Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

УТВЕРЖДАЮ
Проректор по научной работе
ГГТУ им. П.О. Сухого

_____ А.А. Бойко
_____ Регистрационный № УДмаг-133/уч

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА В ЭЛЕКТРОЭНЕРГЕТИКЕ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-43 80 01 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

Учебная программа составлена на основе:

- образовательного стандарта специальности 1-43 80 01 "Электроэнергетика и электротехника", рег. № ОСВО 1-43 80 01-2019;
- учебных планов второй ступени высшего образования учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» специальности: 1-43 80 01 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХ-НИКА № I 43-2-06/уч от 03.04.2019; № I 43-2-14/уч от 03.04.2019.

СОСТАВИТЕЛЬ:

О.Г. Широков, доцент кафедры «Электроснабжение» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого», к.т.н., доцент.

РЕЦЕНЗЕНТЫ:

В.Н. Петренко, начальник производственной лаборатории диагностики энергооборудования и качества электроэнергии филиала Госэнергогазнадзор по гомельской области;

А.В. Шаповалов, заведующий кафедрой «Промышленная теплоэнергетика», кандидат технических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Электроснабжение» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 4 от 6.11.2019);

Научно-методическим советом энергетического факультета учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

(протокол № 3 от 26.11.2019);

Научно-методическим Советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 2 от 03.12.2019).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Целью изучения дисциплины является приобретение знаний и практических навыков в области планирования, организации и проведения экспериментов в электроэнергетике и качественной и количественной обработки и интерпретации полученных данных.

Задачами дисциплины являются:

- освоение навыков определения цели и задач планирования эксперимента;
- изучение основ постановки эксперимента, методов пассивного и активного экспериментов;
- изучение приемов проведения эксперимента, сбора априорной информации, реализации плана эксперимента, устранения или учета ошибок опытов.

Учебная дисциплина «Планирование эксперимента в электроэнергетике» взаимосвязана с такими учебными дисциплинами как «Высшая математика - интегральное, дифференциальное исчисление, теория вероятностей и математическая статистика», «Метрология, стандартизация и сертификация», «Электроника и информационно-измерительная техника», «Информационное обеспечение вычислительного эксперимента в электроэнергетике», «Электрические машины» «Электрические системы и сети», «Электротехнологические установки» «Электроснабжение промышленных предприятий».

В результате изучения дисциплины магистрант должен знать:

- методы планирования эксперимента, экспериментальной оптимизации при постановке многофакторного эксперимента, теорию погрешностей, обработки прямых и косвенных измерений;
- планирование эксперимента как объекта исследований, специфику проведения экспериментальных исследований, классификацию и этапы проведения исследований, методику обработки статистических данных;
- специфику постановки экспериментальных исследований, этапы выполнения и методику их проведения, критерии оценки полученных результатов;

должен уметь:

- использовать приобретенные навыки для самостоятельной обработки полученных результатов с использованием известных методов корреляционного и регрессионного анализа;
- планировать однофакторный и многофакторный эксперименты, обработать полученные результаты и делать квалифицированную оценку полученных результатов;
- поставить научно-исследовательскую задачу и правильно применить необходимый математический аппарат;

должен владеть:

- навыками применения современных методов исследования и качественной обработки полученных результатов;

- навыками постановки задач и методов проведения экспериментальных исследований в электроустановках, способами обработки полученных результатов и правильной их оценки;
- навыками правильной формулировки задач электроэнергетики, выбора необходимых методов исследования и обоснования эффективности принимаемых решений.

СК-9 "Быть способным применять методы математической статистики и регрессионного анализа при планировании теоретических и экспериментальных исследований, выполнять оптимальное проведение многофакторного эксперимента при вероятностном характере исходной информации".

В рамках учебной программы требуются следующие академические, социально-личностные и профессиональные компетенции:

- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
 - владеть системным и сравнительным анализом;
 - владеть исследовательскими навыками;
 - уметь работать самостоятельно;
 - владеть междисциплинарным подходом при решении проблем;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
 - обладать навыками устной и письменной коммуникации;
 - уметь учиться, повышать свою квалификацию в течение всей жизни;
 - уметь работать в команде;
- организовывать работу малых коллективов исполнителей для достижения поставленных целей образовательного процесса;
- знать и применять основные правила пользования электрической энергией;
- понимать сущность и социальную значимость своей профессии, основные проблемы в конкретной области своей деятельности.

Формы получения высшего образования: дневная, заочная полная.

Общее количество часов, отводимое на изучение учебной дисциплины в соответствии с учебным планом университета по специальности, составляет 90 часов. Количество аудиторных часов: для дневной формы 32 часа; для заочной полной формы 10 часов. Трудоёмкость учебной дисциплины, выраженная в зачётных единицах равна 3.

Распределение аудиторного времени по видам занятий, курсам и семестрам:

Дневная форма

Курс: 1 Семестр: 2

Лекции: 16 часа

Практические занятия: 16 часов

Форма текущей аттестации по учебной дисциплине:

Зачёт в 2 семестре

Заочная полная форма Курс: 2

Семестр: 3

Лекции: 6 часов

Практические занятия: 4 часа

Форма текущей аттестации по учебной дисциплине:

Зачёт в 3 семестре

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Модуль 1. Задачи и основы планирования эксперимента

Тема 1. Основные понятия и определения

Основные определения. Виды параметров оптимизации. Требования к параметру оптимизации. Способы построения обобщенного отклика. Функция и шкала желательности.

Тема 2. Факторы. Выбор модели

Определение фактора. Требования к факторам при планировании эксперимента. Как выбрать модель. Полиноминальные модели.

Модуль 2. Планирование эксперимента в электроэнергетике

Тема 3. Моделирование пассивного эксперимента.

Пассивный и активный эксперимент. План пассивного эксперимента. Одномерная и многомерные регрессионные модели эксперимента. Проверка гипотезы адекватности модели. Доверительные интервалы и доверительная область.

Тема 4. Полный факторный эксперимент.

Принятие решения перед планированием эксперимента. Полный факторный эксперимент типа 2^{κ} . Свойства полного факторного эксперимента типа 2^{κ} . Полный факторный эксперимент и математическая модель.

Тема 5. Дробный факторный эксперимент.

Минимизация числа опытов. Дробные реплики и их выбор. Выбор полуреплик. Выбор реплик 1/4. Выбор реплик большой дробности.

Модуль 3. Проведение эксперимента и обработка экспериментальных данных.

Тема 6. Проведение эксперимента.

Анкета для сбора априорной информации. Реализация плана эксперимента. Ошибки опытов. Их виды и способы устранения или учета. Проверка однородности дисперсии. Рандомизация.

Тема 7. Обработка результатов эксперимента.

Метод наименьших квадратов. Регрессионный анализ. Проверка адекватности модели. Проверка значимости коэффициентов

Тема 8. Принятие решений после построения моделей.

Интерпретация результатов. Принятие решений после построения модели процесса. Построение интерполяционной формулы.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для специальности 1-43 80 01 "Электроэнергетика и электротехника" (дневная форма получения образования)

MbI	Количество аудиторных часов				10B	74		
Номер раздела, темы	Название раздела, темы	Лекции	занятияПрактические	занятияСеминарские	занятияЛабораторные	Иное	УСР*Количество часов	 Форма контроля знаний
1	2	3	4	5	6	7	8	9
1.	Основные понятия и определения	2						Тест, зачёт
2.	Факторы. Выбор модели	2	2					Тест, зачёт
3.	Моделирование пас- сивного эксперимен- та.	2						Тест, зачёт
4.	Полный факторный эксперимент.	2	4					Тест, зачёт
5.	Дробный факторный эксперимент.	2	4					Тест, зачёт
6	Проведение эксперимента.	2						Тест, зачёт
7	Обработка результатов эксперимента.	2	8					Тест, зачёт
8	Принятие решений после построения моделей.	2	16					Тест, зачёт
Итого		16	16					

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для специальности 1-43 80 01 "Электроэнергетика и электротехника" (заочная форма получения образования)

MbI	Количество аудиторных часов				сов	(OB	74	
Номер раздела, темы	Название раздела, темы	Лекции	занятияПрактические	занятияСеминарские	занятияЛабораторные	Иное	УСР*Количество часов	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1.	Основные понятия и определения	0,5						Тест, зачёт
2.	Факторы. Выбор модели	0,5						Тест, зачёт
3.	Моделирование пас- сивного эксперимен- та.	0,5						Тест, зачёт
4.	Полный факторный эксперимент.	1						Тест, зачёт
5.	Дробный факторный эксперимент.	1						Тест, зачёт
6	Проведение эксперимента.	0,5						Тест, зачёт
7	Обработка результатов эксперимента.	1	4					Тест, зачёт
8	Принятие решений после построения моделей.	1	1					Тест, зачёт
	Итого	6	4					

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Адлер, Ю. П. Планирование эксперимента при поиске оптимальных условий/,,. 2-е изд.,перераб. и доп. М.: Наука, 1976. 279 с.
- 2. Джонсон, Н. Статистика и планирование эксперимента в технике и науке: Методы планирования эксперимента / Н. Джонсон, Ф. Лион. М.: Мир $1981.-520~\mathrm{c}$.
- 3. Спиридонов, А. А. Планирование эксперимента при исследовании технологических процессов / ,-М.: Машиностроение, 1981. 184 с.

Дополнительная литература

- 4. Серафинович Л.П. Планирование эксперимента: Учебное пособие.-Томск: Томский межвузовский центр дистанционного образования, 2006. — 128 с.
- 5. Макаричев Ю.А., Иванников Ю.Н. Методы планирование эксперимента и обработки данных: учеб. пособие / Макаричев Ю.А., Иванников Ю.Н. Са¬мара: Самар. гос. техн. ун-т, 2016.1-131 с.: ил.
- 6. Грин, В. М. Основы инженерного эксперимента : учеб. пособие /. Бар¬наул : Изд-во АлтГТУ, 2008. 44 с.
- 7. Денисов, В. И. Методы построения многофакторных моделей по неод¬нородным, негауссовским, зависимым наблюдениям /,. Новосибирск : НГТУ 2008.-359 с. :ил.
- 8. Трусов, В. С. Теория эксперимента : учеб. пособие / . Томск : Изд-во Томск. ун-та, 1983. 183 с. : ил.
- 9. Асатурян, В. И. Теория планирования эксперимента: учеб. пособие для вузов /. М.: Радио и связь, 1983. 248 с.
- 10. Ермаков, С. М. Математическая теория оптимального эксперимента: учеб. пособие /,.М.: Наука. Гл ред. физ.-мат. лит., 1987. 318 с.
- 11. Грановский, В. А. Методы обработки экспериментальных данных при измерениях /, . Л. : Энергоатомиздат. Ленингр. отд-ние, 1990. -288 с.: ил.

Учебно-методическая литература

Перечень используемых средств диагностики результатов учебной деятельности

- 1. Электронный курс на учебном портале edu.gstu.by.
- 2. Комплекс электронных тестов.

Перечень практических занятий

- 1. Статистический анализ суточных графиков нагрузок.
- 2. Регрессионное моделирование суточных графиков нагрузок.
- 3. Планирование и анализ результатов полного факторного эксперимента.
- 4. Планирование факторного эксперимента с полурепликами и анализ его результатов.

Вопросы к зачёту

- 1. Определение терминов: эксперимент; планирование эксперимента, оптимизация; объект исследования.
- 2. Параметр оптимизации, классификация параметров оптимизации.
- 3. Требования к параметру оптимизации.
- 4. Построение обобщенного параметра по двухбалльной шкале.
- 5. Функция и шкала желательности.
- 6. Определение фактора, классификация факторов.
- 7. Требования к факторам и совокупности факторов.
- 8. Модель, выбор модели.
- 9. Полиноминальные модели.
- 10. Пассивный и активный эксперимент.
- 11. Активный эксперимент.
- 12. Планирование пассивного эксперимента.
- 13. Одномерная регрессионная модель.
- 14. Многомерная регрессионная модель.
- 15. Проверка гипотезы адекватности модели.
- 16. Доверительные интервалы и доверительная область.
- 17. Принятие решения перед планированием эксперимента.
- 18. Полный факторный эксперимент типа 2^{κ}
- 19. Свойства полного факторного эксперимента типа 2^{κ}
- 20. Полный факторный эксперимент и математическая модель.
- 21. Дробные реплики и их выбор.
- 22. Полуреплики.
- 23. Реплики 1/4.
- 24. Реплики большой дробности.
- 25. Анкета для сбора априорной информации.
- 26. Виды и способы устранения или учета ошибок опытов.
- 27. Дисперсия параметра оптимизации
- 28. Проверка однородности дисперсий.
- 29. Рандомизация.
- 30. Метод наименьших квадратов.
- 31. Регрессионный анализ.
- 32. Проверка адекватности модели по критерию Фишера
- 33. Проверка значимости коэффициентов с помощью критерия Стьюдента.
- 34. Интерпретация результатов моделирования.
- 35. Принятие решений после построения модели процесса.
- 36. Построение интерполяционной формулы.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯ-ТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Теоретические занятия чередуются с практическими занятиями. Используется учебный портал в сети Интернет, мультимедийный проектор, комплекс электронных тестов. Учебно-методическое обеспечение ориентировано на освоение магистрантами основ планирования эксперимента в электроэнергетике, умение работать с научной и технической литературой.

Основным средством, обеспечивающим самостоятельную работу магистрантов по дисциплине, является электронный курс, который должен быть доступен в сети Интернет.

Основные элементы электронного курса:

- текст лекций;
- тексты всех практических занятий;
- интерактивные тесты по модулям.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ

- Контрольные электронные интерактивные тесты по модулям в обучающей системе MOODLE.
- Список вопросов к зачёту.
- Итоговый электронный интерактивный тест в обучающей системе MOODLE.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название учеб-	Название	Предложения	Решение, принятое
ной	кафедры	об изменениях в содержа-	кафедрой, разрабо-
дисциплины,		нии учебной программы	тавшей учебную
с которой		учреждения высшего	программу (с указа-
требуется со-		образования по учебной	нием даты и
гласование		дисциплине	номера протокола)
1. Методы и	Электро-	Нет	
средства управ-	снабжение		
ления энерго-			
потреблением и			
повышение эф-			
фективности			
систем энерго-			
снабжения			