. Обгонная муфта.
 - 112. Муфты предохранительные. Виды муфт и их расчет

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисциплины, с которой требуется согла- сование	Название кафедры	Предложения об измене- ниях в содержании учеб- ной программы по изучае- мой дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
1	2	3	4
Теория электропривода	Автоматизированный электропривод	Нет В.В. Тодарев	