УДК 547.458.61

ФОРМИРОВАНИЕ БИОРАЗЛАГАЕМЫХ КОМПОЗИТОВ НА ОСНОВЕ ГИБРИДНЫХ МАТРИЦ

Е. Н. ПОДДЕНЕЖНЫЙ, Н. Е. ДРОБЫШЕВСКАЯ, А. А. БОЙКО

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

В. М. ШАПОВАЛОВ

Институт механики металлополимерных систем имени В. А. Белого НАН Беларуси, г. Гомель

Ключевые слова: формирование, биоразлагаемые композиты, гибридные матрицы, полилактид, полипропилен.

Введение

На протяжении последних лет появилось большое количество научных статей и патентов в области исследования биоразлагаемых полимеров или биокомпозитов, но только некоторые из них привели к продуктам, которые оказались успешными в завоевании заметной доли общего рынка пластических материалов вследствие нескольких причин: изделия не обладали достаточной прочностью; имели короткий срок годности при хранении; были слишком дорогостоящими или переработка в полезные изделия была затруднительной и неэкономичной [1]–[3].

Одним из успешных вариантов создания биоразлагаемых композитов явились бионаполненные пластики — композиции полиолефинов (полипропилена, полиэтилена, этиленвинилацетата) с органическими наполнителями — крахмалом, древесной мукой, рисовой лузгой [4]—[7]. Однако в таких композициях удалось снизить время полного распада только до 10—12 мес. в компосте при введении модификаторов, меняющих структуру полиолефинов, и добавок, способствующих размножению полезных микроорганизмов (бактерий и грибов) [4]—[7].

Решением проблемы ускоренного биоразложения с сохранением потребительских свойств, термических и физико-механических характеристик материалов может быть создание гибридных композитов, содержащих в своем составе биоразлагаемые полиэфиры (например, полилактид) и полиолефины (полипропилен, полиэтилен), а также органические биоразлагаемые наполнители (крахмал, древесную муку, рисовую лузгу и т. п.). Предполагается, что продукты, изготовленные из биоразлагаемой полимерной композиции, будучи захороненными в почве, должны преобразовываться в углекислый газ, воду и гумус за период от 6 до 7 мес. и соответствовать ГОСТ Р 57226–2016 (ISO 16929 : 2013).

Основной проблемой при создании таких гибридных композиций является термодинамическая несовместимость компонентов, которые имеют различную природу и не смешиваются между собой для формирования однородного прочного материала. Для этого требуются так называемые совмещающие агенты [11]–[14]. Проблема может быть решена с применением малеинированных полиолефинов, например, с введением в композит полипропилена с привитым малеиновым ангидридом (РР–g–МАН) [12], [14]; существуют и другие стратегии совмещения [15].

Целью настоящей работы является исследование проблем получения и изучения некоторых свойств биоразлагаемых композиционных материалов на основе смесей полилактида и полипропилена (гибридных биоразлагаемых композитов). В качестве органического биоразлагаемого наполнителя использовали нативный кукурузный крахмал. В некоторых экспериментах крахмал заменяли на молотую льнокостру и подсолнечную шелуху.

Материалы и методы исследований

Для получения экспериментальных ленточных образцов биоразлагаемых материалов на основе смеси полилактида и полипропилена были использованы следующие исходные материалы: полилактид (ПЛА) марки Ingeo Biopolymer 4043D (производства Natureworks LLC, США) в гранулах; гомополипропилен PP H120 GP/3; плотность – 900 кг/м³; показатель текучести расплава (ПТР) (230 °C) = 6,0–12,0 г/10 мин; температура размягчения – 145–160 °C; крахмал кукурузный пищевой; ГОСТ P51965–2002; сорт высший; пластификатором для полилактида и крахмала служил полиэтиленгликоль ПЭГ-4000; химическая формула $C_{2n}H_{4n+2}O_{n+1}$; ТУ 2481-008-71150986–2006; среднее значение молекулярной массы – в пределах 3500–4500, температура кристаллизации – 50–55 °C, массовая доля воды – не более 1,0 %.

В качестве совмещающего агента для полилактида и полипропилена использовали этиленвинилацетат – марки СЭВИЛЕН 11306-075; ТУ 2211-211-00203335–2013; ПТР (190 °C) = 6,0; плотность – 0,933 г/см³; доля винилацетата – 12 мас. %. Для улучшения реологических характеристик смеси использовали лубриканты: моностеарат глицерина HG-60; чистота – 98,1 %; $T_{\text{пл}}$ = 64,5 °C; воск полиэтиленовый; тип F, CAS 9002-88-4; $T_{\text{пл}}$ = 96 °C; плотность = 0,9 г/см³. Фотоактивной и окрашивающей добавкой служил порошок диоксида титана марки TiONA AT-1 (анатаз); ГОСТ 9808–84.

Для изучения структурных свойств и морфологии композиционных материалов использован метод сканирующей электронной микроскопии (СЭМ) (микроскоп TESCAN, Чехия).

Ленточные образцы вытягивали на одношнековом экструдере HAAKE RHEOCORD 90 (Германия); диаметр шнека – 20 мм; длина шнека – 500 мм; скорость вращения – 50 об/мин. Показатель текучести расплава определяли с помощью прибора ИИРТ-М5. Испытания на прочность до разрыва и относительное удлинение образцов проводили на разрывной машине Instron 5969 при комнатной температуре.

Водопоглощение является косвенным показателем способности композитов к биоразложению [5]; испытания на водопоглощение образцов проводили в соответствии с ГОСТ 4650–80.

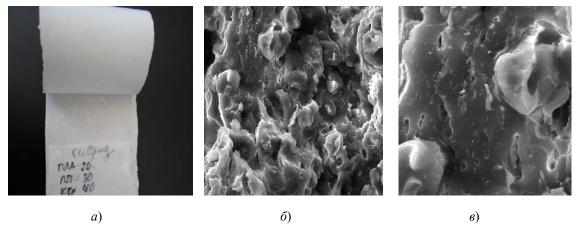
Экспериментальная часть

Полимолочная кислота (полилактид, ПЛА, PLA) — хорошо известный гидрофобный, полностью биоразлагаемый полимер, относится к классу алифатических полиэфиров, синтезируется методом полимеризации молочной кислоты. Молочная кислота получается путем сбраживания углеводсодержащего природного сырья — кукурузы, пшеницы, сахарного тростника. Химическая формула полилактида:

Полимолочная кислота существует в виде двух L- и D-стереоизомеров, являющихся зеркальным отображением друг друга. Варьируя относительное содержание

этих форм в полилактиде, можно задавать свойства получаемого полимера, а также получать различные классы полилактидных материалов. Полилактид, получаемый из 100%-го L-лактида (L-ПЛА), имеет высокую степень стереорегулярности, что придает ему кристалличность. Температура стеклования L-ПЛА – 54–58 °C; температура плавления – 170–180 °C. Используя при полимеризации смесь D- и L-форм лактида, получают аморфный полилактид (L, D-ПЛА), температура стеклования которого составляет 50–53 °C. Самая высокая температура плавления у стереокомплекса, состоящего из чистого L-ПЛА и чистого D-ПЛА. Две цепочки сплетаются и образующиеся дополнительные взаимодействия между ними ведут к повышению температуры размягчения до 100–120 °C и температуры плавления – до 220 °C [16].

Обладая отличными механическими характеристиками, ПЛА мог бы составить конкуренцию таким синтетическим полимерам, как полипропилен, полиэтилен, если бы не ряд существенных недостатков.


При высокой механической прочности коммерческий ПЛА является хрупким, с малым удлинением до разрыва и высокой температурой стеклования (53–58 °C); при нормальных условиях является слабокристаллическим и размягчается при температуре 60 °C. Таким образом, в чистом виде он не может быть использован для термостойких и морозоустойчивых изделий. Он легко гидролизуется, поэтому требует особых условий хранения и предварительной сушки перед использованием. Кроме того, его высокая стоимость (в 3–4 раза выше, чем полипропилена) ограничивает его применение для изготовления одноразовой посуды, контейнеров и пленочной упаковки. Период полного биологического разложения для чистого полилактида составляет в зависимости от модификации 12–18 мес. (в компосте, при T = 60 °C и относительной влажности 60 %) [17].

В качестве биологически разрушаемого наполнителя выбран кукурузный крахмал, который представляет собой порошок белого цвета с размерами зерен 10–15 мкм. Зерна кукурузного крахмала в отличие от других видов крахмалов характеризуются меньшими размерами, малым разбросом размеров частиц, поэтому в качестве наполнителя порошок кукурузного крахмала является предпочтительным.

Этиленвинилацетат (сэвилен) представляет собой сополимер этилена с винилацетатом, в котором содержание винилацетата обычно варьируется от 2,5 до 40 мас. %. Известно, что добавление этиленвинилацетата (сэвилена) в расплав оказывает модифицирующее влияние на рост кристаллитов полипропилена и свойства композиционного материала [18]. При этом определяющим фактором является химическое строение сэвилена. Являясь полукристаллическим полимером, содержащим полярные ацетатные группы, этиленвинилацетат определяет характер взаимодействия с полимерной матрицей. Благодаря наличию полярных ацетатных групп, повышается адгезия этиленвинилацетата к полилактиду, что приводит к образованию межфазного слоя. Введением этиленвинилацетата в состав полимерного композита обеспечивается повышенная степень биологического разрушения за счет разрыхления и частичной аморфизации структуры полипропилена.

Биоразлагаемый композит изготавливают следующим образом. Гранулы полипропилена (ПП) смешивают с этиленвинилацетатом, добавляют в смесь полиэтиленгликоль ПЭГ-4000, глицерин моностеарат и полиэтиленовый воск и перемешивают в скоростном обогреваемом турбосмесителе при температуре 90–100 °C в течение 20 мин, затем в смеситель постепенно добавляют порошок кукурузного крахмала, далее вводят порошок диоксида титана, повышают температуру до 125 °C, продолжают нагрев смеси в течение 30 мин для получения гомогенной шихты и удаления избыточной влаги из крахмала, затем охлаждают смесь до 25–30 °C и засыпают гранулы полилактида. Далее смесь поступает в экструдер для расплавления и го-

могенизации. Температура расплава на выходе из щелевой головки экструдера – 185-190 °C. Полученный расплав поступает на каландр, охлаждается и формируется в виде ленты (рис. 1, a).

Puc. 1. Формирование гибридного композиционного материала с ускоренным гидро-, биоразложением: a – лента, вытянутая на лабораторном экструдере; δ – сканирующая электронная микроскопия скола гибридного материала в жидком азоте; \times 5000; ε – изображение гибридной матрицы между зернами крахмала; \times 10000

Из анализа электронно-микроскопических снимков гибридного композита с крахмалом можно сделать заключение, что наличие в смеси пластификатора (ПЭГ-4000) способствует формированию однородной гетерогенной системы (рис. 1, δ), а полимерная стенка между частицами крахмала содержит глобулы полилактида в матрице полипропилена и множество замкнутых микропор (рис. 1, ϵ), что ведет к ускоренному гидро- и биологическому разложению. Отсутствие в смеси пластификатора (ПЭГ-4000) приводит к формированию неоднородной гетерогенной системы с фибриллярной матрицей в виде вытянутых полос вдоль направления вытяжки ленты (рис. 2).

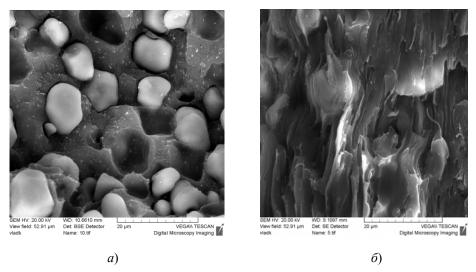


Рис. 2. СЭМ-изображение ленты на основе смеси «полипропилен – крахмал без полилактида» (а) [6]; гибридного композита ПЛА–ПП с крахмалом без пластификатора (δ)

Для сравнения свойств композитов были проведены эксперименты по замене органического наполнителя – крахмала на другие наполнители – порошок льнокостры

и молотую подсолнечную лузгу (рис. 3). Хотя структура композита в целом гетерогенна, однако использование порошка льнокостры и подсолнечной лузги является перспективным.



Рис. 3. СЭМ-изображение ленты на основе гибридного композита ПЛА–ПП с льнокострой (a) и гибридного композита ПЛА–ПП с подсолнечной шелухой (δ)

Испытания на гидролитическую устойчивость проводили в холодной воде в течение 24 ч при температуре 23 °C (ГОСТ 4650–80) (см. таблицу). Образцы взвешивали до и после испытаний. Далее образцы помещали в стаканы с дистиллированной водой. После извлечения из воды образцы быстро промакивали фильтровальной бумагой и взвешивали. Изучали также внешний вид, деформацию после извлечения из воды.

Результаты испытаний на гидролитическую устойчивость композитов

Состав лент	Изменение массы в воде, %	Примечания
ПЛА, РР 120, ПЭГ-4000, кукурузный крахмал	+4,12	Среднее водопоглощение
ПЛА, РР 120, ПЭГ-4000, льнокостра	+6,8	Значительное водопоглощение
Лента ПЛА, РР 120, ПЭГ-4000, подсолнечная шелуха	+5,6	Значительное водопоглощение
Лента РР 120, кукурузный крахмал (без полилактида и без ПЭГ-4000)	+3,1	Небольшое водопоглощение

Установлено, что образцы биоразлагаемых материалов, полученные с использованием матрицы «полилактид-полипропилен» и органических наполнителей, обладают средним или значительным водопоглощением. Наибольшее водопоглощение характерно для образца с наполнителем в виде льнокостры (6,8 мас. % за 24 ч), что примерно в два раза превышает водопоглощение материала без полилактида и пластификатора. Это связано, скорее всего, с наличием в составе пористых частиц наполнителя. Значительное водопоглощение будет способствовать ускоренному биоразложению.

Определено, что ПТР полученных образцов (ГОСТ 11645-73; при 230 °C) находится в пределах от 2.8 до 4.6 г/10 мин; прочность при растяжении -10-15 МПа, а величина удлинения до разрыва составляет 15-25 %.

Таким образом, создана биоразлагаемая термопластичная композиция на основе смеси крахмала, полилактида и органических наполнителей с температурой размягчения 95–100 °C, изделия из которой разрушаются после эксплуатации под действием влаги, микрофлоры почвы и солнечного излучения.

Заключение

Исходя из вышеизложенного, можно сделать следующие выводы:

- 1. В лабораторных условиях проведены эксперименты по получению биоразлагаемых композитов на основе гибридной матрицы «полилактид—полипропилен» в форме экструзионных лент толщиной 0,5 мм. В качестве биоразлагаемых наполнителей применяли кукурузный крахмал, молотую льнокостру и подсолнечную лузгу.
- 2. Установлено, что образцы биоразлагаемых материалов, полученные с использованием матрицы ПП, а в качестве модификатора полилактида и наполнителей, обладают значительным водопоглощением. Наибольшее водопоглощение характерно для образца состава «ПЛА—ПП—льнокостра» (6,8 мас. % за 24 ч).
- 3. Наилучшие результаты формирования композиций на основе полипропилена и полилактида получены с использованием полиэтиленгликоля ПЭГ-4000 в качестве пластификатора. Определено, что в гибридной системе «полилактид—полипропилен» с кукурузным крахмалом композиционный материал между частицами крахмала содержит глобулы полилактида в матрице полипропилена, а также множество замкнутых микропор, что способствует ускоренному гидро- и биологическому разложению изделий в условиях компостирования.

Литература

- 1. Композиты на основе полиолефинов : пер. с англ. / под ред. Д. Нвабунмы, Т. Кю. СПб. : НОТ, 2014. 744 с.
- 2. Керницкий, В. И. Биополимеры дополнение, а не альтернатива / В. И. Керницкий, Н. А. Жир // Полимерные материалы. 2015. № 2. С. 28–34.
- 3. Масанов, А. Ю. Биоразлагаемые пластики: текущее состояние рынков и перспективы / А. Ю. Масанов. 2017. Режим доступа: http://vestkhimprom.ru/posts/biorazlagaemye-plastiki-tekushchee-sostoyanie-rynkov-i-perspektivy. Дата доступа: 08.09.2019.
- 4. Прогресс в получении биоразлагаемых композиционных материалов на основе крахмала. Обзор / Е. Н. Подденежный [и др.] // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. -2015. -№ 2 C. 31–41.
- 5. Пантюхов, П. В. Особенности структуры и биодеградация композиционных материалов на основе полиэтилена низкой плотности и растительных наполнителей: дис. ... канд. хим. наук: 02.00.06 / П. В. Пантюхов. М., 2013. 150 с.
- 6. Биоразлагаемые композиционные материалы на основе смесей крахмала и синтетических полимеров / Е. Н. Подденежный [и др.] // Горная механика и машиностроение. -2016. -№ 1. C. 89–95.
- 7. Василенко, А. Ю. Влияние методов смешения на структуру и свойства полимерных смесей на основе полиэтилена низкой плотности: дис. ... канд. хим. наук: 02.00.06 / А. Ю. Василенко. М., 2010. 220 с.
- 8. Биологически разрушаемая термопластичная композиция с использованием природного наполнителя : пат. 2418014 Рос. Федерация, МПК 6 С 08 L 23/06, С 08 L 23/08 ; опубл. 10.05.2011.

- 9. Polyester-Based (Bio) degradable Polymers as Environmentally Friendly Materials for Sustainable Development / Joanna Rydz [et al.] // Review Int. J. Mol. Sci. 2015. Vol. 16. P. 564–596.
- 10. Effect of Modified Tapioca Starch on Mechanical, Thermal, and Morphological Properties of PBS Blends for Food Packaging Polymers / Rafiqah S. Ayu [et al.]. 2018. № 10. P. 1187–1201.
- 11. Polyblends and composites of poly (lactic acid) (PLA): a review on the state of the art / Krishna Prasad Rajan [et al.] // Journal of Polymer Science and Engineering. 2018. Vol. 1. P. 1–14.
- 12. Jariyakulsith, P. Relationship between compatibilizer and yield strength of PLA/PP Blend / P. Jariyakulsith, S. Puajindanetr // Materials Science and Engineering. 2018. Vol. 303, doi:10.1088/1757-899X/303/1/012004.
- 13. Биологически разрушаемая термопластичная композиция : пат. 2404205 Рос. Федерация, МПК 7 С 08 L 1/12 ; опубл. 20.11.2010.
- 14. Effect of Compatibilizer on PLA/PP Blend for Injection Molding / S. Pivsa-Art [et al.] // Energy Procedia. 2016. Vol. 89. P. 353–360.
- 15. Jian-Bing Zeng Compatibilization strategies in poly (lactic acid)-based blends / Jian-Bing Zeng, Kun-Ang Li, An-Ke Du // RSC Advances. 2017. № 1. P. 1–68.
- 16. Полилактид (полимолочная кислота). Режим доступа: https://ru.wikipedia.org/wiki/. Дата доступа: 08.09.2019.
- 17. Hamad, K. Rheological and mechanical characterization of poly (lactic acid) / polypropylene polymer blends / K. Hamad, M. Kaseem, F. Deri // J. Polym. Res. 2011. Vol. 18. P. 1799–1806.
- 18. Кучменова, Л. Х. Термические свойства полимер-полимерных композитов на основе полипропилена: дис. ... канд. техн. наук: 02.00.06 / Л. Х. Кучменова; Кабард.-Балкар. гос. ун-т. Нальчик, 2014. 125 с.

Получено 02.12.2019 г.