

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Физика и электротехника»

ФИЗИКА ОПТИКА, АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

ПРАКТИКУМ по выполнению тестовых заданий для студентов технических специальностей заочной формы обучения

УДК 535+539.18(075.8) ББК 22.34я73 Ф50

Рекомендовано научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол № 6 от 26.02.2019 г.)

Составители: П. А. Хило, И. И. Злотников

Рецензент: доц. каф. «Высшая математика» ГГТУ им. П. О. Сухого канд. физ.-мат. наук В. И. Лашкевич

Физика. Оптика, атомная и ядерная физика: практикум по выполнению тестовых ф50 заданий для студентов техн. специальностей заоч. формы обучения / сост.: П. А. Хило, И. И. Злотников. – Гомель: ГГТУ им. П. О. Сухого, 2020. – 46 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Содержит подборку типовых тестовых заданий различной степени сложности по разделу курса физики «Оптика, атомная и ядерная физика» и краткий теоретический материал. Для студентов технических специальностей заочной формы обучения.

> УДК 535+539.18(075.8) ББК 22.34я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2020

Предисловие

Практикум по разделу «Оптика, атомная и ядерная физика» курса «Физика» содержит краткий теоретический материал, основные формулы и подборку тестовых задач различной степени сложности. Приводится так же справочный материал.

Тестовые задания составлены в соответствии с требованиями общеобразовательных стандартов и типовых учебных программ по курсу «Физика» для студентов технических специальностей.

Практикум направлен на проверку знаний основных законов и положений данного раздела физики и может использоваться на экзаменах, зачетах, а также на практических занятиях и для самостоятельной работы студентов заочного отделения.

Практикум послужит дополнительным источником для самостоятельной работы студентов заочной формы обучения, будет способствовать повышению их уровня знаний. Тестовые задания содержат задачи с ответами, один или несколько из которых являются правильными. Часть задач предполагает установление правильного соответствия между понятиями и формулами двух множеств физических величин.

Основные законы и формулы

Условие максимума интерференции

$$\Delta = \pm m\lambda \ (m = 0, 1, 2...),$$

 λ – длина волны в вакууме, Δ – оптическая разность хода

Условие минимума интерференции

$$\Delta = \pm (2m - 1)\frac{\lambda}{2}$$

$$(m = 1, 2...)$$

Оптическая разность хода в опыте Юнга

$$\Delta = \frac{xd}{L}$$

x — координата точки экрана, d - расстояние между источниками, L — расстояние до экрана.

Ширина интерференционных полос в опыте Юнга

$$\Delta x = \frac{\lambda L}{d}$$

Оптическая разность хода в тонких пленках в отраженном свете

$$\Delta = 2d\sqrt{n^2 - \sin^2 i} \pm \frac{\lambda}{2}$$

d — толщина пленки, n - показатель преломления среды, i — угол падения

Радиусы светлых и темных колец Ньютона в проходящем (или темных и светлых – в отраженном)

$$r_m = \sqrt{m\lambda R},$$

 $(m = 1, 2...)$

$$r_m = \sqrt{(2m-1)\frac{\lambda}{2}R},$$

$$(m = 1, 2...)$$

Радиус k-ой зоны Френеля для сферической волны

$$r_k = \sqrt{\frac{ab}{a+b}k\lambda}$$

$$(k = 1, 2...)$$

a — расстояние от источника до фронта волны, b — расстояние от фронта волны до экрана

Радиус k-ой зоны Френеля для плоской волны

$$r_k = \sqrt{bk\lambda}$$
, $(k = 1, 2...)$

Условие максимума интенсивности при дифракции плоской волны на щели

$$b\sin \varphi = (2k+1)\frac{\lambda}{2}$$
, $(k=1,\,2\ldots),$ b — ширина щели, φ — угол дифракции

Условие минимума интенсивности при дифракции на щели

$$b\sin\varphi = k\lambda,$$
$$(k = 1, 2...)$$

Условие главных максимумов при дифракции на дифракционной решетке

$$d \sin \varphi = \pm k\lambda$$
, $(k = 0, 1, 2...)$, d - период решетки, φ - угол дифракции

Закон Малюса

$$I = I_0 \cos^2 \alpha$$

I — интенсивность поляризованного света, прошедшего через поляризатор, I_0 — интенсивность полярзованного света, падающего на поляризатор, α — угол между вектором \vec{E} и осью поляризатора

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},$$

 I_{max} , I_{min} — максимальная и минимальная интенсивности света, пропускаемого поляризатором

Степень поляризации

Закон Стефана-Больцмана

$$R = \sigma T^4$$

R — энергетическая светимость, T - абсолютная температура, σ — постоянная Стефана- Больцмана

$$\lambda_{max} = \frac{b}{T}$$

 λ_{max} — длина волны, на которую приходится максимум испускательной способности, b — постоянная Вина

$$tgi_{\delta p} = \frac{n_2}{n_1}$$

Уравнение Эйнштейна для фотоэффекта

$$h \nu = A + T_{max}$$

 $h \nu$ — энергия кванта, A — работа выхода электрона из металла, T_{max} — максимальная кинетическая энергия электрона, h — постоянная Планка

$$V_{min} = \frac{A}{h}$$

Задерживающий потенциал

$$eU_{_3} = T_{nax} = \frac{mv_{nax}^2}{2}$$

Закон радиоактивного распада

$$N = N_0 \exp[-\lambda t]$$

N — число нераспавшихся ядер к моменту времени t, N_0 — первоначальное число ядер, λ - постоянная распада,

$$\lambda = \frac{\ln 2}{T}$$

T — период полураспада числа ядер, распавшихся за время t

$$A = +\lambda N = N_0 \exp[-\lambda t]$$

Активность изотопа

		Вариа	ант 1
1. Под ка	ким углом а	должен уг	пасть луч на стекло (показатель
преломления ст	гекла <i>n</i> =1,73)), чтобы уго	ол преломления $oldsymbol{eta}$ оказался в два
раза меньше уг	ла падения?		
a) 20°	б) 30°	в) 45°	г) 60°
2. Устано	вите соответ	гствие межд	ду определением и его матема-
тическим выраз	жением.		
Оп	ределение		Математическое выражение
а) оптиче	ская разності	ь хода	1) $\frac{2\pi}{\Delta}$

а) оптическая разность хода	1) $\frac{2\pi}{\lambda}\Delta$
б) разность фаз колебаний	2) $(n_2 - n_1) l$
в) фаза колебания	3) $\frac{2\pi}{\lambda}$
г) волновое число	4) (ωt–kx)

3. На стеклянный клин (n=1,5) нормально к его грани падает монохроматический свет с длиной волны $\lambda=600$ нм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить угол при вершине клина.

а) 2 10⁻⁴ рад б) 1,6 10⁻³ рад в) 1 10⁻³ рад г) 5 10⁻⁴ рад

4. От двух когерентных источников S_1 и S_2 ($\lambda = 0.8 \cdot$ мкм) лучи попадают на экран. На экране наблюдается интерференционная картина. Когда на пути одного из лучей перпендикулярно ему поместили мыльную пленку (n = 1.33), интерференционная картина изменилась на противоположную. При какой наименьшей толщине d_{\min} пленки это возможно?

а) 4,22 мкм б) 3,73 мкм в) 2,58 мкм г) 1,21 мкм

5. На дифракционную решетку в направлении нормали к ее поверхности падает монохроматический свет. Период решетки d=2 мкм. Определить наибольший порядок дифракционного максимума, который дает эта решетка в случае красного ($\lambda_1 \cdot = \cdot 0, 7 \cdot \text{мкм}$) света.

a) 2 б) 3 в) 4 г) 5

- 6. Угол между плоскостями поляризации двух поляризаторов $\varphi=70^{\circ}$. Как изменится интенсивность пошедшего через них света, если этот угол уменьшится в 5 раз? а) возрастет в 9 раз б) возрастет в 8,5 раз в) возрастет в 8 раз г) возрастет в 7,8 раз 7. Принимая Солнце за абсолютно чёрное тело и учитывая, что его максимальной спектральной плотности энергетической светимо-
- сти соответствует длина волны λ =500 нм определите температуру поверхности Солнца.
 - a) 3600 K
- б) 4700 К
- в) 5800 K
- г) 7200 K
- 8. Чему равна максимальная кинетическая энергия электрона, выбитого с поверхности натрия светом с длиной волны λ =410 нм. Работа выхода электрона для натрия A= 2,28 эВ. а) E_{κ} =2,5·10⁻¹⁹ Дж б) E_{κ} =1,5·10⁻¹⁹ Дж в) E_{κ} =6·10⁻¹⁹ Дж г) E_{κ} =8·10⁻¹⁹ Дж
- 9. При переходе электронов в атомах водорода с 4-ой орбиты на 2-ую излучаются фотоны с энергией E=4,04 10^{-19} Дж. Чему равна длина волны излучения?
 - а) 490 нм
- б) 600 нм
- в) 740 нм
- г) 880 нм
- 10. Сколько α и β -частиц выбрасывается при превращении ядра ²³³ ⁹² U в ядро висмута ²⁰⁹ ⁸³ Ві?
 - a) 2α , 3β
- δ) $\delta\alpha$, 3β
- B) 2α , 6β Γ) 4α , 2β

Вариант 2

- 1. При переходе луча света из одной среды в другую угол падения равен 30° , а угол преломления 60° . Каков относительный показатель преломления второй среды относительно первой?
 - a) 1,33
- б) 1,73
- B) 0.58
- г) 0,75
- 2. Радиусы светлых колец Ньютона в проходящем свете определяются формулой:

a)
$$r_k = \sqrt{kR\lambda}$$
; б) $r_k = \sqrt{(2k-1)\frac{R\lambda}{2}}$; в) $r_k = \sqrt{(k-1)kR}$; г) $r_k = \sqrt{kR\frac{\lambda}{2}}$.

4. На круглое отверстие диаметром $d=4$ мм падает нормально параллельный пучок лучей (λ =0,5 мкм). Точка наблюдения находится на оси отверстия на расстоянии $r_0=1$ м от него. Сколько зон Френеля укладывается в отверстии? Темное или светлое пятно будет в центре дифракционной картины, если в месте наблюдения поместить экран? а) $m=7$, пятно темное; б) $m=8$, пятно темное; в) $m=4$, пятно темное; г) $m=5$, пятно темное. 5. На дифракционную решетку в направлении нормали к ее поверхности падает монохроматический свет. Период решетки равен $d=2$ мкм. Определить наибольший порядок дифракционного максимума, который дает эта решетка в случае фиолетового (λ =0,41 мкм) света.
a) 2 б) 3 в) 4 г) 5
6. Определите, во сколько раз ослабится интенсивность света, прошедшего через два николя, расположенные так, что угол между их главными плоскостями $\alpha = 60^{o}$, а в каждом из николей теряется 8% интенсивности падающего на него света. а) 2, 55 б) 4,36 в) 9,45 г) 12,3
7. Во сколько раз увеличится поток излучения абсолютно черного тела, если его температура увеличится с 400 К до 800 К. а) в 4 раза б) в 8 раза в) в 16 раз г) в 32 раза
8. Максимальная кинетическая энергия вырываемых с поверхности металла фотоэлектронов пропорциональна: 1) интенсивности света; 2) плотности светового потока энергии; 3) напряжению между катодом и анодом; 4) частоте света. а)1 б)2 в)2,3 г)4 д)3,4.

3. Какой минимальной толщины прозрачное покрытие (n_1 =1,25)

в) 240 нм

г) 500 нм

необходимо нанести на линзу (n_2 =1,5), чтобы отраженные зеленые лучи (λ =550 нм) были полностью погашены вследствие интерферен-

ции. Считать, что свет падает на линзу нормально.

б) 110 нм

а) 80 нм

9. Вычислить скорость электрона на первой орбите атома водорода (первый боровский радиус равен r_1 =0,053 нм).

a)
$$\upsilon = 1,47 \cdot 10^6 \frac{M}{c}$$
; б) $\upsilon = 2,18 \cdot 10^6 \frac{M}{c}$; в) $\upsilon = 2,87 \cdot 10^6 \frac{M}{c}$;

- $\nu = 3.51 \cdot 10^6 \frac{M}{2}$
- 10. При бомбардировке α -частицами ядер алюминия ${}_{13}Al^{27}$ образуется новое ядро неизвестного элемента X и $_0n^1$. Этим элементом является
 - a) $_{10}B^{20}$ 6) $_{11}Na^{23}$ B) $_{15}P^{30}$ $_{14}Si^{32}$.

Вариант 3

- 1. Угол падения луча света на стекло равен 60°, а угол преломления 30°. Определить показатель преломления стекла.
 - a) 0.58
- б) 1.3
- B) 0.3
- r) 1,73
- 2. Для интерференционной картины от двух когерентных световых волн установите соответствие между определением и его математическим выражением.

Определение

Математическое выражение

- а) ширина интерференционной полосы
- 1) $\Delta = \pm m\lambda$

б) оптическая разность хода

2) $\Delta x = \frac{\lambda L}{d}$

в) условие минимума

3) $\Delta = \pm (2m-1)\frac{\lambda}{2}$

г) условие максимума

- 4) $(n_2 n_1) l$
- 3. В какой цвет (указать длину волны λ) будет окрашена мыльная пленка (n=1,3) если она освещается белым светом. Свет падает нормально, толщина пленки d=100 нм.
 - a) 720 HM
- б) 680 нм
- в) 520 нм
- г) 460 нм
- 4. На щель шириной a = 0, 05мм падает нормально монохроматический свет с длиной волны 600 нм. Определить угол между первоначальным направлением пучка и направлением на четвёртую тёмную дифракционную полосу.
 - a) $\varphi = 2^{\circ}45'$ 6) $\varphi = 1^{\circ}30$ B) $\varphi = 3^{\circ}15'$ Γ) $\varphi = 5^{\circ}05'$

	5. Определи	ить степень п	оляризации Р	света, являю	щегося сме-
сью	естественно	го света с пл	оско поляриз	ованным, есл	и интенсив-
ност	ъ поляризова	нного света и	естественного	о равны.	
	a) $P = 0.6$	6)P = 0.45	$_{\rm B})P = 0.7$	Γ) P = 0,5	

6. Температура внутренней поверхности электрической печи $T=700^{0}$ С. Определите мощность излучения печи через небольшое отверстие диаметром d=5см, рассматривая его как излучение абсолютно черного тела.

a)
$$N = 85,6BT$$
; б) $N = 99,7BT$; в) $N = 121BT$; г) $N = 94,2BT$.

7. Работа выхода электрона зависит от: 1) природы металла; 2) состояния поверхности металла; 3) частоты падающего света; 4) интенсивности падающего света.

8. В эффекте Комптона угол рассеяния фотона с энергией E=1,2 МэВ на электроне θ =60°. Найти длину волны рассеянного фотона.

a)
$$\lambda' = 2,25 \cdot 10^{-9} M$$
; 6) $\lambda' = 2,25 \cdot 10^{-12} M$;

B)
$$\lambda' = 1,25 \cdot 10^{-12} M$$
; Γ) $\lambda' = 4,5 \cdot 10^{-12} M$.

9. Вычислить энергию фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.

a)
$$\varepsilon = 15{,}39B$$
 6) $\varepsilon = 12{,}19B$ B) $\varepsilon = 14{,}29B$ Γ) $\varepsilon = 13{,}69B$

10. Определить период полураспада радиоактивного изотопа, если $\frac{5}{8}$ начального количества его ядер распалось за время t=849 с.

а)
$$T_{\frac{1}{2}} = 2$$
 мин б) $T_{\frac{1}{2}} = 5$ мин в) $T_{\frac{1}{2}} = 10$ мин г) $T_{\frac{1}{2}} = 15$ мин

Вариант 4

- 1. Уравнение $n_1 \sin \alpha = n_2 \sin \beta$ выражает закон
- а) отражения б) Малюса в) преломления г) Брюстера

2. Пучок белого света падает нормально на пластинку, толщина которой h=1 мкм. Показатель преломления стекла n=1,5. Какая область видимого спектра будет усиливаться в отраженном пучке?

3. На щель шириной $a = 4\lambda$ падает нормально параллельный
пучок монохроматического света с длиной волны λ. Сколько мини-
мумов будет наблюдаться на экране в дифракционном спектре?
a) $N=4$ 6) $N=6$ B) $N=10$ Γ) $N=8$
4. Дифракционная решетка, освещенная нормально падающим
светом, отклоняет максимум второго порядка на угол φ_l =30°. На ка-

светом, отклоняет максимум второго порядка на угол φ_1 =30°. кой угол φ_2 она отклонит максимум третьего порядка.

a) 48,6° б) 31,2° в) 18,4° г) 65,7°

5. Анализатор в два раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол φ между главными плоскостями поляризатора и анализатора.

a) 0° б) 30° в) 45° г) 60°

6. Мощность излучения расплавленного свинца, площадь поверхности которого $S = 40\,\mathrm{cm}^2$, при температуре плавления $T_{nn} = 327\,\mathrm{^{\circ}C}$, равна $N = 17,6\,\mathrm{Br}$. Найти отношение энергетических светимостей свинца и абсолютно черного тела для данной температуры.

7. Красная граница фотоэффекта для металла $\lambda_k = 6,2 \cdot 10^{-5}$ см. Найти величину задерживающего напряжения $U_{_3}$ для фотоэлектронов при освещении металла светом длиной волны $\lambda = 330$ нм.

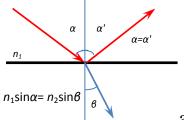
a) $U_3 = 1,761$ B 6) $U_3 = 2,761$ B B) $U_3 = 1,231$ B; r) $U_3 = 0,621$ B

8. Атом водорода испустил фотон с длиной волны $4,86 \cdot 10^{-7}$ м. На сколько изменилась энергия электрона в атоме?

a) $\Delta E = 1,289B$ 6) $\Delta E = 2,569B$ B) $\Delta E = 5,129B$ г) $\Delta E = 10,249B$

9. Утверждение: «в любом квантовом состоянии может находиться не более одного электрона» получило название

а) принципа неопределенности б) принципа Паули


в) принципа суперпозиции г) принципа минимума энергии

10. В какой элемент превращается $^{238}_{92}$ U после трех α -распадов и двух β -распадов?

a)
$$X = {}^{222}_{87}Rn$$
 6) $X = {}^{226}_{88}Ra$ B) $X = {}^{210}_{84}Po$ Γ) $X = {}^{207}_{82}Pb$

Вариант 5

1. На рисунке изображены законы: 1) отражения 2) Малюса 3) преломления 4) Брюстера

а) 1 и 2 б) 2 и 3 в) 3 и 4 г) 1 и 3

- 2. В какой цвет (указать длину волны λ) будет окрашена мыльная пленка (n=1,3) если она освещается белым светом. Свет падает нормально, толщина пленки d=100 нм.
 - а) 320 нм б) 380 нм в) 400 нм г) 520 нм д) 640 нм
- 3. На щель шириной a=0,1 мм падает нормально монохроматический свет с длиной волны $\lambda=0,5$ мкм. Дифракционная картина наблюдается на экране, расположенном параллельно щели. Определить расстояние l от щели до экрана, если ширина центрального дифракционного максимума h=1 см.
 - a) l=2 M 6) l=1 M B) l=4 M Γ) l=1.5 M
- 4. Дифракционная решетка содержит N=200 штрихов на 1 мм. На нее нормально падает свет с длиной волны $\lambda=0,6$ мкм. Максимум, какого наибольшего порядка k_{max} дает эта решетка?
 - a) 6 б) 7 в) 8 г) 9
- 5. Угол между главными осями поляризатора и анализатора равен φ_1 =45°. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до φ_2 =60°.
 - а) в 2 раза
- б) в 3 раза
- в) в 4 раза
- г) в 6 раз
- 6. Угол Брюстера при падении света из воздуха на кристалл каменной соли φ_B =57°. Определить скорость света в этом кристалле.
 - а) 152000 км/с б) 195000 км/с в) 255000 км/с г) 300000 км/с

а) $\lambda = 0.394$ мкм б) $\lambda = 0.196$ мкм в) $\lambda = 0.124$ мкм г) $\lambda = 0.684$ мкм
9. Атом водорода поглотил фотон с длиной волны λ =490 нм. На сколько увеличилась энергия атома водорода? а) $0,14\ 10^{-19}\ Дж$ б) $0,48\ 10^{-19}\ Дж$ в) $1,05\ 10^{-19}\ Дж$ г) $4,04\ 10^{-19}\ Дж$
10. Из ядра $_{88}Ra^{226}$ после двух альфа-распадов и определенного числа бета-распадов образовалось ядро с порядковым номером 86. Определить число бета-распадов. а) 1 б) 2 в) 3 г) 4
Вариант 6
1. Определить скорость света в стекле с абсолютным показате-
лем преломления $n=1,5$. Ответ дать в км/с.
a) 150000 б) 200000 в) 250000 г) 300000
2. Оптическая разность хода лучей, отраженных от плоскопараллельной пластики толщины h при нормальном падении, равна: а) hn б) $2hn$ в) $2hn+\frac{\lambda}{2}$; г) $2hn+\lambda$ 3. Расстояние между вторым и первым темными кольцами Ньютона в отраженном свете равно $\Delta r_{1,2} = 1$ мм. Определить расстояние между десятым и девятым кольцами $\Delta r_{9,10}$. а) $0,15$ мм б) $0,21$ мм в) $0,25$ мм г) $0,39$ мм
4. На щель падает нормально параллельный пучок монохрома-
тического света. Ширина щели a в шесть раз больше длины волны λ .
Под каким углом φ будет наблюдаться третий дифракционный мини-
мум интенсивности света?
a) 20° б) 30° в) 45° г) 60°

7. Пренебрегая потерями тепла, подсчитать мощность электри-

8. Красная граница фотоэффекта для никеля равна λ_0 =0,257 мкм.

ческого тока, необходимую для накаливания вольфрамовой нити диаметром 1 мм и длиной 20 см до температуры 3500 К. Коэффици-

a) $N = 2560 \,\mathrm{Br}$ б) $N = 1240 \,\mathrm{Br}$ в) $N = 2125 \,\mathrm{Br}$ г) $N = 1870 \,\mathrm{Br}$

Найти длину волны света λ , падающего на никелевый электрод, если

фототок прекращается при задерживающем напряжении U_3 =1,5 В.

ент черноты вольфрама для данной температуры a_T =0,35.

_			льная интенсивность света
I_{max} , пропускаемого ч а) 1,5	_	_	
a) 1,5	б) 2	в) 3	1) 4
длина волны, соотве	етствующая ргетической ипературу T_2	максималы светимост , до которо	
	поверхностий волны $\lambda = 1$	и цинка ($A_{\it e}$ 220 нм.	ическую энергию электро- ных. = 4 эВ) монохроматиче- г) 4,2 эВ
	п на уровень оотон с энерг оотон с энерг пфотон с эне	с энергией $E{ m m}\!\!-\!\!E_{ m n}$ гией $E_{ m n}\!\!-\!\!E_{ m m}$ ргией $E_{ m m}\!\!-\!\!E_{ m m}$	
_	образовался ета-распадов	элемент с	аспадов и определенного порядковым номером 86.
	-	Вариант 7	
1 Пол каким у		-	луч на стекло (показатель
The state of the s	<i>n</i> =1,73), что	-	иленный луч оказался пер-
	5) 30°	в) 45°	г) 60°
		15	

5. Найти постоянную дифракционной решетки d, если при на-

6. Степень поляризации P частично поляризованного света рав-

блюдении в монохроматическом свете ($\lambda = 600 \text{ нм}$) максимум пятого

порядка отклонен на угол $\phi = 18^{\circ}$. Какое число штрихов N нанесено

а) d = 1070нм, N = 93мм⁻¹; б) d = 970нм, N = 103мм⁻¹;

в) d = 9.7мм, N = 10.3мм⁻¹; г) d = 8700нм, N = 203мм⁻¹.

на единицу длины этой решетки?

кри	визны линзы <i>R</i>	?=6,4 м. Найти і	порядковые но	мера колец.
	а) 3 и 4	б) 4 и 5	в) 5 и 6	г) 6 и 7
		• •		о падает монохромати-
	_	-		я линии $\lambda_1 = 550 \text{ нм } \text{ в}$
четн	вертом порядк	е, если этот уг	ол для линии	$\lambda_2 = 600$ нм в третьем
пор	ядке составляе			
	a) $\varphi_1 = 37^{\circ}42$	$\phi_1 = 47^{\circ}42^{\circ}$	$(B) \varphi_1 = 57^{\circ}42$	$(r) \varphi_1 = 17^{\circ}42'$
	5. Естествен	ный свет пада	ет на поверхн	ость стекла под углом
Брю			-	аженных лучей?
	a) 0 б) 0	,25 в) 0,5	г) 1	
	_			
	•		-	е тело, и учитывая, что
			-	тетической светимости
	ходится на длі кности Солнца.		—300 нм опред	делить температуру по-
БСР			в) 5800 K	г) 7200 К
	<i>a)</i> 5000 K	0) 4700 K	в) 3000 К	1) /200 K
	7 Varyua au	оргию W напун	IOAT D TAHAHHA	суток каменная стена
оби л		-		ее поверхности равна
		•	ности каменно	ой стены и абсолютно
чері	ного тела равно	•)	T) 700 MH
	а) 218 МДж	6) 470 МДя	к в) 580 MД	Дж г) 720 МДж
	0. 1/2	1		
шпа				ет энергия, которая по-из металла, если крас-
	-	•	-	тиз металла, сели крас-
	фотоэлектроно		1B114 70 0,5 1 WIN	w. remeth teckus shep
		б) 82% в) 4	1% г) 20,5	5%
	•	,		

2. На пленку с показателем преломления n=1,5 падает нормаль-

в) 800 нм

3. Установка для получения колец Ньютона освещается моно-

г) 900 нм

но свет с длиной волны $\lambda = 5,5 \cdot 10^{-7}$ м. Отраженный свет имеет наи-

хроматическим светом. Наблюдение ведется в отраженном свете. Радиусы r двух соседних темных колец равны 4,0 и 4,38 мм. Радиус

большую интенсивность. Какова минимальная толщина пленки?

б) 700 нм

а) 600 нм

- 9. Радиус первой орбиты электрона в атоме водорода равен a_1 =0,053 нм. Чему равен радиус второй орбиты?
 - a) $a_2 = 0.544$ HM f) $a_2 = 0.366$ HM b) $a_2 = 0.212$ HM f) $a_2 = 0.128$ HM
- 10. Определить период полураспада (в сутках) радиоактивного вещества, если за t = 3 суток количество ядер этого вещества уменьшилось в 8 раз.
 - a) 1
- б) 2
- B) 3
- r) 4

Вариант 8

- 1. Два световых луча распространяются в стекле с показателем преломления n=1,5. Геометрическая разность хода лучей l=1,6 10⁻³ мм. Чему равна оптическая разность хода этих волн.

 - a) $2.4 \cdot 10^{-3}$ mm 6) $1.6 \cdot 10^{-3}$ mm
- в) 1,07 10⁻³ мм г) 0,1 10⁻³ мм
- 2. Условие максимумов интенсивности в интерференционной картине при отражении световой волны от плоскопараллельной пластики толщины h имеет вид:
 - a) $2h\sqrt{n^2-\sin^2\theta_1}=(2m+1)\frac{\lambda}{2};$ 6) $2h\sqrt{n^2-\sin^2\theta_1}=\lambda m;$
 - B) $2hn\cos\theta_2 = (2m+1)\frac{\lambda}{2}$;
- Γ) $2hn\cos\theta_2=m\lambda$.
- 3. При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти перекрывают друг друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница ($\lambda_2 = 0,4$ мкм) спектра третьего порядка?
 - а) $\lambda_1 = 700$ нм; б) $\lambda_1 = 550$ нм; в) $\lambda_1 = 500$ нм; г) $\lambda_1 = 600$ нм.
- 4. Угол Брюстера при падении света из воздуха на некоторое вещество равен $\varphi_B = 60^\circ$. Определить скорость света в этом веществе.
 - a) 3.10^8 m/c 6) $1.4.10^8$ m/c B) $2.2.10^8$ m/c Γ) $1.73.10^8$ m/c
- 5. Пучок естественного света падает на систему из четырех поляризаторов, плоскость пропускания каждого из которых повернута на $\phi=30^{\circ}$ по отношению к плоскости пропускания предыдущего. Какая доля интенсивности света пройдет через всю систему?
 - a) 0,866
- б) 0,750
- в) 0,563
- r) 0,316

6. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны $\lambda = 500$ нм. Принимая Солнце за абсолютно черное тело, определить энергетическую светимость Солнца.

a)
$$R_9 = 32 \frac{\text{MBT}}{\text{M}^2}$$
, $6) R_9 = 64 \frac{\text{MBT}}{\text{M}^2}$, $B) R_9 = 89 \frac{\text{MBT}}{\text{M}^2}$, $\Gamma) R_9 = 72 \frac{\text{MBT}}{\text{M}^2}$,

7. Красная граница фотоэффекта для некоторого металла равна λ_0 =560 нм. Определить максимальную энергию фотоэлектронов при освещении металла светом с частотой $\nu=7,3\cdot10^{14}$ Гц.

а) $1,3\cdot 10^{-19}$ Дж б) $2,4\cdot 10^{-19}$ Дж в) $4,2\cdot 10^{-19}$ Дж г) $7,7\cdot 10^{-19}$ Дж

8. Угол рассеяния фотона с энергией E=1,2 МэВ на свободном электроне $\theta = 60^{\circ}$. Найти длину волны рассеянного фотона.

a) $\lambda' = 2,25 \cdot 10^{-9} M$ 6) $\lambda' = 2,25 \cdot 10^{-12} M$

B) $\lambda' = 1,25 \cdot 10^{-12} M$ Γ) $\lambda' = 4,5 \cdot 10^{-12} M$

9. Указать недостающее обозначение в ядерной реакции $_{1}H^{2}+_{1}H^{3} \rightarrow ?+_{2}He^{4}$.

1) $_{1}H^{1}$ 2) $_{0}n^{1}$ 3) $_{1}H^{2}$ 4) $_{1}p^{1}$

10. Что представляет собой у-излучение?

а) поток электронов б) поток протонов в) электромагнитные волны г) поток ядер атома гелия

Вариант 9

1. При переходе луча света из одной среды в другую угол падения равен 30°, а угол преломления 60°. Каков относительный показатель преломления второй среды относительно первой?

a) 1,33

б) 1,73 в) 0,58 г) 0,75

2. Разность фаз колебаний двух интерферирующих лучей монохроматического света с длиной волны $\lambda = 500$ нм равна $\Delta \varphi = \frac{3\pi}{2}$. Определить разность хода этих лучей.

а) 500 нм б) 385 нм

в) 380 нм г) 375 нм

3. Какой минимальной толщины прозрачное покрытие $(n_1=1,25)$
необходимо нанести на линзу (n_2 =1,5), чтобы отраженные зеленые
лучи (λ =550 нм) были полностью погашены вследствие интерферен-
ции. Свет падает на линзу нормально.

а) 600 нм б) 550 нм в) 280 нм г) 110 нм

4. На дифракционную решетку длиной l = 15 мм, содержащую N = 3000 штрихов, падает нормально монохроматический свет с длиной волны $\lambda = 570$ нм. Определить максимально возможный порядок спектра, наблюдаемый с помощью этой решетки.

a) $m_{\text{max}} = 8$

б) $m_{\text{max}} = 9$ в) $m_{\text{max}} = 7$ г) $m_{\text{max}} = 6$

5. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в четыре раза.

a) 30°

б) 45°

 $B) 50^{\circ}$

г) 60°

6. В результате охлаждения черного тела длина волны, отвечающая максимуму спектральной плотности энергетической светимости, сместилась с $\lambda_{1\,\text{max}}=0,8$ мкм до $\lambda_{2\,\text{max}}=2,4$ мкм. Определить, во сколько раз изменятся энергетическая светимость тела.

а) уменьшится в 9 раз

б) уменьшится в 81 раз

в) уменьшится в 18 раз

г) увеличиться в 81 раз

7. Поверхность платиновой пластинки освещают светом с длиной волны 2,04·10⁻⁷ м. Величина задерживающего потенциала оказалась равна 0,8 В. Определите максимальную длину волны, при которой еще возможен фотоэффект.

а) $1,35\cdot10^{-7}$ м б) $1,53\cdot10^{-7}$ м в) $2,06\cdot10^{-7}$ м г) $2,35\cdot10^{-7}$ м

8. В результате эффекта Комптона фотон рассеялся на покоившемся свободном электроне на угол $\theta = 90^{\circ}$. Энергия рассеянного фотона $\varepsilon' = 400$ кэВ. Определить энергию фотона до рассеяния.

a) 0,65 МэВ

б) 0,95 МэВ

в) б) 1,85 МэВ

г) б) 2,55 МэВ

9. Квантовым числам поставьте в соответствие значения, которые они принимают

Квантовое число

Значение

а) главное квантовое число, n

1) 0, 1, 2, ... n-1

б) орбитальное квантовое число, l

2) $\pm 1, \pm 2, \dots \pm l$

в) магнитное квантовое число, m_i

3) $-\frac{1}{2}, +\frac{1}{2}$

г) спиновое квантовое число, m_s

- 4) 1, 2, 3, ...
- 10. Какая часть начального количества атомов распадается за один год в радиоактивном изотопе тория $90Th^{229}$? Период полураспада тория $T_{1/2} = 7 \cdot 10^3$ лет. a) 10^{-4} б) 10^{-3} б) 10⁻³ в) 10⁻²

- г) 10⁻¹

Вариант 10

- 1. На пути световой волны, идущей в воздухе, поставили стеклянную пластинку (показатель преломления стекла n=1,5) толщиной d=1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку нормально?
 - a) 0,1 mm
- б) 0,5 мм
- в) 1,0 мм г) 1,5 мм
- 2. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света равно d=0.5 мм, расстояние от них до экрана L=5 м. В красном свете ширина интерференционных полос равна $\Delta x = 5.5$ мм. Определить длину волны λ красного света.
 - а) $\lambda = 550$ нм
- б) $\lambda = 580$ нм в) $\lambda = 540$ нм
- Γ) $\lambda = 570$ нм
- 3. При нормальном падении света на дифракционную решётку красная линия ($\lambda = 630 \text{ нм}$) в спектре второго порядка наблюдается под углом $\phi = 11^{\circ}$. Определить постоянную решетки.

 - a) d = 6.6 mkm; 6) d = 6.8 mkm; B) d = 6.3 mkm; Γ) d = 6.0 mkm
- 4. Степень поляризации P частично поляризованного света равна 0,5. Во сколько раз отличается максимальная интенсивность света I_{max} , пропускаемого через анализатор, от минимальной I_{min} .
 - a) 1
- б) 2
- B) 3
- r) 4
- 5. На щель падает нормально параллельный пучок монохроматического света. Ширина щели a в шесть раз больше длины волны λ . Под каким углом ϕ будет наблюдаться третий дифракционный минимум интенсивности света
 - a) 30°
- б) 45° в) 50° г) 60°

a) 75% б) 67% в) 50% г) 30%
8. При переходе электронов в атомах водорода с 4-ой орбиты на 2-ую излучаются фотоны с энергией 4,04 10^{-19} Дж. Чему равна длина волны излучения?
а) 490 нм б) 600 нм в) 740 нм г) 880 нм
9. Закон радиоактивного распада записывается в виде: а) $N = N_0 \exp[-\lambda t]$ б) $h \nu = A + T_{max}$ в) $\Delta m = Zm_p + (A-Z)m_n - m_g$ г) $R = \sigma T^4$
10. Указать недостающее обозначение в ядерной реакции $_{13}Al^{27} +_0 n^1 \rightarrow ? +_2 He^4$.
a) $_{11}Na^{24}$ 6) $_{2}He^{4}$ B) $_{12}Mg^{24}$ $_{11}Na^{22}$
Вариант 11
1. Луч света падает на стекло под углом $\alpha = 60^{\circ}$. Преломленный луч оказался перпендикулярным к отраженному. Чему равен показатель преломления среды?
a) 1,33 б) 1,73 в) 0,58 г) 0,75
2. При каком значении разности хода Δ двух когерентных волн будет наблюдаться максимум интенсивности при их интерференции. а) $\Delta = \pm (2m-1)\frac{\lambda}{2}$ б) $\Delta = \pm k\lambda$ в) $\Delta x = \frac{\lambda L}{d}$ г) $\Delta = 2dn\cos\alpha$
3. На экране наблюдают интерференционную картину от двух когерентных лучей с длиной волны λ =500 нм. На пути одного из лучей перпендикулярно к нему поместили стеклянную пластинку с показателем преломления n =1,6 толщиной h =5 мкм. Определить, на сколько полос при этом сместится интерференционная картина. а) m =7 б) m =6 в) m =5 г) m =8
21

6. Металлическая деталь имеет температуру T=500 К. Какую

7. На поверхность металла падает монохроматическое излуче-

г) 140 Дж

энергию излучает деталь за t=1 с, если площадь ее поверхности равна

в) 90 Дж

ние с длиной волны λ =0,1 мкм. Красная граница фотоэффекта λ_0 =0,3 мкм. Какая часть энергии падающего фотона расходуется на сообще-

 $S=100 \text{ cm}^2$?

а) 20 Дж

б) 35 Дж

ние электрону кинетической энергии?

4. На дифракционную решетку нормально падает монохроматический свет. Постоянная дифракционной решетки d в 4,6 раза больше длины световой волны λ . Найти максимальное число дифракционных максимумов m , которые можно наблюдать в данном случае. а) 6 б) 5 в) 4 г) 3
5. Естественный свет проходит через два поляризатора, плоскости колебания которых образуют угол φ =60°. Во сколько раз уменьшится интенсивность света, по выходе из второго поляризатора? а) 1,3 раза б) 2 раза в) 4 раза г) 8 раз
6. Определить количество теплоты, излучаемой 50 см² поверхности расплавленной платины ($T_{nлавл}$ = 1770 °C за 1 мин, если поглощательная способность платины a_T = 0,8. а) Q = 137 кДж б) Q = 357 кДж в) Q = 284 кДж г) Q = 237 кДж.
7. Фотон с длиной волны λ =0,2 мкм вырывает с поверхности натрия фотоэлектрон, кинетическая энергия которого E =7,2 эВ. Определить красную границу λ_0 фотоэффекта. а) 400 нм б) 500 нм в) 600 нм г) 700 нм
8. Электрон в атоме водорода перешел с четвертого уровня на второй. Определить энергию испущенного при этом фотона. а) 2,05 эВ; б) 2,55 эВ; в) 3,85 эВ; г) 5,25 эВ.
9. Импульс фотона определяется выражением а) hv/c б) mc^2 в) hv г) hv/c^2
10. Два ядра гелия ${}_2He^4$ слились в одно, при этом был выброшен протон. Ядро, какого элемента образовалось? а) ${}_{11}Na^{24}$ б) ${}_2He^4$ в) ${}_{12}Mg^{24}$ г) ${}_3Li^7$
Вариант 12
1. Высота Солнца над горизонтом составляет φ =50°. Каким дол-
жен быть угол падения лучей на плоское зеркало, чтобы отразившиеся от него солнечные лучи пошли вертикально вверх?
a) 20° б) 30° в) 45° г) 60°

2. При каком значении разности хода Д двух когерентных волн
будет наблюдаться минимум интенсивности при их интерференции.
a) $\Delta = \pm (2k+1)\frac{\lambda}{n}$ 6) $\Delta = 2d\sqrt{n^2 - \sin^2 i} \pm \frac{\lambda}{n}$ B) $\Delta = \pm k\lambda$ Γ) $\Delta = 2dn\cos\alpha$

3. Расстояние между двумя когерентными источниками света d=0,9 мм. Расстояние от источников до экрана l=3,5 м. Длина световой волны $\lambda=640$ нм. Определить число светлых полос, располагающихся на 1 см длины экрана.

а)
$$\frac{m}{x} = 420 \text{м}^{-1}$$
 б) $\frac{m}{x} = 390 \text{м}^{-1}$ в) $\frac{m}{x} = 400 \text{м}^{-1}$ г) $\frac{m}{x} = 400 \text{м}$ 4. На узкую щель падает нормально параллельный пучок моно-

4. На узкую щель падает нормально параллельный пучок монохроматического света. Ширина щели a в шесть раз больше длины световой волны λ . под каким углом ϕ будет наблюдаться третий дифракционный минимум интенсивности света?

a) 20° б) 30° в) 45° г) 60°

5. Естественный луч падает на стеклянную пластинку. Найти угол полной поляризации θ отраженного луча. Показатель преломления стекла n=1,52.

a) 32,2° б) 47,5° в) 45° г) 56,7°

6. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в 2 раза.

a) 60° 6) 30° B) 0° Γ) 90°

7. Найти температуру T печи, если известно, что излучение из отверстия площадью $S=6,1\,\,\mathrm{cm}^2$ имеет мощность $P=34,6\,\,\mathrm{Bt}$. Излучение считать близким к излучению абсолютно чёрного тела.

a) T=300 K 6) T=500 K B) T=1000 K r) T=1500 K

8. На металлическую пластинку направлен монохроматический пучок света с частотой ν =7,3·10¹⁴ Гц. Красная граница фотоэффекта для данного металла равна λ_0 =560 нм. Определить максимальную скорость фотоэлектронов.

a) $2.8 \cdot 10^5 \text{ m/c}$ 6) $5.7 \cdot 10^5 \text{ m/c}$ B) $7.6 \cdot 10^5 \text{ m/c}$ r) $9.8 \cdot 10^5 \text{ m/c}$

9. Атом водорода поглотил фотон с длиной волны λ =490 нм. На сколько увеличилась энергия атома водорода? а) $0,48\ 10^{-19}\ Дж$ б) $1,05\ 10^{-19}\ Дж$ в) $2,10\ 10^{-19}\ Дж$ г) $4,04\ 10^{-19}\ Дж$
10. Чему равен период полураспада (в сутках) радиоактивного
элемента, если за $t=3$ суток количество ядер этого вещества уменьши-
лось в 8 раз.

Вариант 13

г) 4

в) 3

1. При переходе луча света из одной среды в другую угол падения равен α =30°, а угол преломления β =60°. Каков относительный по-казатель преломления второй среды относительно первой?

a) 1,33 б) 1,73 в) 0,58 г) 0,75

a) 1

б) 2

2. Оптическая разность хода лучей, отраженных от плоскопараллельной пластики толщины h при нормальном падении, равна:

a)
$$hn$$
 6) $2hn$ B) $2hn + \frac{\lambda}{2}$; Γ) $2hn + \lambda$

3. Для уменьшения потерь света при отражении на поверхность объектива с показателем преломления n_1 =1,7 нанесена тонкая прозрачная пленка с показателем преломления n_2 =1,3. При какой наименьшей ее толщине h произойдет максимальное ослабление света с длиной волны λ =0,56 нм? Лучи падают нормально.

а) h = 108нм б) h = 110нм в) h = 100нм г) h = 112нм

4. При освещении дифракционной решетки белым светом спектры третьего и четвертого порядков отчасти перекрывают друг друга. На какую длину волны в спектре третьего порядка накладывается фиолетовая граница ($\lambda_1 = 360$ нм) спектра четвёртого порядка?

а)
$$\lambda_1 = 700$$
нм; б) $\lambda_1 = 550$ нм; в) $\lambda_1 = 480$ нм; г) $\lambda_1 = 600$ нм

5. Соседние зоны Френеля находятся от точки наблюдения на расстоянии, отличающемся на

a) $\lambda/2$ 6) $m\lambda$ B) $3\lambda/2$ Γ) $\lambda/4$

1) 1V = 3.2 KD 1/M .				
8. На поверхность никеля падает монохроматический свет с длиной волны λ =200 нм. Красная граница фотоэффекта для никеля λ_0 =248 нм. Определить максимальную кинетическую энергию электронов E_{max} . а) 0,4 10 ⁻¹⁹ Дж б) 1 10 ⁻¹⁹ Дж в) 2 10 ⁻¹⁹ Дж г) 5 10 ⁻¹⁹ Дж				
9. Определить скорость электрона на 2-й орбите атома водорода. а) $1,1~10^6$ м/с б) $2,3~10^6$ м/с в) $2,9~10^6$ м/с г) $3,5~10^6$ м/с				
10. На сколько процентов снизится активность A изотопа иридия $_{77}Ir^{192}$ за время t =30 суток, если его период полураспада $T_{0,5}$ =75 суток. а) 12% б) 48% в) 30% г) 24%				
Вариант 14				
1. Скорость света в алмазе равна 120000 км/с. Определить пока-				
затель преломления n алмаза.				
a) 1,33 б) 1,73 в) 2,18 г) 2,50				
2. Какую наименьшую толщину должна иметь пленка из скипи-				
дара (n =1,41), разлитого на воде, если на нее под углом α = 30° падает				
белый свет и она в отраженном свете окажется красной? Длина волны				
красных лучей $\lambda = 0.63$ мкм.				
а) $h_{\min} = 150$ нм б) $h_{\min} = 180$ нм в) $h_{\min} = 120$ нм г) $h_{\min} = 200$ нм				
3. При нормальном падении света на дифракционную решётку				
красная линия $(\lambda = 630 \text{ нм})$ в спектре второго порядка наблюдается				
под углом φ=11°. Определить постоянную решетки.				
а) $d = 6,6$ мкм; б) $d = 6,8$ мкм; в) $d = 6,3$ мкм; г) $d = 6,0$ мкм				

6. Степень поляризации P частично поляризованного света рав-

7. Какую энергетическую светимость имеет затвердевший сви-

на 0,33. Во сколько раз отличается максимальная интенсивность све-

нец ($T_{n_{7}a_{8}a_{7}}$ = 327°С)? Отношение энергетических светимостей свинца и

г) 4

та, пропускаемого через анализатор, от минимальной.

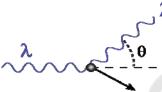
абсолютно чёрного тела для данной температуры $\alpha = 0.6$.

a) $N = 2.6 \text{kBT/m}^2$ б) $N = 4.4 \text{kBT/m}^2$ в) $N = 6.6 \text{kBT/m}^2$

в) 3

б) 2

r) $N = 3.2 \text{kBr/m}^2$


a) 1

4. Свет падает на поверхность стекла с показателем	преломле-
ния 1,73 под углом Брюстера. Чему равен угол отражения?	

- a) 60°
- б) 45° в) 30° г) 20°
- 5. Пучок естественного света падает на систему из четырех поляризаторов, плоскость пропускания каждого из которых повернута на $\phi=30^{\circ}$ по отношению к плоскости пропускания предыдущего. Какая доля интенсивности света пройдет через всю систему?
 - a) 0,866
- б) 0,750
- в) 0,563
- r) 0,316
- 6. Мощность излучения абсолютно чёрного тела составляет P=34 кВт. Найти температуру T этого тела, если известно, что его поверхность S = 0.6м².
- а) *T*=1000 K б) *T*=2000 K в) *T*=500 K г) *T*=1500 K
- 7. Красная граница фотоэффекта для некоторого металла равна λ_0 =560 нм. Определить максимальную скорость фотоэлектронов при освещении металла светом с частотой ν =7,3·10¹⁴ Гц.

 - a) $2.8 \times 10^5 \text{ M/c}$ 6) $5.7 \times 10^5 \text{ M/c}$ B) $7.6 \times 10^5 \text{ M/c}$ Γ) $9.8 \times 10^5 \text{ M/c}$

- 8. Какое явление иллюстрирует приведенный рисунок?

- а) Фотоэффект б) эффект Комптона
- в) Дифракцию света г) Поглощение света
- 9. Определить кинетическую энергию электрона на первой орбите атома водорода (ответ дать в джоулях).

- a) $0.56 \ 10^{-18}$ 6) $1.72 \ 10^{-18}$ B) $2.18 \ 10^{-18}$ Γ) $5.12 \ 10^{-18}$
- 10. За время t=8 суток распалось 75% начального количества ядер радиоактивного изотопа. Определить период его полураспада.
 - а) 2 суток
- б) 3 суток
- в) 4 суток
- г) 5 суток

Вариант 15

- 1. Угол падения луча света на стекло равен $\alpha=30^{\circ}$, а угол преломления β =20°. Определить скорость света в стекла.
 - а) 205500 км/с
- б) 135000 км/с в) 280700 км/с г) 300000 км/с

2. На мыльную пленку (n=1,33) падает белый свет под углом
φ =45°. При какой наименьшей толщине пленки отраженные лучи бу-
дут окрашены в желтый свет? Длина волны желтого света λ =600 нм.

- а) 550 нм б) 533 нм в) 625 нм г) 510 нм
- 3. Радиусы темных колец Ньютона в отраженном свете определяются формулой:

a)
$$r_k = \sqrt{kR\lambda}$$
; б) $r_k = \sqrt{(2k-1)\frac{R\lambda}{2}}$; в) $r_k = \sqrt{(k-1)kR}$; г) $r_k = \sqrt{kR\frac{\lambda}{2}}$.

- 4. На дифракционную решетку нормально к поверхности падает свет с длиной волны λ =550 нм. На экран, находящийся от решетки на расстоянии l=1 м проецируется дифракционная картина, причем первый главный максимум наблюдается на расстоянии h=12 см от центрального. Определить период d дифракционной решетки.
 - а) 5,58 мкм б) 4,68 мкм в) 4,88 мкм г) 4,58 мкм
- 5. Степень поляризации частично поляризованного света равна P=0,33. Во сколько раз отличается максимальная I_{max} интенсивность света, пропускаемого через анализатор, от минимальной I_{min} .
 - а) 1 б) 2 в) 3 г) 4
- 6. Температура вольфрамовой спирали в 25 ваттной лампочке T=2450 К. Отношение её энергетической светимости к энергетической светимости абсолютно чёрного тела для данной температуры α = 0,3. Определить площадь S излучающей поверхности спирали.
 - a) S=0.4cm² б) S=0.8cm² в) S=0.3cm² г) S=0.2cm²
- 7. На какую длину волны приходится максимум спектральной плотности излучательности $r_{\lambda,T}$ абсолютно черного тела при температуре t=0 °C.
 - а) 5,5 мкм б) 10 мкм в) 16 мкм г) 23 мкм
- 8. Длина волны, соответствующая красной границе фотоэффекта для бромистого серебра, равна λ_0 =0,3·10⁻⁶ м. Определить скорость вылетевшего электрона v, если на бромистое серебро падает свет с длиной волны равной λ =0,5·10⁻⁷ м.
 - a) $2,6 \cdot 10^5 \text{ m/c}$ 6) $5,2 \cdot 10^5 \text{ m/c}$ B) $6,8 \cdot 10^5 \text{ m/c}$ Γ) $9,1 \cdot 10^5 \text{ m/c}$

9. Атом водорода испустил фотон с длиной волны $4,86 \cdot 10^{-7}$ м. На сколько изменилась энергия электрона в атоме?

а) $\Delta E = 1,28$ эВ б) $\Delta E = 2,56$ эВ в) $\Delta E = 5,12$ эВ г) $\Delta E = 10,24$ эВ

10. При бомбардировке α -частицами ядер алюминия ${}_{l3}Al^{27}$ образуется ядро неизвестного элемента X и ${}_0n^I$. Этим элементом является

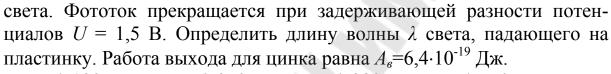
a) $_{10}B^{20}$ 6) $_{11}Na^{23}$ B) $_{15}P^{30}$ $_{14}Si^{32}$

вариант 16

1. Луч света падает на грань треугольной стеклянной призмы с преломляющим углом (угол при ее вершине) θ = 30° перпендикулярно к ее поверхности и выходит в воздух из противоположной грани от-клонившись на угол γ =20° от первоначального направления. Определить показатель преломления стекла.

a) 1,33 б) 1,63 в) 2,18 г) 2,50

2. На рисунке изображена интерференционная схема опыта Юнга с двумя щелями, излучающими волны с длиной λ . Какой из приведенных графиков I = f(x) описывает изменение интенсивности в интерференционной картине?


3. Установка для получения колец Ньютона освещается белым светом, падающим нормально. Найти радиус четвертого синего кольца (λ =400 нм). Наблюдение производится в проходящем свете. Радиус кривизны линзы равен R=5 м.

а) 1,9 мм б) 2,8 мм в) 3,8 мм г) 5,5 мм

4. При освещении дифракционной решетки белым светом спектры третьего и четвертого порядков отчасти перекрывают друг друга. На какую длину волны в спектре третьего порядка накладывается фиолетовая граница ($\lambda_1 = 360$ нм) спектра четвёртого порядка?

а) $\lambda_1 = 700$ нм; б) $\lambda_1 = 550$ нм; в) $\lambda_1 = 480$ нм; г) $\lambda_1 = 600$ нм

5. На щель шириной $a=0.05$ мм падает нормально свет с длиной				
волны λ =0,6 мкм. Определить угол φ между первоначальным направ-				
лением пучка света и направлением на четвертую темную дифракци-				
онную полосу.				
a) 2°45' б) 3°25' в) 4°50' г) 5°75'				
6. Чему равен угол между главными плоскостями поляризатора				
и анализатора, если интенсивность естественного света, прошедшего				
через поляризатор и анализатор уменьшается в четыре раза.				
a) 60° б) 45° в) 30° г) 20°				
7. Мощность излучения абсолютно черного тела $P=34$ кВт. Най-				
ти температуру тела, если поверхность его равна $S=0.6 \text{ m}^2$.				
a) $T=1000 \text{ K}$ 6) $T=2000 \text{ K}$ B) $T=500 \text{ K}$ Γ) $T=1500 \text{ K}$				
8. На цинковую пластинку направлен монохроматический пучок				

а) 190 нм

б) 250 нм

в) 380 нм

9. Определить частоту обращения электрона на 2-ой орбите атома водорода. Первый боровский радиус равен $r_1 = 0.053$ нм.

a) $4,22\cdot10^{14}$ c⁻¹ 6) $6,59\cdot10^{14}$ c⁻¹ B) $8,19\cdot10^{14}$ c⁻¹ r) $10,2\cdot10^{14}$ c⁻¹

10. Ядро радия $88Ra^{226}$ претерпевает α -распад. Какое ядро образуется в результате радиоактивного распада? а) $_{84}\text{Po}^{209}$ б) $_{86}\text{Rn}^{222}$ в) $_{90}\text{Th}^{232}$ г) $_{92}\text{U}$

Вариант 17

1. Определите показатель преломления n скипидара, если известно, что при угле падения α =45° угол преломления равен β =30°.

a) 1,33

б) 1,41

в) 1,55

г) 1,73

2. Свет проходит последовательно через воздух - воду - стекло. Каково соотношение между скоростями распространения света в различных средах?

a) $v_1 > v_2 > v_3$; б) $v_1 > v_2 < v_3$; в) $v_1 < v_2 > v_3$; г) $v_1 < v_2 < v_3$. где v_1 , v_2 , v_3 – скорости света в воздухе, воде и стекле соответственно.

- а) 0,5 мкм б) 1,21 мкм в) 3,6 мкм г) 5,23 мкм
- 5. Какое из приведенных выражений определяет положения главных максимумов интенсивности в дифракционной картине от дифракционной решетки?

- 6. Вычислить наибольший угол φ_{max} , на который дифрагирует пучок света, длиной λ =546 нм, падающего нормально на дифракционную решетку, имеющую N=10000 штрихов при ширине l=4 см.
 - a) 3 B) 7 r) 9 б) **5**
- 7. Пучок света переходит из жидкости в стекло. Угол падения $\alpha = 60^{\circ}$, угол преломления $\beta = 50^{\circ}$. При каком угле падения θ пучок света, отраженной от границы раздела этих сред будет максимально.
 - б) 35,3° в) 48,5° a) 23,5° г) 63,6°
- 8. Найти температуру T абсолютно чёрного тела, при которой его излучательность равна R_T =10 кВт/м².
 - a) *T*=532 K б) *T*=648 K в) *T*=322 K г) *T*=940 K
- 9. Кванты света с энергией E=4,9 эВ вырывают фотоэлектроны из металла с работой выхода A_6 =4,5 эВ. Найти максимальную кинетическую энергию, вырываемых электронов.
 - a) 0,3 эВ б) 0,4 эВ в) 0,5 эВ г) 0,6 эВ
- 10. Укажите, какая частица образуется в результате ядерной реакции: ${}_{2}\text{He}^{4} + {}_{3}\text{Li}^{7} = {}_{5}\text{B}^{10} + X$.
 - а) электрон б) нейтрон в) протон г) дейтрон

Вариант 18

1. Определите показатель скорость распространения света в скипидаре, если известно, что при угле падения α =45° угол преломления равен β =30°.

а) 300000 км/с б) 290000км/с в) 213000 км/с г) 176000 км/с

2. Отраженный свет какой длины волны λ будет максимально усилен из-за интерференции, если мыльная пленка (n=1,3) освещается белым светом. Свет падает нормально, толщина пленки d=100 нм.

а) 320 нм б) 380 нм в) 400 нм г) 520 нм д) 640 нм

3. Расстояние между пятым и двадцать пятым светлыми кольцами Ньютона равно 9 мм. Радиус кривизны линзы 15 м. Найти длину волны монохроматического света, падающего нормально на установку. Наблюдение проводится в отраженном свете.

a) $7.1 \cdot 10^{-7} \text{ M}$ 6) $6.5 \cdot 10^{-7} \text{ M}$ B) $8.4 \cdot 10^{-7} \text{ M}$ Γ) $4.2 \cdot 10^{-7} \text{ M}$

4. Дифракционная решетка содержит N=200 штрихов на 1 мм. На нее нормально падает свет с длиной волны $\lambda=0,6$ мкм. Максимум, какого наибольшего порядка k_{max} дает эта решетка?

a) 6 б) 7 в) 8 г) 9

5. Что будет наблюдаться на экране, если на пути света от точечного источника поставить непрозрачный диск, закрывающий большое число зон Френеля?

а) в центральной части экрана будет темное пятно, а на границе тени будет наблюдаться чередование светлых и темных колец;

б) на экране будет наблюдаться дифракционная картина в виде чередования светлых и темных колец, в центре экрана будет светлое пятнышко;

в) диск отбрасывает на экране тень в соответствие с законами геометрической оптики.

6. Какой угол образуют плоскости поляризации поляризатора и анализатора, если свет, вышедший из анализатора, был ослаблен в 5 раз? Учесть, что поляризатор поглощает 10%, а анализатор — 8% падающего на них света.

a) $\phi = 45^{\circ}$ 6) $\phi = 46^{\circ}$ B) $\phi = 48^{\circ}$ Γ) $\phi = 50^{\circ}$

7. Какие из приведенных выражений описывают законы Вина?

a)
$$\lambda_m = \frac{b}{T}$$
; 6) $R_T = \int_0^\infty r_{\lambda T} d\lambda$; B) $R^* = \frac{c}{4}u$; Γ) $r_{\lambda} = r_{\omega} \frac{\omega^2}{2\pi c}$.

8 Поток энергии, излучаемой из смотрового отверстия печи равен P= 34 Вт. Определить температуру внутри печи, если площадь отверстия S=6 см 2 .

- a) T = 1100 K 6) T = 1200 K B) T = 800 K Γ) T = 1000 K
- 9. Фотон с длиной волны λ =0,2 мкм вырывает с поверхности натрия фотоэлектрон, кинетическая энергия которого E=5,2 эВ. Определить работу выхода A_s фотоэффекта.

а) 0,56 10⁻¹⁹ Дж б) 4,7 10⁻¹⁹ Дж в) 2,8 10⁻¹⁹ Дж г) 1,6 10⁻¹⁹ Дж

10. Атом водорода испустил фотон с длиной волны $4,86 \cdot 10^{-7}$ м. На сколько изменилась энергия электрона в атоме?

a) $\Delta E = 1,289B$ 6) $\Delta E = 2,569B$ B) $\Delta E = 5,129B$ F) $\Delta E = 10,249B$

Вариант 19

1.При переходе луча света из одной среды в другую угол падения равен α =30 0 , а угол преломления β =60 0 . Каков относительный показатель преломления второй среды относительно первой?

- a) 1,33 б) 1,73 в) 0,58 г) 0,75
- 2. Расстояние между вторым и первым темными кольцами Ньютона в отраженном свете равно $\Delta r_{1,2}$ =1 мм. Определить расстояние между десятым и девятым кольцами $\Delta r_{9,10}$.
 - a) 0,15 мм б) 0,21 мм в) 0,25 мм г) 0,39 мм

3. На щель падает нормально параллельный пучок монохроматического света. Ширина щели a в шесть раз больше длины волны λ . Под каким углом ϕ будет наблюдаться третий дифракционный минимум интенсивности света?

a) 20° 6) 30° B) 45° Γ) 60°

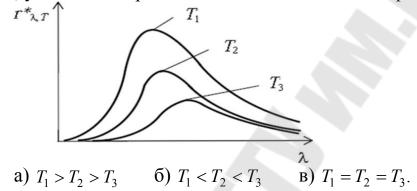
4. Найти постоянную дифракционной решетки d, если при наблюдении в монохроматическом свете ($\lambda = 600$ нм) максимум пятого

порядка отклонен на угол $\phi = 18^{\circ}$. Какое число штрихов N нанесено на единицу длины этой решетки?

а)
$$d = 1070$$
 нм, $N = 93$ мм⁻¹; б) $d = 970$ нм, $N = 103$ мм⁻¹;

в)
$$d = 9,7$$
мм, $N = 10,3$ мм⁻¹; г) $d = 8700$ нм, $N = 203$ мм⁻¹.

5. Определить степень поляризации P света, являющегося смесью естественного света с плоско поляризованным, если интенсивность поляризованного света и естественного равны.


a)
$$P = 0,6$$

$$6P = 0.45$$

$$P = 0,7$$

$$\Gamma$$
) P = 0,5

6. Для изотерм абсолютно черного тела, представленных на рисунке, установите правильное соотношение температур.

7. Определить количество теплоты, излучаемой с поверхности площадью $S=50~{\rm cm}^2$ расплавленного металла за время $t=1~{\rm muh}$, если поглощательная способность металла a=0,8, а температура $t=1770~{\rm °C}$.

а)
$$Q = 137$$
 кДж б) $Q = 357$ кДж в) $Q = 284$ кДж г) $Q = 237$ кДж

8. Красная граница фотоэффекта для никеля равна λ_0 =0,257 мкм. Найти длину волны света λ , падающего на никель, если фототок прекращается при задерживающем напряжении U_3 =1,5 В.

а)
$$\lambda = 0.394$$
мкм б) $\lambda = 0.196$ мкм в) $\lambda = 0.124$ мкм г) $\lambda = 0.684$ мкм

9. Атом водорода испустил фотон с длиной волны λ =490 нм. На сколько изменилась энергия атома водорода?

а)
$$0.14\ 10^{-19}\ Дж$$
 б) $0.48\ 10^{-19}\ Дж$ в) $1.05\ 10^{-19}\ Дж$ г) $4.04\ 10^{-19}\ Дж$

10. Из ядра ₈₈Ra²²⁶ после двух альфа-распадов и определенного числа бета-распадов образовалось ядро с порядковым номером 86. Определить число бета-распадов.

Вариант 20 1. Под каким углом α должен упасть луч на стекло (показатель

г) 60°

г) 900 нм

преломления стекла n=1,73), чтобы преломленный луч оказался пер-

в) 45°

нормально падающим светом с длиной волны $\lambda = 5,5 \cdot 10^{-7}$ м. Какова минимальная толщина пленки если отражённые лучи максимально уси-

в) 800 нм

2. Пленка масла с показателем преломления n=1,5 освещена

пендикулярным к отраженному?

лены вследствие интерференции?

б) 30°

б) 700 нм

a) 20°

а) 600 нм

3. Радиусы r двух соседних темных колец Ньютона равны 4,0 и 4,38 мм. Радиус кривизны линзы R =6,4 м. Наблюдение ведется в отраженном свете. Найти порядковые номера колец. а) 3 и 4 б) 4 и 5 в) 5 и 6 г) 6 и 7
4. На дифракционную решетку нормально падает монохроматический свет. Определить угол дифракции для линии $\lambda_1=550$ нм в четвертом порядке, если этот угол для линии $\lambda_2=600$ нм в третьем порядке составляет 30°. a) $\phi_1=37^\circ42^{'}$ б) $\phi_1=47^\circ42^{'}$ в) $\phi_1=57^\circ42^{'}$ г) $\phi_1=17^\circ42^{'}$
5. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в 2 раза. а) 60° б) 30° в) 0° г) 90°
6. Определить температуру абсолютно черного тела, если максимальное значение его плотности энергетической светимости приходится на длину волны λ_{max} =500 нм а) 3600 К б) 4700 К в) 5800 К г) 7200 К
7. Какую энергию W излучает в течение суток каменная стена общей площадью $S=100~{\rm m}^2$, если температура ее поверхности равна $t=0~{\rm ^{\circ}C}$? Отношение излучательности каменной стены и абсолютно черного тела равно $\alpha=0,8$ а) 218 МДж б) 470 МДж в) 580 МДж г) 720 МДж

- 8. Какую часть энергии фотона составляет энергия, которая пошла на совершение работы выхода электронов из металла, если красная граница для этого металла равна λ =0,54 мкм? Кинетическая энергия фотоэлектронов E=0,5 эВ.
 - a) 100%
- б) 82%
- в) 41%
- г) 20.5%
- 9. Радиус первой орбиты электрона в атоме водорода равен a_1 =0,053 нм. Чему равен радиус третьей орбиты?
- а) a_2 =0,477 нм б) a_2 =0,366 нм в) a_2 =0,212 нм г) a_2 =0,128 нм
- 10. В какой элемент превращается $^{238}_{92}{
 m U}$ после трех α -распадов и двух β-распадов?

- a) $X = {}^{222}_{87}Rn$ 6) $X = {}^{226}_{88}Ra$ B) $X = {}^{210}_{84}Po$ Γ) $X = {}^{207}_{82}Pb$

Вариант 21

- 1. Два световых луча распространяются в воде с показателем преломления n=1,33. Геометрическая разность хода лучей l=1,5 10^{-3} мм. Чему равна оптическая разность хода этих волн.
 - a) $2.0 \cdot 10^{-3}$ mm 6) $2.6 \cdot 10^{-3}$ mm B) $1.7 \cdot 10^{-3}$ mm Γ) $1.1 \cdot 10^{-3}$ mm

- 2. Условие максимумов интенсивности в интерференционной картине при отражении световой волны от плоскопараллельной пластики толщины h имеет вид:
 - a) $2h\sqrt{n^2-\sin^2\theta_1}=(2m+1)\frac{\lambda}{2};$ 6) $2h\sqrt{n^2-\sin^2\theta_1}=\lambda m;$
 - B) $2hn\cos\theta_2 = (2m+1)\frac{\lambda}{2}$;
- Γ) $2hn\cos\theta_2 = m\lambda$.
- 3. При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти перекрывают друг друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница ($\lambda_2 = 0,4$ мкм) спектра третьего порядка?
 - а) $\lambda_1 = 700$ нм; б) $\lambda_1 = 550$ нм; в) $\lambda_1 = 500$ нм; г) $\lambda_1 = 600$ нм.
- 4. Степень поляризации P частично поляризованного света равна 0,33. Во сколько раз отличается максимальная интенсивность света, пропускаемого через анализатор, от минимальной.
 - a) 1
- б) 2
- B) 3
- г) 4

a) $R_9 = 32 \frac{\text{MBT}}{\text{M}^2}$, $6) R_9 = 64 \frac{\text{MBT}}{\text{M}^2}$, $B) R_9 = 89 \frac{\text{MBT}}{\text{M}^2}$, Γ) $R_9 = 72 \frac{\text{MBT}}{\text{M}^2}$,					
7. Красная граница фотоэффекта для металла $\lambda_k = 6.2 \cdot 10^{-5}$ см.					
Найти величину запирающего напряжения $U_{_3}$ для фотоэлектронов					
при освещении металла светом длиной волны $\lambda = 330$ нм.					
a) $U_3 = 1,761$ B 6) $U_3 = 2,761$ B B) $U_3 = 1,231$ B r) $U_3 = 0,621$ B					
8. Какое из приведенных ниже уравнений описывает эффект Комптона?					
a) $n\hbar\omega = A + \frac{m_e v^2}{2}$;					
B) $\Delta \lambda = 2\lambda_c \sin^2 \frac{\theta}{2}$; $\Gamma \frac{2\pi\hbar}{m_e c}$.					
9. Указать недостающее обозначение в ядерной реакции $_{l}H^{2}+_{l}H^{3}\rightarrow ?+_{2}He^{4}$. 1) $_{l}H^{l}$ 2) $_{0}n^{l}$ 3) $_{l}H^{2}$ 4) $_{l}p^{l}$					
10. Определить период полураспада (в сутках) радиоактивного вещества, если за 3 суток количество ядер этого вещества уменьшилось в 8 раз.					
1) 1 2) 2 3) 3 4) 4					
Вариант 22					
1. Луч света переходит из одного вещества в другое. Угол падения равен α =60°, а угол преломления β =45°. Каков относительный показатель преломления второго вещества относительно первого?					
a) 1,22 б) 1,53 в) 1,68 г) 1,75					

5. Пучок естественного света падает на систему из трех поляри-

в) 0,563

6. Максимум спектральной плотности излучательности Солнца

соответствует длине волны λ =500 нм. Принимая Солнце за абсолют-

но черное тело, определить энергетическую светимость Солнца.

r) 0,316

заторов, плоскость пропускания каждого из которых повернута на $\varphi=30^\circ$ по отношению к плоскости пропускания предыдущего. Какая

доля интенсивности света пройдет через всю систему?

б) 0,750

a) 0,625

2. Оптическая разность хода лучей, отраженных от плоскопарал-			
1 1			
лельной пластики толщины h при нормальном падении, равна:			
a) hn 6) $2hn$ B) $2hn + \frac{\lambda}{2}$; Γ) $2hn + \lambda$.			
3. Какой минимальной толщины прозрачное покрытие (n_1 =1,25) необходимо нанести на линзу (n_2 =1,5), чтобы отраженные зеленые			
необходимо нанести на линзу $(n_2, 1, 3)$, чтооы отраженные зеленые			

- 3. Какои минимальной толщины прозрачное покрытие (n_1 –1,23) необходимо нанести на линзу (n_2 =1,5), чтобы отраженные зеленые лучи (λ =550 нм) были полностью погашены вследствие интерференции. Свет падает на линзу нормально.
 - а) 600 нм б) 550 нм в) 280 нм г) 110 нм
- 4. Имеется три дифракционных решетки, имеющие 50, 100 и 200 штрихов на 1 мм длины. Какая из них даст экране более широкий спектр при прочих равных условиях?
- а) первая б) вторая в) третья г) ширина спектра не зависит от числа штрихов
- 5. На дифракционную решетку нормально к ее поверхности падает монохроматический свет с длиной волны $\lambda_1 \cdot = \cdot 0,7 \cdot$ мкм. Период решетки d=2 мкм. Определить наибольший порядок дифракционного максимума, который дает эта решетка.
 - a) 2 б) 3 в) 4 г) 5
- 6. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в четыре раза.
 - а) 30° б) 45° в) 50° г) 60°
- 7. В результате охлаждения тела длина волны, отвечающая максимуму спектральной плотности энергетической светимости, сместилась с $\lambda_{1 max} = 0,8$ мкм до $\lambda_{2 max} = 2,4$ мкм. Во сколько раз изменилась температура тела.
 - а) в 2 раза б) в 3 раза в) в 4 раза г) в 8 раз
- 8. На поверхность металла падает свет с длиной волны λ =2,04·10⁻⁷ м. Величина задерживающего напряжения равна U_3 =0,8 В. Определить красную границу фотоэффекта.
 - a) $1,35\cdot 10^{-7}$ m G) $1,53\cdot 10^{-7}$ m B) $2,06\cdot 10^{-7}$ m Γ) $2,35\cdot 10^{-7}$ m

8. В результате эффекта Комптона фотон рассеялся на покоившемся свободном электроне на угол $\theta = 90^{\circ}$. Энергия рассеянного фотона $\varepsilon' = 400$ кэВ. Определить энергию фотона до рассеяния.

а) 0,65 МэВ б) 0,95 МэВ в) б) 1,85 МэВ

г) б) 2,55 МэВ

9. Атом водорода поглотил фотон с длиной волны λ=490 нм. На сколько увеличилась энергия атома водорода?

а) $0.14\ 10^{-19}\ Дж$ б) $0.48\ 10^{-19}\ Дж$ в) $1.05\ 10^{-19}\ Дж$ г) $2.10\ 10^{-19}\ Дж$

10. Указать недостающее обозначение в ядерной реакции $_{13}Al^{27} +_{0}n^{1} \rightarrow ? +_{2}He^{4}$. a) $_{11}Na^{24}$ 6) $_{2}He^{4}$ B) $_{12}Mg^{24}$ $_{\Gamma}$) $_{11}Na^{22}$

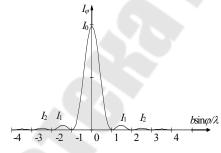
Вариант 23

1. Определить показатель преломления n растительного масла, если, при угле падения α =45° угол преломления равен β =30°.

a) 1,33

б) 1,41

в) 1,55


r) 1.73

2. В опыте Юнга расстояние между источника света равно d=0.5мм, расстояние от них до экрана L=5 м. Ширина интерференционных полос Δx =5,5 мм. Определить длину волны λ используемого света.

a) $\lambda = 550 \, \text{HM}$

б) $\lambda = 580$ нм в) $\lambda = 540$ нм г) $\lambda = 570$ нм

3. Что изображено на рисунке:

- 1) Распределение интенсивности света при дифракции на щели;
- 2) Изменение интенсивности света при поляризации;
- 3) Метод зон Френеля;
- 4) Зависимость излучательности от длины волны.
- 4. При нормальном падении света с длиной волны λ=630 нм на дифракционную решётку максимум второго порядка наблюдается под углом $\phi = 11^{\circ}$. Определить постоянную решетки.

a) d = 6.6 mkm; 6) d = 6.8 mkm; B) d = 6.3 mkm; r) d = 6.0 mkm

этом отраженны ным. Определити	й пучок св 5 угол прело	ета оказал мления $oldsymbol{eta}$ л	іся максим іуча.	а равен α =60°. При ально поляризован-
a) 20°	б) 30°	в) 4:	5° г) 60°
энергию излучае $S=20 \text{ см}^2$?		<i>t</i> =1 с, если	площадь ее	ру <i>T</i> =500 К. Какую е поверхности равна
ние с длиной вол мкм. Какая части ние электрону ки	лны <i>λ</i> =0,1 м ь энергии па	км. Краснадающего обрания?	ая граница фотона расх	матическое излуче- фотоэффекта λ_0 =0,3 ходуется на сообще-
2-ую излучаются волны излучения	і фотоны с	энергией 4	,04 10 ⁻¹⁹ Дж	да с 4-ой орбиты на к. Чему равна длина г) 880 нм
тическим выраже	ением.			ением и его матема-
Определени	ие	M	атематичес	кое выражение
а) период п	олураспада			1) $\frac{1}{\lambda}$;
б) среднее і радиоактив	время жизни ного ядра			2) $N_0[1 - \exp(-\lambda t)];$
в) число ато	омов, распав	вшихся за і	время <i>t</i>	3) $\frac{\lambda N}{m}$;
г) удельная	активность	радиоакти	ВНОГО	4) $\frac{0.693}{\lambda}$.
	-			оактивного вещест- ства уменьшилось в
1) 1	2) 2	3) 3	4) 4	

Вариант 24 1. Луч света падает на прозрачное вещечтво под углом $\alpha = 60^{\circ}$.

Преломленный луч β оказался перпендикулярным к отраженному.
Чему равен показатель преломления <i>п</i> вещества?
a) 1,73 б) 1,33 в) 1,55 г) 0,58
2. При каком значении разности хода ⊿ двух когерентных волн
будет наблюдаться минимум интенсивности при их интерференции.
a) $\Delta = \pm (2m-1)\frac{\lambda}{2}$ 6) $\Delta = \pm k\lambda$ B) $\Delta x = \frac{\lambda L}{d}$ Γ $\Delta = 2dn\cos\alpha$
a) $\Delta = \pm (2m - 1) \cdot 2$ 6) $\Delta = \pm k\lambda$ B) $\Delta \lambda = d$ Γ) $\Delta = 2an \cos \alpha$
3. Какую наименьшую толщину имеет мыльная плёнка $(n=1,3)$,
если на нее нормально падает белый свет, а она в отраженном свете
кажется зеленой? Длина волны зеленых лучей λ=550 нм.
а) 330 нм б) 209 нм в) 180 нм г) 106 нм
4. На дифракционную решетку нормально падает монохромати-
ческий свет. Постоянная дифракционной решетки d в 7,5 раза больше
длины световой волны λ . найти максимальное число дифракционных
максимумов m , которые можно наблюдать в данном случае.
а) 6 б) 7 в) 8 г) 9
5. Неполяризованный свет проходит через поляризатор и анали-
затор, плоскости пропускания которых образуют угол φ =60°. Во
сколько раз уменьшится интенсивность света при выходе из анализа-
тора?
а) 1,3 раза б) 2 раза в) 4 раза г) 8 раз
u) =,c pueu =) = pueu =) = pueu
6. Температура абсолютно черного тела <i>T</i> =2900 К. Определить
длину волны λ_m , на которую приходится максимум энергии излучения.
а) 1 мкм б) 2 мкм в) 2,9 мкм Γ) 5,8 мкм
a) 1 MKM 0) 2 MKM b) 2,7 MKM 1) 3,8 MKM
7. Cham a manua y namuu 1–200 humanaan a manaan
7. Свет с длиной волны λ =200 нм вырывает с поверхности металла электроны с кинетической энергией E =11,5·10 ⁻¹⁹ Дж. Опреде-
талла электроны с кинетической энергией $E=11,5.10$ Дж. Опреде-

в) 600 нм

г) 700 нм

лить красную границу λ_0 фотоэффекта.

б) 500 нм

а) 400 нм

8. Электрон в атоме водорода перешел с 2-го уровня на 4-й. Определить энергию поглощенного фотона.

a) 2,05 эВ

б) 2,55 эВ

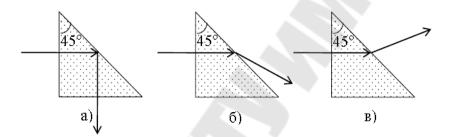
в) 3,85 эВ

г) 5,25 эВ

9. Масс фотона определяется выражением

a) hv/c

б) mc^2


в) *hv*

 Γ) hv/c^2

10. Два ядра гелия $_2He^4$ слились в одно, при этом был выброшен протон. Ядро, какого элемента образовалось? а) ${}_{11}Na^{24}$ б) ${}_{2}He^{4}$ в) ${}_{12}Mg^{24}$ г)

Вариант 25

1. На каком из приведенных ниже рисунков дано правильное изображение хода луча в стеклянной призме

2. При каком значении разности хода Д двух когерентных волн будет наблюдаться максимум интенсивности при их интерференции.

a)
$$\Delta = \pm (2k+1)\frac{\lambda}{2}$$
 6) $\Delta = 2d\sqrt{n^2 - \sin^2 i} \pm \frac{\lambda}{2}$ B) $\Delta = \pm k\lambda$ Γ) $\Delta = 2dn\cos\alpha$

3. В опыте Юнга расстояние между двумя когерентными источниками света d = 0.9 мм. Расстояние от источников до экрана l = 3,5 м. Длина световой волны $\lambda = 640$ нм. Определить число светлых полос, располагающихся на 1 см длины экрана.

a)
$$\frac{m}{x} = 420 \text{m}^{-1}$$
 6) $\frac{m}{x} = 390 \text{m}^{-1}$ B) $\frac{m}{x} = 400 \text{m}^{-1}$ Γ) $\frac{m}{x} = 400 \text{m}$

- 4. На узкую щель падает нормально параллельный пучок монохроматического света. Ширина щели а в шесть раз больше длины световой волны λ . под каким углом ϕ будет наблюдаться второй дифракционный минимум интенсивности света?
 - a) 19,5°
- б) 31,2°
- в) 44,3° г) 56,5°

5	. Солнечні	ый луч пада	ает на повер	охность воды. На	айти угол пол-
ной по	ляризации	θ отражен	ного луча. 1	Показатель прел	омления воды
n=1,33					
a	.) 22°	б) 37°	в) 45°	г) 53°	
6. Чему равен угол между главными плоскостями поляризатора					
и опоп	TIPOTONO AC	опи интенен	IDIIOOTI AOTO	ACTRAILLIANA CRATS	прошениего

и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в 2 раза.

a) 60° б) 30° в) 0° г) 90°

7. Найти температуру T абсолютно чёрного тела, если известно, что излучение с каждого квадратного сантиметра поверхности тела имеет мощность P = 5,67 Вт.

a) *T*=360 K б) *T*=450 K в) *T*=700 K г) *T*=1000 K

8. На металлическую пластинку направлен монохроматический пучок света с частотой λ =410 нм. Красная граница фотоэффекта для данного металла равна λ_0 =560 нм. Определить максимальную скорость фотоэлектронов.

a) $2.8 \times 10^5 \text{ m/c}$ 6) $5.7 \times 10^5 \text{ m/c}$ B) $7.6 \times 10^5 \text{ m/c}$ Γ) $9.8 \times 10^5 \text{ m/c}$

9. Электрон находится на 3-й орбите атома водорода. Определите радиус этой орбиты, если первый боровский радиус a_I =0,053 нм. а) 0,48 10^{-19} Дж б) 1,05 10^{-19} Дж в) 2,10 10^{-19} Дж г) 4,04 10^{-19} Дж

а) 0,477 нм б) 0,366 нм в) 0,212 нм г) 0,128 нм

10. Что представляет собой α-излучение?

- а) поток электронов б) поток протонов в) поток нейтронов
- г) поток ядер атома гелия

Приложение

1. Основные физические постоянные: скорость света в вакууме – $c = 3.00 \cdot 10^8$ м/с постоянная Авогадро – $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$ газовая постоянная $-R = 8.31 \, \text{Дж} / \text{моль·K}$ постоянная Больцмана $-k = 1.38 \cdot 10^{-23}$ Дж /К элементарный заряд – $e = 1.6 \cdot 10^{-19}$ Кл; масса протона $-m_p = 1.6 \cdot 10^{-27} \,\mathrm{Kr};$ масса электрона — $m_e = 9.11 \cdot 10^{-31}$ кг; удельный заряд электрона – $e/m = 1,76 \cdot 10^{11} \text{ Кл/кг};$ электрическая постоянная — $\epsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M};$ магнитная постоянная — $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma \text{H/M};$ постоянная Ридберга $-R = 1,10 \cdot 10^7 \,\mathrm{M}^{-1}$ постоянная Планка $-h = 6.63 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}$ постоянная Стефана-Больцмана $-\sigma = 5,67 \cdot 10^{-8} \, \mathrm{Br/(m^2 \cdot K^4)}$ постоянная в законе Вина $-b = 2.89 \cdot 10^{-3} \,\mathrm{M} \cdot \mathrm{K}$ радиус первой боровской орбиты $-a_o = 5.29 \cdot 10^{-11} \,\mathrm{M}$ атомная единица массы -1а.е.м. = $1,660 \cdot 10^{-27}$ кг

2. Работа выхода электронов из металла

Металл	А, Дж	А, эВ
Калий	$3,5\cdot 10^{-19}$	2,2
Литий	$3,7\cdot 10^{-19}$	2,3
Платина	10.10^{-19}	6,3
Рубидий	$3,4\cdot 10^{-19}$	2,1
Серебро	$7,5\cdot 10^{-19}$	4,7
Цезий	$3,2\cdot 10^{-19}$	2,0
Цинк	$6,4\cdot 10^{-19}$	4,0

3. Относительные атомные массы (округленные значения) A_r и порядковые номера Z некоторых элементов.

Элемент	Символ	A _r	Z	Элемент	Символ	A _r	Z
Азот	N	14	7	Марганец	Mn	55	25
Алюминий	Al	27	13	Медь	Cu	64	29
Аргон	Ar	40	18	Молибден	Mo	96	42
Барий	Ba	137	56	Натрий	Na	23	11
Ванадий	V	60	23	Неон	Ne	20	10
Водород	Н	1	1	Никель	Ni	59	28
Вольфрам	W	184	74	Олово	Sn	119	50
Гелий	Не	4	2	Платина	Pt	195	78
Железо	Fe	56	26	Ртуть	Hg	201	80
Золото	Au	197	79	Cepa	S	32	16
Калий	K	39	19	Серебро	Ag	108	47
Кальций	Ca	40	20	Углерод	C	12	6
Кислород	О	16	8	Уран	U	238	92
Магний	Mg	24	12	Хлор	Cl	35	17

4. Массы атомов легких изотопов

Изотоп	Символ	Macca,	Изотоп	Символ	Macca,
		а.е.м.			а.е.м.
Нейтрон	${}^{1}_{0}n$	1,00867	Бериллий	⁷ ₄ Be	7,01693
Азот	¹⁴ ₇ N	14,00307		⁹ ₄ Be	9,01219
Водород	$^{1}_{1}H$	1,00783	Бор	$^{10}_{5}B$	10,01294
	$_{1}^{2}H$	2,01410		¹¹ ₅ B	11,00930
	$_{1}^{3}H$	3,01605	Углерод	$^{14}_{6}C$	12,00000
Гелий	$_{2}^{3}He$	3,01603		$^{13}_{6}C$	13,00335
	$_{2}^{4}He$	4,00260		$^{14}_{\ 6}C$	14,00324
Литий	⁶ ₃ Li	6,01513	Кислород	¹⁶ ₈ O	15,99491
	$\frac{7}{3}Li$	7,01601		$^{17}_{8}O$	16,99913

5. Периоды полураспада радиоактивных изотопов

Изотоп	Символ	Период полурас-		
		пада		
Актиний	²²⁵ ₈₉ Ac	10 суток		
Иод	131 53 I	8 суток		
Кобальт	⁶⁰ ₂₇ Co	5,3 года		
Магний	$^{27}_{12}Mg$	10 минут		
Радий	$^{226}_{86}Ra$	1620 лет		
Радон	²²² ₈₆ Rn	3,8 суток		
Стронций	⁹⁰ ₃₈ Sr	27 лет		
Фосфор	$^{32}_{15}P$	14,3 суток		
Церий	¹⁴⁴ ₅₈ Ce	285 суток		

6. Масса и энергия покоя некоторых частиц

Частица	m_{o}		E _o		
	КГ	а.е.м.	Дж	МэВ	
Электрон	$9,11\cdot10^{-31}$	0,00055	$8,16\cdot10^{-14}$	0,511	
4					
Протон	$1,672\cdot10^{-27}$	1,00728	$1,50\cdot10^{-10}$	938	
Нейтрон	$1,675\cdot10^{-27}$	1,00867	$1,51\cdot10^{-10}$	939	
Дейтрон	$3,35\cdot10^{-27}$	2,01355	$3,00\cdot10^{-10}$	939	
α-частица	$6,64\cdot10^{-27}$	4,00149	$5,96\cdot10^{-10}$	3733	
Нейтральный π-мезон	$2,41\cdot10^{-28}$	0,14498	$2,16\cdot10^{-11}$	135	

ЛИТЕРАТУРА

Основная литература

- 1. Савельев И.В. Курс физики. Т. 1-3. М.: Наука, 1989.
- 2. Детлаф А. А., Яворский М. Б. Курс физики. М.: Высш. шк., 1989. 608c.
 - 3. Трофимова Т. И. Курс физики. М.: Высш. шк., 1990. 478 с.
- 4. Трофимова Т. И. Сборник задач по курсу физики для вузов. М., 2003. 303 с.
- 5. Чертов А. Г., Воробьёв А. А. Задачник по физике. М.: Высш. шк., 1988. 526 с.
- 6. Волькенштейн В. С. Сборник задач по общему курсу физики. Наука, 1988. 381 с.

Дополнительная литература

- 7. Ландсбер Г.С. Оптика. М.: Наука, 1976. 936.
- 8. Савельев И.В. Сборник задач и вопросов по общей физике.-М.: Наука, 1988.-288 с.
- 9. Яворский Б. М., Детлаф А. А. Справочник по физике.- М.: Наука, 1990. 624 с.
 - 10. Кухлинг Х. Справочник по физике. М.: Мир, 1985. 520 с.

Методические указания и пособия

- 11. 58эл Оптика, атомная и ядерная физика: конспект лекций по курсу «Физика» для студентов дневной формы обучения / А.А. Панков, П.А. Хило. Гомель: ГГТУ им. П.О. Сухого, 2009. 170 с.
- 12. 235эл Оптика, атомная и ядерная физика: практикум по курсу «Физика» для студентов технических специальностей дневной формы обучения: в 3 ч. Ч.3. / П.А. Хило, А.И. Кравченко, П.Д. Петрашенко. Гомель: ГГТУ им. П.О. Сухого, 2011. 54 с.

ФИЗИКА ОПТИКА, АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

Практикум по выполнению тестовых заданий для студентов технических специальностей заочной формы обучения

Составители: **Хило** Петр Анатольевич **Злотников** Игорь Иванович

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 24.01.20.

Per. № 30E. http://www.gstu.by