Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

УТВЕРЖДАЮ Первый проректор УО «ГГТУ им. П.О.Сухого» О.Д. Асенчик «28» 06 2019 Регистрационный № УД-52-41/уч

ОБЩАЯ ЭНЕРГЕТИКА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности 1-43 01 02 «Электроэнергетические системы и сети»

Учебная программа составлена на основе:

образовательного стандарта ОСВО 1-43 01 02-2013;

учебных планов учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»:

специальности 1-43 01 02 «Электроэнергетические системы и сети» \mathbb{N}_2 I 43 - 1 - 08/уч. от 21.05.2018

СОСТАВИТЕЛЬ:

В.Г. Якимченко, старший преподаватель кафедры «Промышленная теплоэнергетика и экология» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого».

РЕЦЕНЗЕНТЫ:

- Т. В. Алферова, кандидат технических наук, доцент кафедры «Электроснабжение» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»;
- А.В. Мацукевич, заместитель главного инженера по эксплуатации филиала «Гомельская ТЭЦ-2» РУП «Гомельэнерго».

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Промышленная теплоэнергетика и экология» учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

(протокол № 21 от 30.04.2019); УД-УП-2-0090

Научно-методическим советом энергетического факультета учреждения образования «Гомельский государственный технический университет имени П.О. Сухого»

(протокол № 10 от 25.06.2019);

Научно-методическим советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 6 от 26.06.2019)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа учреждения высшего образования (далее — учебная программа УВО) по дисциплине «Общая энергетика» предусматривает формирование у студентов знаний о методах получения, преобразования и передаче тепловой и электрической энергии, принципах функционирования энергетических установок и источников производства энергии.

1. Цели и задачи учебной дисциплины.

Цель дисциплины — формирование у студентов современного уровня знаний в области преобразования энергии, технологии производства электроэнергии на электростанциях, а также устройства и функционирования различных типов энергетических установок.

Задачами изучения дисциплины:

- формирование знаний и понимания физической сути процессов получения, передачи и преобразования энергии;
- изучение конструктивных особенностей и принципов работы энергетических установок и оборудования, возможностей использования традиционных и альтернативных энергетических источников для выработки понимания проблем рационального и эффективного использования энергетических и материальных ресурсов.
- 2. Место учебной дисциплины в системе подготовки специалиста с высшим образованием, связи с другими учебными дисциплинами.

Дисциплина «Общая энергетика» для специальности 1-43 01 02 «Электроэнергетические системы и сети» является компонентом учреждения высшего образования в системе подготовки инженеров-энергетиков.

3. Требования к освоению учебной дисциплины (включая требования образовательного стандарта).

В результате освоения курса «Общая энергетика» студент должен знать:

- основные физические явления, связанные с получением электрической и тепловой энергии;
- различные способы получения электрической и тепловой энергии;
- основные методы и способы преобразования энергии;
- технологию производства электроэнергии на тепловых, атомных и гидравлических электростанциях,
- устройство традиционных и альтернативных источников электроэнергии;
 уметь:
- объяснять физические принципы работы турбин, парогенераторов, циклов получения тепловой и электрической энергии;

Владеть:

- навыками определения принципов функционирования электроэнергетических систем;
- навыками построения электроэнергетических систем;
- навыками правильно определять состав оборудования;
- эксплуатационными требованиями к различным видам электроэнергетики;
- методами теплового и гидравлического расчетов теплообменных аппаратов;
- навыками оценки энегоэффективности применяемого оборудования.

Освоение учебной программы УВО по дисциплине «Общая энергетика» должно обеспечить формирование академических, социально — личностных и профессиональных компетенций.

Требования к академическим компетенциям студента (в соответствии с образовательным стандартом ОСВО $1-43\ 01\ 02\text{-}2013$)

Специалист должен:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
- АК-2. Владеть системным и сравнительным анализом.
- АК-3.Владеть исследовательскими навыками.
- АК-4. Уметь работать самостоятельно.
- АК-5. Быть способным порождать новые идеи (обладать креативностью).
- АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.

Требования к социально-личностным компетенциям специалиста (в соответствии с образовательным стандартом ОСВО $1-43\ 01\ 02-2013$) Специалист должен:

- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-6. Уметь работать в команде.

Требования к профессиональным компетенциям специалиста (в соответствии с образовательным стандартом ОСВО 1 – 43 01 02-2013) Специалист должен быть способен:

Организационно-управленческая деятельность

- ПК-3. Готовить доклады, материалы к презентациям и представительствовать на них.
- ПК-4. Пользоваться глобальными информационными ресурсами.

Проектная и научно-техническая деятельность

 ПК-8. Анализировать и оценивать тенденции развития техники и технологий.

Инновационная деятельность

- ПК-36. Осуществлять поиск, систематизацию и анализ информации по перспективам развития энергетики, инновационным технологиям, проектам и решениям.
- ПК-37. Определять цели инноваций и способы их достижения.

4. Общее количество часов, количество аудиторных часов, трудоемкость учебной дисциплины.

Форма получения высшего образования: дневная.

Распределение аудиторного времени по видам занятий и семестрам, а также формы текущей аттестации по учебной дисциплине представлены в таблице 1.

Таблица 1. – Распределение аудиторного времени

Специальность (форма получения высшего образования)	Форма текущей аттестации				ပ္	стр	Количество аудиторно- го времени, ч		работа, ч	Всего иторных дисциплине, ч	дисциплине, ч	ых единиц	
	экзамен	зачет	тестиров.	курсовая работа	Kypc	Семестр	лекции	лаб.	практ.	Курсовая р	Всего аудиторных часов по дисципл	Всего по дис	Всего зачетных
1 -43 01 02 «Электроэнерге-	4	3			2	3	34	17	17	_	119	258	4
тические систе- мы и сети» (дневная)	4	3			2	4	34	_	17	_	119		3,5

Общее количество часов по учебному плану составляет 258, количество аудиторных часов — 119. Аудиторное время распределяется на 68 часов лекций, 17 часов лабораторных занятий и 34 часа практических занятий.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Модуль 1. Техническая термодинамика и теплопередача

Тема 1. Введение

Цели, задачи и структура курса "Общая энергетика". Развитие энергетики в мире и в Белоруссии. Этапы развития техники, тепловых машин и механизмов.

Тема 2. Техническая термодинамика.

Термодинамика. Предмет термодинамики. Техническая термодинамика. Основные термодинамические параметры состояния. Виды и формы обмена энергией. Термодинамическая система. Термодинамическое равновесие. Теплота и работа как формы обмена энергией.

Основные законы идеальных газов и уравнение состояния идеальных газов. Свойства газовых смесей. Газовая постоянная смеси газов. Смесь идеальных газов. Теплоемкость газов. Уравнение Майера. Термодинамические процессы идеальных газов. Понятия энтропии и энтальпии.

Первый и второй законы термодинамики. Внутренняя энергия. Обратимые и необратимые процессы. Круговые термодинамические процессы.

Тема 3. Циклы тепловых двигателей.

Термический КПД и холодильный коэффициент циклов. Прямой и обратный обратимые циклы Карно.

Реальные газы. Водяной пар. p-v и h-s диаграммы водяного пара.

Цикл Ренкина. Циклы Ренкина на насыщенном и перегретом паре.

Тема 4. Основы теории теплообмена.

Основные виды переноса теплоты. Сложный теплообмен. Температурное поле. Уравнение Фурье. Коэффициент теплопроводности. Градиент температуры. Передача энергии теплопроводностью через тела различной формы.

Конвективный теплообмен. Закон Ньютона-Рихмана. Коэффициент теплоотдачи. Вынужденная и свободная конвекция. Критериальные зависимости конвективного теплообмена. Динамический и тепловой пограничные слои.

Тепловое излучение. Основные законы теплового излучения. Лучистый теплообмен между телами.

Тема 5. Теплообменные аппараты.

Назначение, классификация. Устройство теплообменных аппаратов. Теплоносители. Основы теплового и гидравлического расчета теплообменников. Уравнение теплового баланса и уравнение теплопередачи.

Тема 6. Холодильные машины и установки.

Классификация холодильных установок. Хладагенты и требования к ним. Устройство и принципы работы паровых компрессионных, абсорбционных и пароэжекторных холодильных установок. Циклы холодильных машин.

Модуль 2. Энергетика и энергогенерирующие источники

Тема 7. Энергетика и электрогенерирующие станции.

Типы тепловых электростанций (ТЭС). Классификация. Технологический процесс преобразования химической энергии топлива в электроэнергию на ТЭС.

Электрические генераторы. Устройство, типы, классификация. Трансформаторные подстанции. Трансформаторы, устройство, типы, классификация. Классификация и основные характеристики, электроэнергетических систем и сетей.

Преймущества и недостатки ТЭС по сравнению с другими электрогенерирующими источниками. Теплоэлектроцентрали. Принципиальные схемы ТЭС с турбинами различных типов. Показатели, характеризующие экономичность работы ТЭС.

Атомные электростанции (АЭС). Классификация и устройство атомных реакторов различного типа. Ресурсы, потребляемые АЭС, ее продукция, отходы производства. Принципиальные схемы производства электроэнергии на АЭС.

Гидроэлектростанции (ГЭС). Особенности, оборудование, принцип работы. Классификация ГЭС. Плотины ГЭС. Развитие гидроэнергетики в мире и в Республике Беларусь. Малые гидроэлектростанции (МГЭС). Типы МГЭС.

Топливо. Физико-химические основы процесса горения.

Тема 8. Тепловые двигатели.

Общие сведения. Классификация. Устройство и принцип действия поршневых ДВС. Циклы ДВС. Характеристики циклов.

Газотурбинные установки (ГТУ). Классификация, устройство и принцип действия. Одноступенчатые и многоступенчатые газовые турбины. Мощность, развиваемая газовой турбиной. Основные параметры, определяющие мощность турбины.

Мини-ТЭЦ. Варианты размещения. Состав оборудования. Виды используемого топлива. Достоинства мини-ТЭЦ. Типы двигателей, используемых для мини-ТЭЦ.

Тема 9. Паросиловые и парогазовые установки.

Паровые турбины. Классификация. устройство и принцип действия турбин. Активные и реактивные турбины.

Парогазовые установки (ПГУ). Классификация. Достоинства и недостатки. Бинарные и монарные ПГУ. Конденсационные и теплофикационные ПГУ. Схемы, устройство, особенности и отличия.

Тема 10. Котельные установки.

Котельная установка и ее системы. Основное и вспомогательное оборудование котельных установок. Котельный агрегат и его элементы. Уравнение теплового баланса, КПД и расхода топлива котельного агрегата. Классификация котельных установок.

Тема 11. Альтернативные источники энергии

Использование основных видов возобновляемых и нетрадиционных источников энергии. Классификация.

Тепловые солнечные коллекторы. Назначение, устройство, принцип работы, виды. Солнечные фотоэлектрические батареи. Классификация солнечных электростанций и особенности их применения в электроснабжении.

Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов. Типы ветрогенераторов. Установки с вертикальной и горизонтальной осью вращения. Преимущества и недостатки.

Водородная энергетика. Производство и потенциал применения водорода.

Геотермальные электростанции. Источники получения геотермальной энергии. Устройство, достоинства и недостатки ГеоЭС.

Двигатели Стирлинга. Устройство, особенности. Применение в энергетике.

Биогазовые установки и источники энергии. Сырье для получения биогаза. Устройство, принцип действия биогазовой установки.

Тема 12. Нагнетатели

Классификация, виды и устройство. Их основные характеристики и параметры работы.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ (Дневная форма получения образования)

19		Ко.	личест	во ауд	циторн	ΙЫΧ		
емі				CP*	ВП			
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Кол-во часов, УСР*	Форма контроля знаний
1	Модуль 1. Техническая термодинамика и теплопередача	23	20	7	8	,		тест, зачет
1.1	Тема 1. Введение.	1		Ĭ				
1.2	Тема 2. Техническая термодинамика.	8	4					опрос
1.3	Тема 3. Циклы тепловых двигателей.	2	4	þ,	2			опрос
1.4	Тема 4. Основы теории теплообмена	6	4		6			опрос
1.5	Тема 5. Теплообменные аппараты	2	4					опрос
1.6	Тема 6. Холодильные машины и установки	4	4					
2	Модуль 2. Энергетика и энергогенерирующие источники.	45	14		9			тест, экза- мен
2.1	Тема 7. Энергетика и электрогенерирующие станции.	15	2		3			опрос
2.2	Тема 8. Тепловые двигатели.	8	6					опрос
2.3	Тема 9. Паросиловые и парогазовые установки.	10						опрос
2.4	Тема 10. Котельные установки.	4	6		4			опрос
2.5	Тема 11. Альтернативные источники энергии.	6						опрос
2.6	Тема 12. Нагнетатели.	2			2			
	ВСЕГО	68	34		17			

Примерный перечень лабораторных занятий:

- 1. Определение зависимости температуры насыщенного пара от давления, определение удельной теплоты парообразования.
- 2. Теплоотдача горизонтальной оребренной трубы при свободной конвекции.
- 3. Определение коэффициента теплопроводности сыпучих материалов методом цилиндров.
 - 4. Технический анализ топлива.
 - 5. Составление теплового баланса котельной установки.
 - 6. Снятие характеристик центробежного нагнетателя.

Для оценки приобретенных студентом знаний используется следующий диагностический инструментарий:

- проведение текущих контрольных опросов по отдельным темам;
- проведение тестирования по учебным модулям;
- сдача зачета в 3 семестре и экзамена в 4 семестре.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Абдурашитов, Ш.Р. Общая энергетика / Ш.Р. Абдурашитов. Изд. 2-е. М.: Голос-Пресс, 2008. 310 с.
- 2. Безруких, П.П. Использование энергии ветра, Техника, экономика, экология / П.П. Безруких. М. : Колос, 2008. 196 с.
- 3. Соколов, Е.Я. Теплофикация и тепловые сети: учебник для вузов / Е.Я. Соколов. 7-е изд., стер. М. : Изд-во МЭИ, 2001.-472 с.

Дополнительная литература

- 4. Ахметов, Р.Б. Технология использования невозобновляемых источников энергии / Р.Б Ахметов. – М.: Энергоиздат, 1984. – 224 с.
- 5. Баскаков, А.П. Теплотехника. Учебник для вузов / А.П. Баскаков [и др.]; под ред. А.П. Баскакова. 2-е изд., перераб. М. : Энергоатомиздат, 1991.-224 с.
- 6. Бальян, С.В. Техническая термодинамика и тепловые двигатели / С.В. Бальян. 2-е изд., перераб. и доп. Л. : Машиностроение, 1973. 304 с.
- 7. Белинский, С.Я. Энергетические установки электростанций: Учебник для вузов по специальностям "Электр. станций" и "Электр. системы и сети" / С.Я. Белинский, Ю.М. Липов. М.: Энергия, 1974. 305 с.
- 8. Бекман, У. Расчет систем солнечного теплоснабжения / У. Бекман, С. Клейн. Дж. Даффи. М.: Энергоиздат, 1982. 80 с.
- 9. Бриксворт, Б.Дж.. Солнечная энергия для человека / Б.Дж. Бриксворт. М.: Мир, 1976. 291 с.
- 10. Григорьев, В.А. Теплоэнергетика и теплотехника: Общие вопросы. Справочник / Под общ. ред. В.А. Григорьева и В.М. Зорина. М. : Энергия, 1980. 528 с.
- 11. Елизаров Д.П. Теплоэнергетические установки электростанций. Учебник для вузов / Д.П. Елизаров. 2-е изд., перераб. и доп. М.: Энергоиздат, 1982. 264 с.
- 12. Морозов, Г.Н. Тепловые электрические станции / Г.Н. Морозов, В.Я. Гиршфельд. 2-е изд., перераб. М. : Энергия, 1986. 226 с.
- 13. Михеев, М.А. Основы теплопередачи / М.А. Михеев, И.М. Михеева. М.:Знергия, 1977. 344 с.
- 14. Нащокин, В.В. Техническая термодинамика и теплопередача / В.В. Нащокин. М.: Высшая школа, 1975. 497 с.
- 15. Немцев, 3.Ф. Теплоэнергетические установки и теплоснабжение / $3.\Phi.$ Немцев, $\Gamma.B.$ Арсеньев. M. : Энергоиздат, 1982.-400 с.
- 16. Основы энергетики: учебник / Г.Ф. Быстрицкий. Москва : Инфа-М. 2007. 276 с.
- 17. Соколов Е.Я. Промышленные тепловые электрические станции / Е.Я. Соколов [и др.]; под ред. Е.Я. Соколова. 2-е изд., перераб. М. : Энергия, 1979. 296 с.
- 18. Соколов, Е.Я. Теплофикация и тепловые сети / Е.Я. Соколов. 5-е изд., перераб. М.: Энергоиздат, 1982. 360 с.

- 19. Старшинов Ю.Н. Мировая энергетики. Прогноз развития до 2020 года / Пер. с англ., под ред. Ю.Н. Старшинова. М.: Энергия, 1980. 255 с.
- 20. Твайделл, Дж. Возобновляемые источники энергии / Дж. Твайделл, А. Уэйр. М.: Энергоатомиздат, 1990. 392 с.
- 21. Юдаев, Б.Н. Теплопередача / Б.Н. Юдаев. М, : Высшая школа, 1972. 360 с.

Электронные учебно-методические комплексы

22. Якимченко В.Г. Общая энергетика: электронный учебнометодический комплекс дисциплины / В.Г. Якимченко; кафедра «Промышленная тепло энергетика и экология». – Гомель: ГГТУ им. П.О. Сухого, 2014. – Режим доступа: http://www.edu.gstu.by/course/

Перечень компьютерных программ, наглядных и других пособий, методический указаний, материалов и технических средств обучения

23. Общая энергетика : лабораторный практикум по одноименному курсу для студентов специальности 1-43 01 02 «Электроэнергетические системы и сети» дневной формы обучения / В.Г. Якимченко; кафедра «Промышленная теплоэнергетика и экология». – Гомель : ГГТУ, 2010. – 37 с.

Примерный перечень тем практических занятий:

- 1. Состояние рабочего тела. Температура, давление удельный объем.
- 2. Первый закон термодинамики. Взаимное превращение теплоты в работу.
- 3. Термодинамические процессы идеальных газов. Параметры термодинамических процессов.
 - 4. Второй закон термодинамики. Термический КПД теплового двигателя.
- 5. Теплопроводность. Коэффициент теплопроводности, удельный тепловой поток, температура на поверхности стенки.
 - 6. Теплопередача. Коэффициент теплопередачи.
- 7. Теплообменные аппараты. Уравнения теплового баланса и теплопередачи.
 - 8. Циклы холодильных машин. Холодильный коэффициент.
 - 9. Циклы тепловых двигателей. Мощность двигателя.
- 10. Циклы тепловых двигателей. Расход топлива и кпд двигателей внутреннего сгорания.
 - 11. Циклы тепловых двигателей. Тепловой баланс двигателя.
- 12. Характеристики топлива. Определение количества воздуха, необходимого для горения, состава и количества дымовых газов.
 - 13. Котельные установки. Тепловой баланс и кпд котельного агрегата.
 - 14. Котельные установки. Расход топлива и испарительная способность.

Вопросы к зачету по дисциплине «Общая энергетика»

- 1. Этапы развития техники, тепловых машин и механизмов.
- 2. Развитие энергетики в мире и в Белоруссии.
- 3. Термодинамика. Предмет термодинамики. Техническая термодинамика.
- 4. Основные термодинамические параметры состояния. Виды и формы обмена энергией.
- 5. Термодинамическая система. Термодинамическое равновесие.
- 6. Теплота и работа как формы обмена энергией.
- 7. Идеальные газы. Уравнение состояния идеальных газов.
- 8. Газовая постоянная. Смесь идеальных газов.
- 9. Первый и второй законы термодинамики. Аналитическое выражение первого закона термодинамики.
- 10. Обратимые и необратимые процессы.
- 11. Теплоемкость газов. Энтропия. Энтальпия.
- 12. Удельная (массовая), объемная и молярная теплоемкость. Средняя теплоемкость.
- 13. Теплоемкость при p = const и v = const. Уравнение Майера. Средняя теплоемкость.
- 14. Термодинамические процессы идеальных газов (изотермический, изобарный, изохорный).
- 15. Термодинамические процессы идеальных газов (адиабатный, политропный).
- 16. Круговые термодинамические процессы.
- 17. Термический КПД и холодильный коэффициент циклов.
- 18. Прямой обратимый цикл Карно.
- 19. Обратный обратимый цикл Карно.
- 20. Водяной пар. p-v и h-s диаграммы водяного пара.
- 21. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- 22. Основные виды переноса теплоты. Сложный теплообмен.
- 23. Передача тепла теплопроводностью. Уравнение Фурье. Коэыффициент теплопроводности. Градиент температуры.
- 24. Конвективный теплообмен. Закон Ньютона-Рихмана. Коэффициент теплоотдачи.
- 25. Теплопроводность плоской и цилиндрической стенки.
- 26. Конвективный теплообмен. Виды движения теплоносителей.
- 27. Критериальные уравнения конвективного теплообмена.
- 28. Динамический и тепловой пограничные слои.
- 29. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- 30. Классификация теплообменных аппаратов.
- 31. Теплоносители, используемые в теплообменных аппаратах.
- 32. Тепловой конструктивный расчет кожухотрубчатых теплооменных аппаратов.
- 33. Классификация холодильных установок, хладагенты и требования к ним.
- 34. Воздушная холодильная установка. Устройство, схема, особенности цикла.
- 35. Паровая компрессионная холодильная установка. Устройство, схема, особенности цикла.
- 36. Абсорбционная холодильная установка. Устройство, схема, особенности цикла.
- 37. Пароэжекторная холодильная установка. Устройство, схема, особенности цикла.

Список вопросов к экзамену по дисциплине «Общая энергетика»

- 1. Энергетика и электрогенерирующие станции. Характеристика энергосистемы РБ
- 2. Типы тепловых электростанций. Классификация.
- 3. Технологический процесс преобразования химической энергии топлива в электроэнергию ТЭС.
- 4. Электрические генераторы. Устройство, типы, классификация.
- 5. Трансформаторные подстанции. Трансформаторы, устройство, типы, классификация.
- 6. Классификация и основные характеристики, электроэнергетических систем и сетей.
- 7. Преимущества и недостатки ТЭС по сравнению с другими электрогенерирующими источниками.
- 8. Теплоэлектроцентрали. Принципиальные схемы ТЭЦ с турбинами различных типов.
- 9. Преимущества комбинированной выработки тепловой и электрической энергии. Показатели, характеризующие экономичность работы ТЭЦ.
- 10. Классификация АЭС и атомных реакторов.
- 11. Устройство ядерных реакторов различного типа.
- 12. Ресурсы, потребляемые АЭС, ее продукция, отходы производства.
- 13. Устройство и оборудование одноконтурных схем производства электроэнергии на АЭС.
- 14. Устройство и оборудование двухконтурных схем производства электроэнергии на АЭС.
- 15. Устройство и оборудование трехконтурных схем производства электроэнергии на АЭС.
- 16. Гидроэлектростанции. Особенности, оборудование, принцип работы.
- 17. Классификация ГЭС.
- 18. Плотины ГЭС. Устройство, классификация.
- 19. Развитие гидроэнергетики в мире и в Республике Беларусь. Особенности большой и малой гидроэнергетики.
- 20. Малые гидроэлектростанции. Типы МГЭС. Достоинства и недостатки различных систем МГЭС.
- 21. Конструкция малой электростанции. Виды и разновидности гидроагрегатов для ГЭС.
- 22. Двигатели внутреннего сгорания. Классификация.
- 23. Газотурбинные установки. Классификация, устройство и принцип действия.
- 24. Одноступенчатые и многоступенчатые газовые турбины. Достоинства и недостатки многоступенчатых турбин.
- 25. Мощность, развиваемая газовой турбиной. Основные параметры, определяющие мощность турбины.
- 26. Поршневые двигатели внутреннего сгорания. Классификация. Типы ДВС. Основные элементы поршневых ДВС.
- 27. Цикл поршневого ДВС с подводом теплоты при постоянном объеме (цикл Отто). Характеристики цикла.

- 28. Цикл поршневого ДВС с подводом теплоты при постоянном давлении (цикл Дизеля). Характеристики цикла.
- 29. Парогазовые установки. Классификация. Достоинства и недостатки.
- 30. Бинарные и монарные ПГУ. Схемы, устройство, особенности и отличия.
- 31. Конденсационные и теплофикационные ПГУ. Схемы, устройство, особенности и отличия.
- 32. Мини-ТЭЦ. Варианты размещения. Состав оборудования. Виды используемого топлива. Достоинства мини-ТЭЦ
- 33. Типы двигателей, используемых для мини-ТЭЦ.
- 34. Типы и область применения паровых турбин. Классификация.
- 35. Преимущества и недостатки паровых турбин. Активные и реактивные турбины, принцип действия, отличия. Степень реактивности паровой турбины.
- 36. Котельный агрегат и его элементы.
- 37. Котельная установка и ее системы.
- 38. Классификация котельных установок.
- 39. Альтернативные и возобновляемые источники энергии. Классификация.
- 40. Тепловые солнечные коллекторы. Назначение, устройство, принцип работы, виды.
- 41. Солнечные фотоэлектрические батареи. Классификация солнечных электростанций и особенности их применения в электроснабжении.
- 42. Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов.
- 43. Типы ветрогенераторов. Установки с горизонтальной осью вращения. Преимущества и недостатки.
- 44. Типы ветрогенераторов. Установки с вертикальной осью вращения. Преимущества и недостатки.
- 45. Водородная энергетика. Производство и потенциал применения водорода.
- 46. Геотермальные электростанции. Источники получения геотермальной энергии. Устройство, достоинства и недостатки ГеоЭС.
- 47. Двигатели Стирлинга. Устройство, особенности. Применение в энергетике.
- 48. Биогазовые установки и источники энергии. Сырье для получения биогаза. Устройство, принцип действия биогазовой установки.

ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

- выполнение студентами индивидуальных заданий во время проведения практических занятий;
- изучение тематических материалов, не включаемых в перечень лекционных занятий;
- подготовка к сдаче модулей после завершения их изучения с использованием основных и дополнительных источников литературы

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисцип-	Название	Предложения об	Решение, принятое
лины, с которой	кафедры	изменениях в со-	кафедрой, разрабо-
требуется согласо-		держании учеб-	тавшей учебную про-
вание		ной программы	грамму (с указанием
		по изучаемой	даты и
		дисциплине	номера протокола)
1	2	3	4
Физика	«Физика»		
Электроэнергетиче- ские системы Производство элек- троэнергии	«Электро- снабжение»		

Заведующий кафедрой к.т.н., доцент

А.В.Шаповалов