РАСЧЕТ СИСТЕМЫ АВТОПОВОРОТА ФОТОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ

А. Э. Зуев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Д. И. Зализный

Цель данной работы — изучить зависимость потребляемой мощности устройством автоповорота фотоэлектрических модулей от габаритов, массы и частоты вращения установки.

Задача работы – оценить эффективность применения устройства автоповорота фотоэлектрических модулей и актуальность применения данной технологии.

Система автоповорота фотоэлектрических модулей (далее солнечный трекер) используется для увеличения выработки электроэнергии солнечными модулями. По данным компаний-производителей моделей трекера, прирост выработки составляет до 45 % в день от выработанной электроэнергии без его использования. Также солнечный трекер позволяет стабилизировать значение вырабатываемой электроэнергии в течение светового дня.

Основными недостатками солнечного трекера являются:

- потребление электроэнергии на собственные нужды;
- необходимость обслуживания системы.

В каталогах компаний-производителей моделей трекера не указывается определенная величина потребления электроэнергии устройствами привода (щаговыми двигателями). Указывается лишь то, что потребление электроэнергии на собственные нужды пренебрежительно мало. Отсутствие этой информации создает необходимость в оценке эффективности применения солнечного трекера.

Для оценки эффективности применения солнечного трекера необходимо провести анализ потребления электроэнергии на собственные нужды установки, а в частности привода. Зная зависимость механической мощности, необходимой для поворота установки, можно также определить влияние габаритов, массы и частоты вращения установки на необходимую мощность.

Рассмотрим упрощенную модель трекера для определения механической мощности, необходимой для поворота солнечных модулей массой m, габаритами h, l, f, с частотой вращения n вокруг своей оси. Для простоты расчета пренебрежем влиянием сил трения.

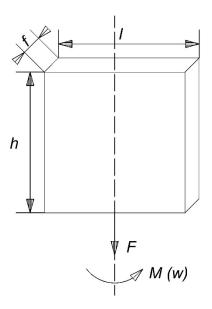


Рис. 1. Упрощенная схема трекера

Формула для определения механической мощности тела в общем виде:

$$N = \frac{E_{\text{кин}}}{\Delta t},\tag{1}$$

где N — механическая мощность, Bт; $E_{\text{кин}}$ — кинетическая энергия тела после завершения процесса, Дж; Δt — время протекания процесса, c;

Формула для кинетической энергии тела:

$$E_{\text{\tiny KUH}} = \frac{\dot{J_{c}} w^{2}}{2} \frac{\Delta \varphi}{2\pi},\tag{2}$$

где $J_{\rm c} = \frac{m(h^2 l^2)}{12}$ — момент инерции для тела относительно оси, проходящей через центр масс тела в соответствии с теоремой Штейнера, кг · м²; w — угловая скорость,

Тогда формула для определения кинетической энергии принимает вид:

$$E_{\text{\tiny KHH}} = \frac{m(h^2 + l^2)w^2}{24} \frac{\Delta \varphi}{2\pi}.$$
 (3)

Подставив (3) в (1), получим:

рад/с; $\Delta \phi$ – изменение угла поворота, рад.

$$N = \frac{m(h^2 + l^2)w^2 \cdot \Delta \varphi}{24 \cdot 2\pi \cdot \Delta t}.$$
 (4)

Исходя из выражения для определения угловой скорости:

$$w = \frac{\Delta \varphi}{\Delta t},\tag{5}$$

получим формулу для определения мощности, необходимой для одного поворота тела вокруг оси, проходящей через его центр масс:

$$N = \frac{m(h^2 + l^2)w^3}{24 \cdot 2\pi}.$$
 (6)

Для наглядности проведем ряд вычислений по формуле (6).

Результаты вычислений

P _{HOM} , BT	<i>т</i> , кг	<i>h</i> , м	<i>l</i> , м	<i>n</i> , об./мин	N, BT	<i>Т</i> _{раб} , мин	<i>W</i> _{раб} , Вт · с/д	Эффективность, %
250	18	1,64	0,992	1	0,0005	0,5	0,06	99,99
250	18	1,64	0,992	10	0,503	0,05	6,04	99,99
500	36	1,64	1,984	1	0,0018	0,5	0,22	99,99
500	36	1,64	1,984	10	1,815	0,05	21,78	99,99
3000	108	3,28	5,952	1	0,038	0,5	4,55	99,99
3000	108	3,28	5,952	10	37,95	0,05	455,36	99,99

Из результатов расчета мощности в таблице следует, что при низких скоростях вращения значения мощности пренебрежимо малы. Это свидетельствует о том, что предлагаемая методика расчета несовершенна и требует дальнейшей корректировки. Так, например, необходимо учесть влияние силы трения в механических опорах и подшипниках, а также КПД различных узлов трекера.