УДК 629.114.2

СНИЖЕНИЕ ДИССИПАТИВНЫХ ПОТЕРЬ В МЕХАНИЗМАХ НАВЕСКИ МОБИЛЬНЫХ ЭНЕРГЕТИЧЕСКИХ СРЕДСТВ

В. Б. ПОПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

В настоящее время среди производителей сельскохозяйственных машин существует тенденция к переходу от производства самоходных специализированных уборочных машин к уборочным комплексам, в том числе на базе универсального энергосредства «Полесье». Появление в шлейфе навесных машин уборочных комплексов тяжелых адаптеров – кормоуборочных, свеклоуборочных, зерноуборочных и картофелеуборочных комбайнов массой от 3600 до 4600 кг повышает требования к их агрегатированию с энергосредством. Так, например, возрастают требования к грузоподъемности подъемно-навесного устройства (ПНУ) и, в частности, к основному компоненту ПНУ – механизму навески (МН) (рис. 1).

Рис. 1. Механизм навески универсального энергетического средства: *a* – конструкция: 1 – рычаг поворотный; 2 – рама энергосредства; 3 – гидроцилиндр; 4 – раскос; 5 – центральная тяга; 6 – нижняя тяга; б – структурная схема

Постановка задачи проектирования

Фактически структурная модель механизма навески сложилась (на плоскости – одноподвижный восьмизвенный шарнирно-рычажный механизм) (рис. 2) и длительное время остается неизменной [1], а изыскание резерва грузоподъемности должно обеспечиваться в первую очередь за счет оптимизации параметров МН.

Кинематические передаточные функции [2], косвенно влияющие на величину грузоподъемности ПНУ, определяются на основе применения метода замкнутых векторных контуров [3]:

$$I_{s_6}(S) = \varphi_3'(S) \cdot U_{s_3}(S) \cdot \{L_{s_6} \cdot \cos[\varphi_5(S)] + U_{65}(S) \cdot L_{s_6} \cdot \cos[\varphi_6(S) + \varphi_{s_6}]\};$$
(1)

$$I_{\rm M}(S) = \varphi_3'(S) \cdot U_{53}(S) \cdot L_{56} \cdot \cos[\varphi_5(S)]; \ \varphi_6'(S) = \varphi_3'(S) \cdot U_{63}(S).$$
(2)

Одним из способов обеспечения грузоподъемности на требуемом уровне является повышение коэффициента полезного действия (КПД) МН. Потери энергии на трение в шарнирах при переводе навесной уборочной машины из рабочего положения в транспортное в среднем составляют 16–21 % от ее общей величины.

Рис. 2. Схема перевода навесной машины из рабочего в транспортное положение

Коэффициент полезного действия в процессе подъема навесной машины не остается постоянным, причем переменными оказываются как его средняя величина, так и экстремальные значения. Поэтому снижение величины диссипативных потерь косвенно способствует повышению грузоподъемности ПНУ.

Рис. За. Структурная группа L₆-L₇ плоского аналога механизма навески

Рис. 36. Структурная группа *L*₄–*L*₅₆ плоского аналога механизма навески

Рис. Зв. Структурная группа *L*₁₂–*L*₃ плоского аналога механизма навески

Для определения реакций R_{07} и R_{56} рассмотрим группу, состоящую из звеньев L_6 и L_7 (рис. 3а). Составляем систему уравнений равновесия относительно точки Π_{67} . В результате получена система, состоящая из четырех уравнений:

$$\begin{cases} R_{56}^{x}(S) + R_{07}^{x}(S) = 0; \\ R_{56}^{y}(S) + R_{07}^{y}(S) - P_{6} = 0; \\ R_{07}^{x}(S)[Y_{67}(S) - Y_{07}] + R_{07}^{y}(S)[X_{07} - X_{67}(S)] = 0; \\ R_{56}^{x}(S)[Y_{67}(S) - Y_{56}(S)] + R_{56}^{y}(S)[X_{56}(S) - X_{67}(S)] - P_{6}[X_{56}(S) - X_{67}(S)] = 0. \end{cases}$$

$$(3)$$

Решая совместную систему уравнений любым известным методом, определяем величины реакций в кинематических парах Π_{56} и Π_{07} в диапазоне изменения обобщенной координаты.

Для упрощения вида выражений используем промежуточные переменные: для преобразований координат и момента со стороны веса навесной машины – P_6 .

$$D = Y_{67} - Y_{56}; \quad E = X_{56} - X_{67}; \quad F = Y_{67} - Y_{07}; \quad G = X_{07} - X_{67};$$
$$A = E \cdot F - D \cdot G; \quad M_6 = -P_6 \cdot (X_{56} - X_{56}).$$

Результаты решения системы уравнений (3) приведены ниже:

$$R_{56}^{x} = P_{6} \cdot \frac{G \cdot (X_{56} - X_{56})}{2 \cdot A}; \quad R_{56}^{y} = P_{6} \cdot \frac{(X_{56} - X_{67}) \cdot F - G \cdot D}{2 \cdot A}; \quad (4)$$

$$R_{07}^{x} = -R_{56}^{x} \cdot 2; \quad R_{07}^{y} = -R_{07}^{x} \cdot \frac{F}{G};$$

$$R_{67}^{x} = 2 \cdot R_{56}^{x}; \quad R_{67}^{y} = 2 \cdot R_{56}^{y} - P_{6}, \quad (5)$$

где X_{s6} – координата центра тяжести навесной машины; X_{ij}, Y_{ij} – координаты центров шарниров звеньев группы $L_6 - L_7$; D, E, F, G – переменная разность координат; R_{ij}^x, R_{ij}^y – составляющие сил, действующих в шарнирах $L_6 - L_7$; R_{07}^x, R_{07}^y – составляющие сил, действующих в шарнирах $L_6 - L_7$; R_{07}^x, R_{07}^y – составляющие сил, действующих в шарнирах на раме энергоносителя.

Величина общей реакции в шарнирах определяется по известному правилу – геометрической сумме векторов:

$$R_{07}(S) = \sqrt{R_{07}^{x}(S)^{2} + R_{07}^{y}(S)^{2}}; \quad R_{56}(S) = \sqrt{R_{56}^{x}(S)^{2} + R_{56}^{y}(S)^{2}}.$$
 (6)

Для определения реакций R_{05} и R_{34} рассмотрим группу, состоящую из звеньев L_4 и L_{56} (рис. 36). Составляем систему уравнений равновесия относительно точки Π_{45} :

$$\begin{aligned} R_{05}^{x}(S) + R_{34}^{x}(S) + R_{56}^{x}(S) &= 0; \\ R_{05}^{y}(S) + R_{34}^{y}(S) + R_{56}^{y}(S) &= 0; \\ R_{34}^{x}(S)[Y_{34}(S) - Y_{45}(S)] + R_{34}^{y}(S)[X_{45}(S) - X_{34}(S)] &= 0; \\ R_{05}^{x}(S)[Y_{05} - Y_{56}(S)] + R_{05}^{y}(S)[X_{45}(S) - X_{05}) - R_{56}^{x}(S)[Y_{45}(S) - Y_{56}(S)] - \\ - R_{56}^{y}(S)[X_{56}(S) - X_{45}(S)] &= 0. \end{aligned}$$

$$(7)$$

Для упрощения вида выражений для составляющих реакций в шарнирах используем промежуточные переменные преобразования координат:

$$\begin{split} D_1 &= Y_{45} - Y_{05}; \ E_1 = X_{05} - X_{45}; \ F_1 = Y_{45} - Y_{34}; \ G_1 = X_{34} - X_{45}; \\ A_1 &= E_1 \cdot F_1 - D_1 \cdot G_1. \end{split}$$

В результате решения системы уравнений получаем составляющие реакций в шарнирах группы $L_4-L_{56}~\Pi_{34}$ и Π_{05} :

$$R_{05}^{x} = \frac{M_{65} \cdot G_{1} - E_{1} \cdot \left(R_{65}^{x} \cdot F_{1} + R_{65}^{y} \cdot G_{1}\right)}{A_{1}}; \quad R_{05}^{y} = \frac{-M_{65} \cdot F_{1} + D_{1} \cdot \left(R_{65}^{x} \cdot F_{1} + R_{65}^{y} \cdot G_{1}\right)}{A_{1}}; \quad (8)$$

$$R_{34}^{x} = \frac{-\left(\left(M_{65} - R_{65}^{x} \cdot D_{1} - R_{65}^{y} \cdot E_{1}\right) \cdot G_{1}\right)}{A_{1}}; \quad R_{34}^{y} = \frac{\left(M_{65} - R_{65}^{x} \cdot D_{1} - R_{65}^{y} \cdot E_{1}\right) \cdot F_{1}}{A_{1}}.$$
(9)

Далее рассматриваем четырехзвенник (рис. 3в) и определяем реакции в шарнирах $\Pi_{23}, \Pi_{03}, \Pi_{01}$:

$$R_{23} = \frac{R_{34}^{y} (X_{34} - X_{03}) - R_{34}^{x} (Y_{03} - Y_{34})}{(Y_{03} - Y_{23}) \cdot \cos \varphi_{12} - (X_{23} - X_{03}) \cdot \sin \varphi_{12}};$$
(10)

$$R_{23}^{x} = R_{23} \cdot \cos \varphi_{12}; \quad R_{23}^{y} = R_{23} \cdot \sin \varphi_{12};$$

$$R_{03}^{x} = R_{34}^{x} - R_{23}^{x}; \quad R_{01}^{x} = R_{23}^{x};$$

$$R_{03}^{y} = R_{34}^{y} - R_{23}^{y}; \quad R_{01}^{y} = R_{23}^{y}.$$

Величина силы трения в шарнире зависит от условий эксплуатации кинематических пар, материала и скорости относительного перемещения, материала и качества обработки трущихся поверхностей, нагрузки в трущейся паре, геометрии шарнира и некоторых других параметров. Для аналитического определения сил трения (диссипации) в кинематических парах были использованы математические модели геометрического, кинематического и силового анализа МН.

Потери мощности в неподвижных шарнирах МН определяются по выражениям:

$$N_{01}(S) = f_{\rm rp} \cdot r_{04} \cdot R_{01}(S) \cdot \varphi'_{S}(S) \cdot S;$$
(11)

$$N_{03}(S) = f_{\rm rp} \cdot R_{03}(S) \cdot r_{03} \cdot \varphi'_{3}(S) \cdot \dot{S};$$

$$N_{05}(S) = f_{\rm rp} \cdot R_{05}(S) \cdot r_{05} \cdot \varphi'_{5}(S) \cdot \dot{S};$$

$$N_{07}(S) = f_{\rm rp} \cdot R_{07}(S) \cdot r_{07} \cdot \varphi'_{7}(S) \cdot \dot{S},$$

где $\phi'_{S}(S), \phi'_{3}(S), \phi'_{5}(S), \phi'_{7}(S)$ – аналоги угловых скоростей соответствующих звеньев; $f_{\rm rp}$ – коэффициент трения в шарнирах; $r_{01}, r_{03}, r_{05}, r_{07}$ – радиусы шарниров.

Знаки аналогов угловых скоростей в подвижных шарнирах определяются в соответствии с направлением движения звеньев, связанных соответствующим шарниром.

Потери мощности в подвижных шарнирах МН определяются по выражениям:

$$N_{23}(S) = f_{\rm Tp} \cdot r_{23} \cdot R_{23}(S) \cdot |\varphi'_{S}(S) - \varphi'_{3}(S)| \cdot S;$$

$$N_{34}(S) = f_{\rm Tp} \cdot r_{34} \cdot R_{34}(S) \cdot |\varphi'_{3}(S) - \varphi'_{4}(S)| \cdot \dot{S};$$

$$N_{45}(S) = f_{\rm Tp} \cdot r_{45} \cdot R_{45}(S) \cdot |\varphi'_{4}(S) - \varphi'_{5}(S)| \cdot \dot{S};$$

$$N_{56}(S) = f_{\rm Tp} \cdot r_{56} \cdot R_{56}(S) \cdot |\varphi'_{5}(S) - \varphi'_{6}(S)| \cdot \dot{S};$$

$$N_{67}(S) = f_{\rm Tp} \cdot r_{67} \cdot R_{67}(S) \cdot |\varphi'_{6}(S) - \varphi'_{7}(S)| \cdot \dot{S}.$$
(12)

Расчет приведенной к поршню силы трения выполняется, считая ее равной отношению от деления суммы мгновенных мощностей трения, затрачиваемых в шарнирах механизма навески на \dot{S} :

$$F_{\rm rp}^{\rm np}(S) = \frac{\sum_{i=1}^{n} N_i(S)}{\dot{S}}.$$
 (13)

Таким образом, аналитическое выражение для приведенной к рабочему гидроцилиндру МН силы трения, учитывающей потери в подвижных и неподвижных шарнирах МН, имеет вид:

$$F_{\rm rp}^{\rm np}(S) = f_{\rm rp} \cdot r_{\rm m} \cdot [R_{01}(S) \cdot \varphi_{S}'(S) + R_{03}(S) \cdot \varphi_{3}'(S) + R_{05}(S) \cdot \varphi_{5}'(S) + + R_{07}(S) \cdot \varphi_{7}'(S) + R_{23}(S) \cdot |\varphi_{S}'(S) - \varphi_{3}'(S)| + R_{34}(S) \cdot |\varphi_{3}'(S) - \varphi_{4}'(S)| + + R_{5}(S) \cdot |\varphi_{4}'(S) - \varphi_{5}'(S)| + R_{56}(S) \cdot |\varphi_{5}'(S) - \varphi_{6}'(S)| + R_{67}(S) \cdot |\varphi_{6}'(S) - \varphi_{7}'(S)|].$$
(14)

Для упрощения выражения (14) полагаем радиусы шарниров и коэффициенты трения одинаковыми для всех кинематических пар.

Сила трения манжеты поршня о внутреннюю поверхность гильзы ГЦ определяется по выражению, полученному из [5]:

$$F_{\rm rpu} = \pi \cdot D \cdot l \cdot f_c \cdot p_m, \tag{15}$$

где D – диаметр поршня ГЦ; l – ширина манжеты; f_c – коэффициент трения манжеты о гильзу ГЦ; p_m – среднее давление в напорной полости ГЦ.

Анализ выражения (14) и (15) показывает, что потери на трение в кинематических парах не зависят от скорости поршня ГЦ и определяются внутренними параметрами МН и ГЦ. Общее выражение для приведенной к штоку гидроцилиндра силы трения представляет собой сумму выражений (14) и (15):

$$F_{\rm rp}^{\rm np}(S) = F_{\rm rpu} + r \cdot f_{\rm rp} \cdot \left\{ \sum_{i=1}^{7} R_{0i}(S) \cdot \varphi_i'(S) + \sum R_{ij}(S) \cdot \left[\varphi_i'(S) \pm \varphi_{i+1}'(S) \right] \right\}.$$
 (16)

С помощью программных модулей (Turbo-Pascal), разработанных на ПЭВМ типа IBM PC, был поставлен вычислительный эксперимент и выполнено исследование изменения КПД в зависимости от внутренних параметров ПНУ в процессе перевода навесной уборочной машины из рабочего в транспортное положение.

Результаты расчета силовых параметров базового МН УЭС-2-250А, агрегатируемого с навесным кормоуборочным комбайном «Полесье-4500», выполненного при помощи сформированной функциональной математической модели (ФММ), представлены в табл. 1.

Таблица 1

<u>S</u> [м]	<i>G</i> _M (<i>S</i>) [кН]	G _{S6} (S) [кН]	<i>R</i> ₀₃ (<i>S</i>) [кН]	<i>R</i> 05(<i>S</i>) [кН]	<i>R</i> 07(<i>S</i>) [кН]	<i>F</i> _{пр} (<i>S</i>) [кН]	η(<i>S</i>) [-]
0,571	47,81	46,69	58,40	80,50	63,63	174,61	0,771
0,596	52,38	48,63	58,45	78,34	60,97	174,02	0,779
0,621	55,4	49,43	49,54	76,58	59,01	175,0	0,793
0,646	57,68	49,63	48,14	75,05	59,23	177,11	0,814
0,671	59,62	49,46	47,59	73,62	59,23	179,80	0,818
0,696	61,37	49,03	47,53	72,22	59,53	183,22	0,826
0,721	63,19	48,43	47,74	70,76	59,99	186,98	0,831
0,746	65,18	47,73	48,05	69,28	60,45	181,03	0,836
0,771	67,42	46,97	48,33	67,47	60,75	185,12	0,827
0,796	70,14	46,48	48,44	65,57	60,65	188,79	0,794
0,821	71,45	45,94	48,28	63,54	59,89	191,39	0,762

Силовые параметры модернизированного механизма навески

ФММ анализа, параметрические и функциональные ограничения, а также целевая функция составили основу математической модели оптимизационного параметрического синтеза внутренних параметров МН [6]. Прямые (параметрические) ограничения в ней были представлены следующими управляемыми параметрами:

$$\bar{X} = \{X_{01}, Y_{01}; X_{03}, Y_{03}; X_{05}, Y_{05}; X_{07}; Y_{07}; L_4; L_5; L_7\};$$

$$\bar{X}_{\min} \le \bar{X} \le \bar{X}_{\max}.$$
(17)

Функциональные ограничения включали обеспечение требуемого подъема оси подвеса МН и допустимое изменение угла ϕ_6 -«завал» присоединительного треугольника (рис. 2).

$$\Delta Y_{\rm M} = Y_{56}(S^{\rm max}) - Y_{56}(S_{\rm p}) \ge \Delta Y_{\rm M}^{\rm AOn};$$
(18)

$$\Delta \varphi_6^{\max} = \varphi_6(S^{\max}) - \varphi_6(S_p) \le \Delta \varphi_6^{\text{don}}.$$
(19)

Целевая функция представляла собой общую характеристику потерь на трение, сформированную из показателей качества (части выходных параметров) функционирования МН.

Сформированная оптимизационная ММ решалась по методу штрафных функций.

Обсуждение результатов вычислительного эксперимента

Результаты расчета силовых параметров модернизированного МН УЭС-2-250А «Полесье», агрегатируемого с навесным кормоуборочным комбайном «Полесье-4500», выполненные на сформированной ФММ, представлены в табл. 2.

Таблица 2

Силовые параметры модернизированного механизма навески

S	$G_{\mathrm{M}}(S)$	$G_{\rm S6}(S)$	$R_{03}(S)$	$R_{05}(S)$	$R_{07}(S)$	$F_{\rm np}(S)$	η(<i>S</i>)
[M]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	[ĸH]	[-]
0,571	47,95	49,98	60,04	81,52	66,61	179,61	0,792
0,596	54,94	51,01	61,65	79,35	63,94	179,02	0,817
0,621	58,06	51,08	55,46	78,52	62,06	180,01	0,831
0,646	60,59	52,13	54,33	77,06	62,24	182,11	0,855
0,671	62,97	52,24	54,17	75,63	62,26	184,80	0,864
0,696	65,09	52,01	53,82	73,24	62,54	188,22	0,876
0,721	66,99	51,34	54,43	71,75	62,97	191,98	0,881
0,746	68,84	50,41	56,04	68,27	63,43	192,03	0,883
0,771	72,48	50,39	58,13	67,47	63,74	193,12	0,889
0,796	77,21	51,16	58,44	66,56	63,67	194,79	0,874
0,821	80,92	52,04	58,25	64,51	62,89	196,39	0,863

Сравнение значений некоторых выходных параметров ПНУ, приведенных в табл. 1 и 2, и в частности пошагового изменения КПД, свидетельствует о повышении его значений у модернизированного варианта МН ПНУ УЭС-2-250А, а пошаговый рост значений грузоподъемности (столбцы 2 и 3 в табл. 1 и 2) подтверждает повышение грузоподъемности ПНУ за счет снижения диссипативных потерь.

Таким образом, параметрическая оптимизация МН позволила изменить в лучшую сторону как среднее, так и экстремальные значения КПД (рис. 4) в диапазоне изменения обобщенной координаты МН и косвенно повысить грузоподъемность ПНУ УЭС-2-250А.

Рис. 4. Характер изменения КПД в исходном и модернизированном механизмах навески

Заключение

Достигнутое в результате проведенного исследования 6–7%-е сокращение диссипативных потерь для тяжело нагруженного механизма навески УЭС-2-250А создало внутренний резерв увеличения грузоподъемности ПНУ.

Алгоритм решения поставленной проектной задачи снижения диссипативных потерь может быть использован в идентичных по структуре механизмах навески колесных тракторов «Беларус», например для сходного по нагрузке ПНУ модели трактора «Беларус 2522».

Литература

- 1. Попов, В. Б. Анализ навесных устройств универсального энергосредства «Полесье-250» / В. Б. Попов // Тракторы и с.-х. машины. – 1990. – № 12. – С. 11–14.
- 2. Попов, В. Б. Аналитические выражения кинематических передаточных функций механизмов навески энергоносителей / В. Б. Попов // Вестн. ГГТУ им. П. О. Сухого. 2000. № 2. С. 25–29.
- 3. Артоболевский, И. И. Теория механизмов и машин / И. И. Артоболевский. Москва : Машиностроение, 1988. 640 с.
- 4. Гуськов, В. В. Тракторы : в 3 ч. / В. В. Гуськов. Минск : Выш. шк., 1981. Ч. III : Конструирование и расчет. 383 с.
- 5. Озол, О. Г. Теория механизмов и машин / пер. с латыш. ; под ред. С. Н. Кожевникова. – Москва : Наука, 1984. – 432 с.
- 6. Тарасик, В. П. Математическое моделирование технических систем : учеб. для вузов / В. П. Тарасик. Минск : Дизайн ПРО, 2004. 640 с.

Получено 19.11.2008 г.