Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

УТВЕРЖДАЮ Первый проректор ГГТУ им. П.О. Сухого
О.Д. Асенчик
$28.06.2019_{\Gamma}$
Регистрационный № УД- 53-16/уч

Теория электрических цепей

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

1-36 04 02 «Промышленная электроника» 1-53 01 07 "Информационные технологии и управление в технических системах"

Учебная программа составлена в соответствии с типовой учебной программой по дисциплине "Теория электрических цепей" для высших учебных заведений, утвержденной 03.06.2008, рег.№ ТД-I.032/тип.

учебных планов учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» специальности 1-36 04 02 «Промышленная электроника», регистрационные №№ I 36-1-01/уч. от 12.02.2015, I 36-1-34/уч. от 17.04.2015, I 36-1-09/уч. от 13.02.2015; специальности 1-53 01 07 «Информационные технологии и управление в технических системах», регистрационный № I 53-1-04/уч. от 12.02.2015.

составитель:

Л.Г. Бычкова, доцент кафедры «Физика и электротехника» учреждения образования «Гомельский государственный технический университет имени П.О.Сухого, кандидат технических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

кафедрой «Физика и электротехника" учреждения образования «Гомельский государственный технический университет имени П.О.Сухого (протокол № 9 от 23.05.2019г.) УД-УП-4-014

Научно-методическим советом энергетического факультета учреждения образования «Гомельский государственный технический университет имени П.О.Сухого (протокол № 10 от 25.06.19г.)

Научно-методическим советом заочного факультета учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 5 от 06.06.2010г.) УДЗ -036 -24у;

Научно-методическим советом учреждения образования «Гомельский государственный технический университет имени П.О. Сухого» (протокол № 6 от 26.06.19).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Вступление

Курс "Теория электрических цепей" является основной общетехнической дисциплиной для студентов специальности 1-36 04 02 «Промышленная электроника» и 1-53 01 07 «Информационные технологии и управление в технических системах».

Цели и задачи учебной дисциплины

Целью изучения дисциплины является обеспечение профессиональной подготовки, развитие всех позитивных творческих способностей инженера, его умения формулировать и исследовать на должном уровне общетеоретические проблемы будущей специализации, развивать и реализовывать свои знания в этой области инженерной практики.

Место учебной дисциплины в системе подготовки специалистов, связи с другими учебными дисциплинами

Дисциплина "Теория электрических цепей" занимает основное место среди фундаментальных дисциплин, определяющих теоретический уровень профессиональной подготовки инженеров. Дисциплина базируется на знаниях математики и физики. При изучении дисциплины «Теория электрических цепей» студенты должны знать разделы математики: элементы теории функций комплексной переменной, уметь решать уравнения в матричной форме, дифференциальные и интегральные уравнения.

Студенты должны успешно освоить разделы физики «Электричество и магнетизм: электростатика и магнитостатика в вакууме и веществе, электрический ток, уравнение непрерывности, уравнения Максвелла, электромагнитное поле» и «Физика колебаний и волн: гармонический колебания, свободные и вынужденные колебания».

Из курса информатики студенты должны приобрести навыки работы в таких программах как Word, Excel, PowerPoint, MathCad. Знать вычислительные методы решения: систем линейных уравнений с вещественными и комплексными коэффициентами; дифференциальных уравнений 1-го и 2-го порядков.

Задачи изучения дисциплины

Содержание дисциплины ТЭЦ составляет обобщение понятий и законов из области электромагнитных явлений на основе сведений, пролученных при изучении физики. А также развитие формулировок и определений главных понятий и законов теории электрических и магнитных цепей, относящимся ко всем разделам курса. Предметом изучения дисциплины являются электромагнитные явления и их применение для решения проблем радио-электроники, автоматики, вычислительной техники при разработке электротехнических устройств, отвечающих современным требованиям. Материал курса состоит из теории линейных и нелинейных электрических цепей, где рассматриваются задачи анализа на основе изучения свойств таких цепей.

Основная задача изучения дисциплины "Теория электрических цепей" состоит в усвоении современных методов моделирования электромагнитных

процессов, методов анализа и расчета электрических цепей, знание которых необходимо для понимания и успешного решения инженерных проблем будущей специальности. При этом предполагается разумное и обоснованное применение средств и методов вычислительной техники.

Результаты освоения дисциплины

После изучения дисциплины "Теория электрических цепей" студенты должны:

знать:

- свойства и методы анализа линейных и нелинейных электрических цепей;
 - свойства и методы анализа магнитных цепей;

уметь:

- использовать методы расчета и анализа электрических цепей;
- составлять и анализировать схемы замещения электротехнических устройств и систем;
- выполнять экспериментальные исследования процессов в электрических и магнитных цепях;

приобрести навыки:

- правильной математической формулировки задач, решаемых методами, излагаемыми в дисциплине "Теория электрических цепей";
 - применения средств и методов вычислительной техники.

Владеть:

- методологией выбора схем электрических цепей;
- методикой чтения электрических схем и определения характеристик типовых электрических устройств;

В результате изучения дисциплины у студентов должны формироваться следующие компетенции:

- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
- владеть системным и сравнительным анализом;
- владеть исследовательскими навыками;
- уметь работать самостоятельно и в команде;
- иметь навыки, связанные с использованием приборов для измерения электрических величин.

Диагностика компетенций студента

Для текущего контроля и самоконтроля знаний и умений студентов по теории электрических цепей используются:

- контрольные работы;
- письменные отчеты по лабораторным работам;
- устная защита отчетов по лабораторным работам;
- тесты (текущие и рубежные);
- проведение опросов по теме, изучаемой на практическом занятии;
- оценивание на основе модульно-рейтинговой системы.

Форма получения высшего образования: дневная, заочная, заочная сокращенная.

Общее количество часов и распределение аудиторного времени по видам занятий.

Всего часов -234, 6 зачетных единиц. Аудиторных часов -119 по дневной форме получения образования; по заочной -24 и по заочной сокращенной форме обучения -20.

Распределение аудиторного времени по видам занятий, курсам и семестрам:

Специальность 1-36 04 02 «Промышленная электроника»

Форма обучения	Дневная	Заочная	Заочная со-кращенная
Курс	2	1,2	1,2
Семестр	3,4	2,3,4	2,3,4
Лекции (часов)	51	10	8
Практические занятия (часов)	34	8	6
Лабораторные занятия (часов)	34	6	6
Всего аудиторных (часов)	119	24	22

Специальности 1-53 01 07 «Информационные технологии и управление в технических системах»

Форма обучения	Дневная
Курс	2
Семестр	3,4
Лекции (часов)	51
Практические занятия (часов)	34
Лабораторные занятия (часов)	34
Тестирование	-
Всего аудиторных (часов)	119

Формы текущей аттестации по учебной дисциплине

Форма получения	дневная	заочная	заочная сокра-
образования			щенная

Экзамен	4	4	4
Зачет	3	3	3
РГР	-	-	
Тест	-	3,4	3,4

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. ВВЕДЕНИЕ В ТЕОРИЮ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. ОСНОВНЫЕ ПОНЯТИЯ, ОПРЕДЕЛЕНИЯ И ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ЦЕПЕЙ.

Электрические и магнитные цепи. Элементы электрических цепей. Активные и пассивные цепи. Физические явления в электрических цепях. Научные абстракции, применяемые в теории электрических цепей, их практическое значение и границы применимости. Цепи с распределенными и сосредо-

точенными параметрами. Параметры электрических цепей. Линейные и нелинейные электрические и магнитные цепи. Источники ЭДС и источники тока. Схемы электрических цепей. Функции цепи. Задача анализа электрических цепей.

Раздел 2. ОСНОВНЫЕ ЗАКОНЫ И МЕТОДЫ РАСЧЕТА ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Тема 2.1. Основные свойства и законы электрических цепей

Свойства линейных цепей: принцип наложения, взаимности, линейные соотношения между напряжениями и токами. Закон Ома для активной и пассивной ветви. Законы Кирхгофа, закон Джоуля - Ленца. Преобразование линейных цепей: последовательное, параллельное, смешанное соединение типа "звезда" и типа "треугольник". Баланс мощностей.

Тема 2.2. Методы расчета электрических цепей.

Расчет электрических цепей с помощью законов Кирхгофа; метод контурных токов; метод узловых потенциалов; метод наложения.

Тема 2.3. Принцип эквивалентного генератора

Теорема об эквивалентном генераторе. Метод эквивалентного генератора. Передача энергии от активного двухполюсника к нагрузке. Согласованный режим работы генератора и нагрузки.

Раздел 3. ЦЕПИ ОДНОФАЗНОГО СИНУСОИДАЛЬНОГО ТОКА.

Тема 3.1. Основные понятия о цепях синусоидального тока Расчет цепей при синусоидальных токах.

Синусоидальные ЭДС, напряжения и токи. Источники синусоидальных ЭДС и токов. Среднее и действующее значение. Основы символического метода расчета. Мгновенная мощность и колебания энергии в цепи синусоидального тока. Активная, реактивная и полная мощность. Коэффициент мощности. Баланс мощностей в комплексной форме. Лучевые и топографические векторные диаграммы. Синусоидальный ток в цепи с последовательным соединением элементов R, L, C. Волновые, векторные диаграммы. Закон Ома и законы Кирхгофа в комплексной форме. Треугольник сопротивлений. Синусоидальный ток в цепи с параллельным соединением R, L, C. Треугольник проводимостей. Схемы замещения пассивного двухполюсника.

О применимости методов расчета цепей постоянного тока к расчетам цепей синусоидального тока. Алгоритм расчета.

Тема 3.2 Резонансные явления и частотные характеристики

Резонанс при последовательном и параллельном соединении. Частотные характеристики, избирательные свойства. Влияние добротности контура на форму резонансной кривой. Резонанс в сложных цепях. Частот-

ные характеристики цепей, содержащих только реактивные элементы. Практическое значение резонанса в электрических цепях.

Тема 3.3 Расчет цепей при наличии взаимной индукции.

Индуктивно-связанные элементы электрической цепи. Трансформатор с линейными характеристиками. Идеальный трансформатор. Эквивалентная замена индуктивных связей.

Раздел 4. РАСЧЕТ ТРЕХФАЗНЫХ ЦЕПЕЙ

Многофазные цепи и системы. Понятие о трехфазных источниках питания. Расчеты трехфазных цепей в симметричных и несимметричных режимах.

Раздел 5. ТЕОРИЯ ЧЕТЫРЕХПОЛЮСНИКОВ

Различные виды уравнений пассивного четырехполюсника. Системы параметров и их взаимосвязь. Определение коэффициентов четырехполюсников. Эквивалентные схемы замещения взаимных четырехполюсников. Характеристические параметры четырехполюсников. Способы соединения четырехполюсников: последовательное, параллельное, смешанное, каскадное. Расчет коэффициента передачи по напряжению и току.

Раздел 6. .РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПРИ ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ ЭДС, НАПРЯЖЕНИЯХ, ТОКАХ

Разложение периодической несинусоидальной кривой в тригонометрический ряд. Частотный спектр. Действующее и среднее значения. Коэффициенты, характеризующие форму несинусоидальных кривых. Мощность цепи несинусоидального тока: активная, реактивная, кажущаяся и мощность искажения. Понятие об эквивалентных синусоидах. Резонанс в цепи несинусоидального тока.

Раздел 7. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Тема 7.1. Возникновение переходных процессов и законы коммутации Первый и второй законы коммутации. Расчет независимых и зависимых начальных условий. Порядок формирования и способы решения динамических уравнений.

Тема 7.2. Классический метод расчета

Принужденный и свободный режим. Переходные процессы в цепи с одним накопителем энергии. Включение RLC – цепи на постоянное и синусоидальное напряжение. Апериодический процесс, предельный случай апе-

риодического процесса, периодический процесс. Общий случай расчета переходных процессов. Алгоритм расчета классическим методом. «Некорректные начальные условия».

Тема 7.3. Операторный метод расчета

Оригиналы и изображения. Интеграл Лапласа. Учет ненулевых начальных условий. Законы Ома и Кирхгофа в операторной форме. Эквивалентные операторные схемы. Формула разложения.

- Тема 7.4. Расчеты при воздействии ЭДС произвольной формы Интеграл свертки (Дюамеля) и его применение при анализе переходных процессов. Переходные и импульсные характеристики цепей.
- Тема 7.5. Численные методы расчета переходных процессов Метод переменных состояния. Численные способы решения уравнений состояния.

Раздел 8. УСТАНОВИВШИЕСЯ ПРОЦЕССЫ В ЦЕПЯХ С РАС-ПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Тема 8.1. Линия с потерями

Уравнения длинной линии в частных производных. Решение уравнений однородной линии при синусоидальном установившемся режиме. Первичные и вторичные параметры. Бегущие волны. Падающие и отраженные волны. Неискажающая линия.

Тема 8.2. Линия без потерь

Режим работы линии без потерь с активной и реактивной нагрузкой. Согласование линии с нагрузкой и генератором. Четвертьволновый трансформатор. Имитация индуктивностей и емкостей.

Раздел 9. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ВОЗДЕЙСТВИЯХ. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПРИ ПЕРИОДИЧЕСКИХ ВОЗДЕЙСТВИЯХ

Тема 9.1. Основные свойства и методы расчета нелинейных электрических цепей при постоянных токах и напряжениях

Графические, аналитические, численные методы расчета нелинейных цепей постоянного тока.

Тема 9.2. Нелинейные магнитные цепи при постоянных потоках Методы расчета нелинейных магнитных цепей с постоянными магнитными потоками: графический, аналитический, численный.

Тема 9.3. Нелинейные цепи при воздействии синусоидальной ЭДС Особенности расчета нелинейных цепей при синусоидальном воздействии: метод гармонического баланса, расчет по действующим значениям, метод кусочно-линейной аппроксимации.

Тема 9.4. Цепи с нелинейными индуктивностями. Феррорезонанс.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ «ТЕОРИЯ ЭЛЕКТРИ-ЧЕСКИХ ЦЕПЕЙ»

для студентов специальности 1-36 04 02 «Промышленная электроника» и 1-53 01 07 «Информационные технологии и управление в технических системах» (дневной формы получения образования)

темыНомер раздела,	Название раздела, темы	Лекции	яанятияПрактические э	занятияСеминарские оз	занятияЛабораторные н к	-а-	Количество часов УСР*	знанийконтроляФорма
1	Введение в теорию электри-							зачет

1		11	1	1	ı		1	
	ческих цепей. Основные по-	1						
	нятия, определения и законы							
	электрических и магнитных							
	цепей.							
2	Основные законы и методы	6			7			
	расчета электрических цепей							
	постоянного тока.							
2.1	Основные свойства и законы	2			3	_4		зачет
	электрических цепей.							ЗЛР
2.2	Методы расчета электрических	2			4		•	зачет
	цепей							ЗЛР
2.3	Принцип эквивалентного гене-	2						зачет
	ратора.							
3	Цепи однофазного синусои-	8			10			
	дального тока.							
3.1	Основные понятия о цепях си-	4			4	r .		зачет,
	нусоидального тока Расчет це-							ЗЛР
	пей при синусоидальных токах							
3.2	Резонансные явления и частот-	2			4			зачет,
	ные характеристики							ЗЛР
3.3	Расчет цепей при наличии вза-	2			2			Зачет
	имной индукции.	- 4						ЗЛР
4	Расчет трехфазных цепей	2						зачет
	Всего 1 семестр	17			17			зачет
5	Теория четырехполюсников	4	4		4			Э, ЗЛР
6	Расчет электрических цепей	4	4					, -,
	при периодических несинусо-							Э, ЗЛР,
	идальных ЭДС, напряжени-							KP
	ях, токах.							
7	Переходные процессы в ли-	14	14		7			
	нейных электрических цепях.							
7.1	Возникновение переходных	2	2					Э
	процессов и законы коммута-							
	ции							
7.2	Классический метод расчета.	4	6		7			Э, ЗЛР,
								KP
7.3	Операторный метод расчета	4	4					Э,КР
7.4	Расчеты при воздействии ЭДС	2	2					Э
	произвольной формы	_	_					
7.5	Численные методы расчета	2	2					Э
7.5	переходных процессов							
8	Установившиеся процессы в	6	6		6			
	цепях с распределенными па-	U						
	раметрами.							
8.1	Линия с потерями	3	2					Э
8.2	Линия без потерь	3	4		6			Э, ЗЛР
9.	Нелинейные электрические и	6	6		U			J, J/IF
).	_	U	"					
	магнитные цепи при постоянных воздействиях. Нелиней-							
, "	ные электрические цепи при							
	периодических воздействиях.			1		1		

9.1	Основные свойства и методы	2	2				Э
	расчета нелинейных электриче-						
	ских цепей при постоянных то-						
	ках и напряжениях.						
9.2	Нелинейные магнитные цепи	1	1				Э
	при постоянных потоках						
9.3	Нелинейные цепи при воздей-	2	1				Э
	ствии синусоидальной ЭДС						
9.4	Цепи с нелинейными индуктив-	1	2				Э
	ностями					A 3	
	Всего 3 семестр	34	34		17		
	_						
	Всего	51	34		34		
		1		ļ			

В таблице обозначено Э - экзамен, ЗЛР - защита лабораторных работ.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ «ТЕОРИЯ ЭЛЕКТРИ-ЧЕСКИХ ЦЕПЕЙ»

для студентов специальности 1-36 04 02 «Промышленная электроника» Заочная форма получения образования (полная)

темыНомер раздела,	Название раздела, темы	Лекции	занятияПрактические ээ	занятия Семинарские во	занятияЛабораторные н о хя	иное Иное	Количество часов УСР*	знанийконтроляФорма
	Введение в теорию электрических цепей. Основные понятия, определения и законы электрических и магнитных цепей.	0,2						зачет

2	Основные законы и методы						
-	расчета электрических цепей	2	2				
	постоянного тока.		_				
2.1	Основные свойства и законы	0,2	0,5				зачет
	электрических цепей.	,-	',-				
2.2	Методы расчета электрических	1,6	1			$\overline{}$	зачет
	цепей	1,0	_				тест
2.3	Принцип эквивалентного гене-	0,2	0,5		- 4		Зачет
	ратора.	,-	, ,,,				тест
3	Цепи однофазного синусои-	1,7	2	2		A	
	дального тока.	_,.	_	_			
3.1	Основные понятия о цепях си-	1	1				зачет
	нусоидального тока Расчет це-				D-4		тест
	пей при синусоидальных токах						
3.2	Резонансные явления и частот-	0,4	0,5	2			зачет
	ные характеристики	- ,	- ,-				ЗЛР
3.3	Расчет цепей при наличии вза-	0,3	0,5				Зачет
	имной индукции.	- ,-	,,,,,				тест
4	Расчет трехфазных цепей	0,1					зачет
5	Теория четырехполюсников	0,8	0,5				Э
6	Расчет электрических цепей	0,8	1				
	при периодических несинусо-	0,0	1				Э
	идальных ЭДС, напряжени-						тест
	ях, токах.						1001
7	Переходные процессы в ли-	2,8	2	4			
'	нейных электрических цепях.	_,0	7-				
7.1	Возникновение переходных	0,4	0,2				Э
''-	процессов и законы коммута-	, ,	-,_				
	ции						
7.2	Классический метод расчета.	0,8	1,5	4			Э, ЗЛР,
							тест
7.3	Операторный метод расчета	0,8	0,3				Э, тест
7.4	Расчеты при воздействии ЭДС	0,4	,				Э,тест
	произвольной формы						,
7.5	Численные методы расчета	0,4					Э
	переходных процессов	_,.					
8	Установившиеся процессы в	1	0,5				
	цепях с распределенными па-		'-				
	раметрами.						
8.1	Линия с потерями	0,5					Э
8.2	Линия без потерь	0,5	0,5				Э
9.	Нелинейные электрические и	0,6					
	магнитные цепи при постоян-						
	ных воздействиях. Нелиней-						
	ные электрические цепи при						
	периодических воздействиях.						
9.1	Основные свойства и методы	0,2					Э
	расчета нелинейных электриче-						
	ских цепей при постоянных то-						
	ках и напряжениях.						
9.2	Нелинейные магнитные цепи	0,1					Э

	при постоянных потоках					
9.3	Нелинейные цепи при воздей-	0,2				Э
	ствии синусоидальной ЭДС					
9.4	Цепи с нелинейными индуктив-	0,1				Э
	ностями					
	Всего	10	8	6		

В таблице обозначено Э - экзамен, ЗЛР - защита лабораторных работ.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ «ТЕОРИЯ ЭЛЕКТРИ-ЧЕСКИХ ЦЕПЕЙ»

для студентов специальности 1-36 04 02 «Промышленная электроника» Заочная форма получения образования (сокращенная)

дела,	Название раздела, темы	Кол	ичеств	о аудит	горных		yCP*	орма
темыНомер раздела,		Лекции	занятияПрактические	занятияСеминарские	занятияЛабораторные	Иное	Количество часов	знанийконтроляФорма
1	Введение в теорию электри-	0,2						зачет
	ческих цепей. Основные по- нятия, определения и законы	0,2						
	электрических и магнитных							
	цепей.							
2	Основные законы и методы							
	расчета электрических цепей	2	2					
	постоянного тока.							
2.1	Основные свойства и законы	0,2	0,5					зачет

	электрических цепей.				1		
2.2	Методы расчета электрических	1,6	1				зачет
2.2	цепей	1,0	•				тест
2.3	Принцип эквивалентного гене-	0,2	0,5				Зачет
2.5	ратора.	0,2	0,5				тест
3	Цепи однофазного синусои-	1,5	1,5	2			1001
	дального тока.	1,5	1,5				
3.1	Основные понятия о цепях си-	1	1				зачет
3.1	нусоидального тока Расчет це-	1	•				тест
	пей при синусоидальных токах					A	1001
3.2	Резонансные явления и частот-	0,3	0,3	2		7	зачет
3.2	ные характеристики	0,5	0,5	Ā			ЗЛР
3.3	Расчет цепей при наличии вза-	0,2	0,2				Зачет
3.3	имной индукции.	,_	٠,2				тест
4	Расчет трехфазных цепей	0,1					зачет
5		0,1	0,5				Э Э
6	Теория четырехполюсников	0,5	0,5				-
0	Расчет электрических цепей при периодических несинусо-	0,3	0,3				Э
	идальных ЭДС, напряжени-						
	ях, токах.						тест
7	Переходные процессы в ли-	2,1	1,5	4			
/	нейных электрических цепях.	2,1	1,3	7			
7.1	Возникновение переходных	0,2	0,2				Э
/.1	процессов и законы коммута-	0,2	0,2				
	ции						
7.2	Классический метод расчета.	0,6	1	4			Э, ЗЛР,
7.2	Totacon rockim morog pae iora.	0,0	•	'			тест
7.3	Операторный метод расчета	0,5	0,3				Э, тест
7.4	Расчеты при воздействии ЭДС	0,4					Э,тест
'''	произвольной формы	, .					3,1001
7.5	Численные методы расчета	0,4					Э
7.5	переходных процессов	0,1					
8	Установившиеся процессы в	0,5					
	цепях с распределенными па-	0,0					
	раметрами.						
8.1	Линия с потерями	0,2					Э
8.2	Линия без потерь	0,3	0,5				Э
9.	Нелинейные электрические и	0,6					
	магнитные цепи при постоян-						
	ных воздействиях. Нелиней-						
	ные электрические цепи при						
	периодических воздействиях.						
9.1	Основные свойства и методы	0,2					Э
	расчета нелинейных электриче-						
	ских цепей при постоянных то-						
	ках и напряжениях.						
9.2	Нелинейные магнитные цепи	0,1					Э
	при постоянных потоках						
9.3	Нелинейные цепи при воздей-	0,2					Э
	ствии синусоидальной ЭДС						
9.4	Цепи с нелинейными индуктив-	0,1					Э (

	ностями					
	Всего	8	6	6		

В таблице обозначено Э - экзамен, ЗЛР - защита лабораторных работ.

Информационно-методическая часть

Основная литература

- 1. Батура М.П. Теория электрических цепей/ М. П. Батура, А. П. Кузнецов, А. П. Курулёв. 3-е изд., перераб. Минск: Вышэйшая школа, 2015.
- 2. Теоретические основы электротехники: Электрические цепи: Учебник для студентов электротехн., энерг., приборостроит. спец. Вузов / Л.А Бессонов–9-е изд., перераб. и доп.— Москва: Высшая школа, 1996. 431 с.
- 3. Бычкова Л.Г. «Линейные электрические цепи постоянного, переменного однофазного и трехфазного тока: пособие/Л.Г.Бычкова; М-во образования Респ. Беларусь, Гомел. Гос.техн. ун-т им. П.О. Сухого.-Гомель: ГГТУ им. П.О. Сухого, 2019. 159с.
- 4. Бычкова Л.Г. «Линейные и нелинейные электрические цепи: лабораторный практикум: учеб.-метод. Пособие /Л.Г. Бычкова;М-во образования Респ. Беларусь, Гомел. Гос.техн. ун-т им. П.О. Сухого.-Гомель: ГГТУ им. П.О. Сухого, 2018.—237с.
- 5. Теоретические основы электротехники: учебник для вузов. Т.1/ К.С. Демирчян, Л.Р. Нейман, Н. В. Коровкин. 5-е изд. Санкт-Петербург [и др.]: Питер, 2009. 512с.
- 6. Теоретические основы электротехники: учебник для вузов. Т.2 / К.С. Демирчян, Л.Р. Нейман, Н. В. Коровкин. 5-е изд. Санкт-Петербург [и др.]: Питер, 2009. 431с.
- 7. Основы теории цепей: Учебник для вузов/ Г.В. Зевеке, П.А. Ионкин, А.В.

Нетушил, С.В. Страхов. – 5-е изд., перераб. – Москва: Энергоатомиздат, 1989. – 527 с.

Дополнительная литература

- 1. Шебес М.Р., Каблукова М.В. Задачник по теории линейных электрических цепей: Учеб. пособ. для электротехнич., радиотехнич. спец. вузов. 4-е изд., перераб. и доп. М.: Высш. шк., 1990. 544 с.
- 2. Сборник задач по теоретическим основам электротехники: Учеб. пособие для энерг. и приборостр. спец. вузов. 4-е изд., перераб. и испр. / Л.А. Бессонов, И.Г. Демидова, М.Е. Заруди и др.; Под ред. Л.А. Бессонова. М.: Высш. шк.: 2003. 528 с.:
- 3. Сборник задач по ТОЭ / Под ред. Л. А. Бессонова/. М., Высшая школа, 1988 472c.
- 4. Сборник задач и упражнений по теоретическим основам электротехники: Учеб. пособие для вузов / Под ред. проф. П.А. Ионкина. М: Энергоиздат, 1982. 768 с.

Учебно-методические комплексы

9. Электронный учебно-методический комплекс дисциплины «Теория электрических цепей» для студентов специальности 1-36 04 02 "Промышленная электроника", ч. 1. – Гомель: ГГТУ, 2011.

URI: http://elib.gstu.by/handle/220612/1914

10. Электронный учебно-методический комплекс дисциплины «Теория электрических цепей» для студентов специальности 1-36 04 02 "Промышленная электроника", ч. 2. – Гомель: ГГТУ, 2012.

URI: http://elib.gstu.by/handle/220612/2099

Методические пособия кафедры

- 1. №3561.Нелинейные цепи переменного тока: практикум по курсу «Теоретические основы электротехники» /Л.Г. Бычкова.-Гомель: ГГТУ им. П.О. Сухого, 2006.-42с
- 2. №1914. М/ук для студентов заочного обучения по спец. 07.02.01. «Расчет переходных процессов с помощью интеграла Дюамеля»/ Л.Г. Бычкова ГПИ, 1995.-32с.
- 3. №2101. Учебное пособие по курсу ТОЭ «Цепи постоянного тока» (ч. 1) для студ.спец. 07.02.01./ Л.Г. Бычкова Гомель, ГПИ, 1996.
- 4. №2169. Учебное пособие по курсу ТОЭ «Цепи синусоидального тока» (ч.
- 2) для студ.спец. 07.02.01/ Л.Г. Бычкова Гомель, ГПИ, 1996. 94с.

- 5. №2305. Практическое пособие по курсу ТОЭ «Четырехполюсники. Трехфазные цепи» (ч. 3) для студ.спец. 07.02.01/ Л.Г. Бычкова Гомель, ГПИ, 1998.- 64с.
- 6. №2935. . Практическое пособие по курсу ТОЭ «Методы анализа линейных электрических цепей постоянного тока» (ч. 1) для студ.спец. 07.02.01./ Л.Г. Бычкова Гомель, ГПИ, 1998.-48с.
- 7. №2452. Практическое пособие по курсу ТОЭ «Методы расчета линейных электрических цепей однофазного синусоидального тока» (ч. 2) для студ.спец. 07.02.01./ Л.Г. Бычкова Гомель, ГГТУ им .П.О. Сухого, 2004.-46с.
- 8. .№2407. Практическое пособие по курсу ТОЭ « Электрические цепи, содержащие источники несинусоидального тока» (часть 4) для студ.спец. 07.02.01./ Л.Г. Бычкова Гомель, ГПИ, 1999.- 30с.
- 9. №2504. Практическое пособие по курсу ТОЭ «Переходные процессы в линейных электрических цепях» (ч. 5) для студ.спец. 07.02.01./ Л.Г. Бычкова Гомель, ГГТУ , 2000 . -38c.
- 10. №3690 «Расчет линейных цепей в переходных режимахю Операторный, частотный методы»: практикум по курсу ТОЭ для студ .спец. 1-36 04 02. / Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого 2009 . 54с.
- 11. №3839 «Расчет линейных цепей в переходных режимах»: практикум по курсу ТОЭ для студ .спец. 1-36 04 02 ./ Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого 2009 . 34с.
- 12. №2654. Практическое пособие по курсу ТОЭ «Электрические цепи с распределенными параметрами» (ч.6) для студ.спец. 07.02.01. / Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого 2002. 26с.
- 13. №2790. Практическое пособие к лабораторным работам по курсу ТОЭ (ч. 7) для студ.спец. 07.02.01. дневной и заочной форм обучения. / Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого 2003. 18с.
- 14. №3305. Практикум по курсу ТОЭ «Нелинейные цепи переменного тока» для студ.спец. 1-36 04 02 дневной и заочной форм обучения. / Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого 2006. 42с.
- 15. №3561. Лабораторный практикум по курсу ТОЭ «Нелинейные цепи переменного тока» для студ.спец. 1-36 04 02 дневной и заочной форм обучения. . / Л.Г. Бычкова, А.В. Ростокин– Гомель, ГГТУ им. П.О. Сухого 2008 . 62с.
- 16. Практикум по разделу « Расчет цепей несинусоидального тока. Расчет длинных линий» курса «Теория электрических цепей/ Л.Г. Бычкова Гомель, ГГТУ им. П.О. Сухого (электронное издание) 2019. 97 с

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Расчет цепей постоянного тока: метод контурных токов, метод узловых потенциалов, метод наложения, метод эквивалентного генератора.
- 2. Символический метод расчета цепей однофазного синусоидального тока. Расчет мощности, баланс в цепи синусоидального тока.
 - 3. Расчет резонансных режимов работы.
- 4. Определение параметров уравнений четырехполюсников. Расчет входных сопротивлений и передаточных характеристик.
- 5. Расчет вторичных параметров четырехполюсников, согласованный режим работы четырехполюсника.
- 6. Расчет цепей несинусоидального тока. Мощность цепи несинусоидального тока. Резонанс в цепи несинусоидального тока
- 7. Классический метод расчета переходных процессов. Цепи первого порядка.
- 8. Классический метод расчета переходных процессов. Цепи второго порядка.
 - 9. Операторный метод расчета. Цепи первого порядка.
 - 10. Операторный метод расчета. Цепи второго порядка.
 - 11. Интеграл Дюамеля.
 - 12. Расчет длинной линии с потерями.
 - 13. Расчет длинной линии без потерь.
 - 14. Расчет нелинейных цепей постоянного тока
 - 15. Расчет магнитных цепей при постоянных магнитных потоках.
 - 16. Расчет нелинейной катушки при синусоидальном напряжении.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Исследование внешних характеристик генераторов.
- 2. Исследование разветвленных цепей постоянного тока.
- 3. Простые цепи однофазного синусоидального тока.
- 4. Разветвленные цепи синусоидального тока.
- 5. Исследование резонанса напряжений.
- 6. Исследование резонанса токов.
- 7. Исследование цепей с несинусоидальной ЭДС.
- 8. Исследование пассивного четырехполюсника.
- 9. Исследование переходных процессов в цепях первого порядка.
- 10. Исследование переходных процессов в цепи второго порядка.
- 11. Исследование режимов работы длинных линий. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЕТУ
- 1. Схемы замещения источников питания. Внешняя характеристика, режим согласованной нагрузки. Эквивалентность источника тока и источника ЭДС.
- 2. Элементы электрической цепи и схемы замещения. Функции цепи.
- 3. Принцип наложения /обосновать/ и метод наложения.
- 4. Входные и взаимные проводимости, коэффициент передачи по току. Расчёт функций цепи.
- 5. Свойства линейных цепей: принцип наложения, принцип взаимности, линейные соотношения.
- 6. Доказать теорему об эквивалентном генераторе. Метод эквивалентного генератора.
- 7. Метод контурных токов: вывод расчётных уравнений.
- 8. Метод узловых потенциалов: вывод расчётных уравнений.
- 9. Основы символического метода расчёта. Изображение синусоиды, её производной и интеграла на комплексной плоскости.
- 10. Изображение разности потенциалов на комплексной плоскости. Топографическая векторная диаграмма. Метод пропорционального пересчёта.
- 11. Резистивный элемент в цепи синусоидального тока.
- 12. Ёмкостный элемент в цепи синусоидального тока.
- 13.Индуктивный элемент в цепи синусоидального тока.
- 14.Последовательное соединение элементов R,L,С в цепи синусоидального тока. Треугольник сопротивлений.
- 15.Параллельное соединение элементов R,L,С в цепи синусоидального тока. Треугольник проводимостей.
- 16.Схема замещения пассивного двухполюсника. Преобразование треугольника сопротивлений в треугольник проводимостей.

- 17. Активная, реактивная и полная мощность. Треугольник мощностей. Комплексная мощность, баланс мощностей.
- 18. Разность фаз напряжения и тока. Экономическое значение коэффициента мощности. Способы улучшения коэффициента мощности.
- 19. Условие передачи максимальной мощности от источника энергии к приемнику в цепи синусоидального тока.
- 20. Резонанс в последовательном контуре. Волновое сопротивление, добротность. Частотные характеристики.
- 21. Усилительные и избирательные свойства последовательного резонансного контура, влияние добротности.
- 22. Резонанс токов.
- 23.Индуктивно связанные элементы цепи. Согласное и встречное включение, коэффициент взаимоиндукции, одноименные зажимы. Методы расчета.
- 24.Воздушный трансформатор, вносимые параметры, векторная диаграмма и схема замещения.
- 25. Передача энергии между индуктивно-связанными элементами цепи.
- 26. Трехфазная система ЭДС. Соединение обмоток генератора звездой. Фазные и линейные напряжения. Измерение мощности в трехфазных цепях.
- 27. Трехфазная система ЭДС. Соединение обмоток генератора треугольником. Фазные и линейные напряжения. Измерение мощности в трехфазных цепях.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЭКЗАМЕНУ

- 1. Основные уравнения четырёхполюсников. Определение коэффициентов.
- 2. Уравнения нагруженного четырехполюсника в А-форме. Входные сопротивления, Коэффициент передачи по напряжению и току. Расчет коэффициентов.
- 3. Схемы соединения четырехполюсников. Обратные связи.
- 4. Схемы замещения четырехполюсников.
- 5. Вторичные (характеристические) параметры четырехполюсников. Согласованный режим четырехполюсника.
- 6. Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока.
- 7. Максимальное, среднее и действующее значения несинусоидального тока.
- 8. Резонанс в цепи несинусоидального тока.
- 9. Мощность цепи несинусоидального тока.
- 10. Высшие гармоники в трехфазных цепях. Простейший утроитель частоты.

- 11. Возникновение переходных процессов в линейных цепях. Законы коммутации.
- 12. Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия.
- 13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.
- 14. Периодический заряд конденсатора. Собственная частота колебаний контура. Критическое сопротивление.
- 15. "Некорректные" начальные условия. Особенности расчета. Существуют ли в реальных схемах такие условия?
- 16. Определение корней характеристического уравнения. Обосновать.
- 17. Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля.
- 18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.
- 19. Применение преобразований Лапласа к расчету переходных процессов. Основные свойства Лапласовых функций.
- 20. Операторные схемы замещения. Обосновать.
- 21. Расчет переходных процессов методом переменных состояния. Формирование расчетных уравнений. Расчет с помощью ЭВМ.
 - 22. Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов.
 - 23. Уравнения длинной линии в частных производных. Первичные параметры длинной линии.
 - 24. Решение уравнений длинной линии при синусоидальном напряжении. Вторичные параметры длинной линии.
 - 25. Волновые процессы в длинной линии. Падающая и отраженная волны. Коэффициент отражения. Входное сопротивление.
 - 26. Линия без потерь. Стоячие волны.
 - 27. Входные сопротивления линии без потерь. Имитация индуктивностей и емкостей.
 - 28. Четвертьволновый трансформатор. Согласование линии с нагрузкой.
 - 29. Волновые процессы в линии без потерь, нагруженной на активное сопротивление. Коэффициенты стоячей и бегущей волны.
 - 30. Особенности вольт амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам
 - 31. Расчет схем стабилизации напряжений и токов, определение коэффициента стабилизации по линейной схеме замещения.
 - 32. Особенности вольт амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам

- 33. Аппроксимация нелинейных характеристик. Аналитический метод расчета.
- 34. Особенности периодических процессов в электрических цепях с инерционными нелинейными элементами.
- 35. Спектральный состав тока в цепи с нелинейным резистором при воздействии синусоидального напряжения. Комбинационные колебания.
- 36. Метод эквивалентных синусоид. Методы расчета нелинейных цепей по действующим значениям.
- 37. Форма кривых тока, магнитного потока и напряжения в нелинейной идеальной катушке. Схема замещения, векторная диаграмма.
- 38. Форма кривых тока, магнитного потока и напряжения в нелинейной катушке при учете потерь энергии в сердечнике. Расчет параметров схемы замещения. Векторная диаграмма.
- 39. Феррорезонанс напряжений. Триггерный эффект.
- 40. Феррорезонанс токов. Скачкообразное изменение напряжения при питании от источника тока.
- 41. Основы метода гармонического баланса. Приведите пример.
- 42. Метод кусочно-линейной аппроксимации характеристик нелинейных элементов. Расчет цепей с вентилями. Схема однополупериодного и двухполупериодного выпрямителя.
- 43. Расчет схемы однополупериодного выпрямителя с емкостью.

ДИАГНОСТИКА КОМПЕТЕНЦИЙ СТУДЕНТА

Оценка уровня знаний студента производится по десятибалльной шкале.

Для оценки достижений студента рекомендуется использовать следующий диагностический инструментарий:

- проведение контрольных работ в аудитории;
- проведение текущих контрольных опросов и тестирования по отдельным темам курса;
 - выполнение домашних задач по отдельным темам курса;
- выполнение учебно-исследовательских работ(участие в работе предметного кружка по ТЭЦ);
 - участие в предметной олимпиаде;
 - выступление студента на конференциях;
 - сдача зачета по дисциплине;
 - сдача экзамена.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕ-МОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕ-ЦИАЛЬНОСТИ

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы по изучаемой дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Физика	Физика и электро- техника	согласовано	протокол № 9 от 23.05.2019г
Математика	Высшая математика	согласовано	Протокол №9 от 15.05.19

Заведующий кафедрой «Физика и электротехника»

Хило П.А.