НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ МАТЕРИАЛОВ В ОБЛАСТИ КОНТАКТА С ИНДЕНТОРОМ ВИККЕРСА ПРИ ДЮРОМЕТРИЧЕСКИХ ИСПЫТАНИЯХ

А. М. Жуковский

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Р. Е. Гутман

РУП «Производственное объединение «Белоруснефть» БелНИПИнефть, г. Гомель

Научный руководитель И. Н. Степанкин

Метод индентирования заключается во вдавливании в исследуемый материал индентора из высокотвердого материала и построении диаграммы нагрузкаперемещение. Он получил широкое распространение при изучении свойств материалов различной природы. Использование метода на природных материалах осложняется анизотропией, наличием порового пространства и различной морфологией, которая, например, свойственна горным породам [1].

Метод относится к статическим неразрушающим методам, что является существенным достоинством при изучении свойств образцов, имеющихся в ограниченном количестве, например, кернов, получаемых во время бурения газовых и нефтяных скважин.

Во время изучения кернового материала принято определять такие физикомеханические свойства породы как модуль упругости, коэффициент Пуассона, предел прочности и др. Их выявление необходимо в дальнейшем для построения цифровых геолого-геомеханических моделей; также наличие данных о механических свойствах горной породы позволяет прогнозировать траекторию движения трещины для составления дизайна гидравлического разрыва пласта [2].

Цель исследований – выявление механизма разрушения материала в области действия индентора. В ходе выполнения работы решались следующие задачи: построение геометрической модели индентора и испытуемого материала, выбор математической модели, описывающей свойства материала, выделение наличия поверхностей изостатического распределения напряжений и деформаций, выполняющих роль фронта разрушения материала и анализ из расположения с учетом напряжений разрушения, выявленных стандартными способами.

Моделирование процесса индентирования проводилось в программном пакете ANSYS. Расчетная модель представлена индентором Виккерса и образцом горной породы. Расчетная модель содержит 489 тыс узлов в 130 тыс. элементах SOLID186, а также элементы контактного интерфейса TARGET170 и CONTACT174 (рис. 1, a). В качестве граничных условий задавались: жесткая заделка образца материала по всем граням за исключением грани, которая контактирует с индентором (рис. 1, δ), а также внедрение индентора на 0,3 мм за 200 с.

В качестве исходных данных для задания свойств материала образца использовались свойства, полученные во время проведения тестовых испытаний по индентированию и одноосному сжатию на стенде «Instron 5000» [1].

Материал индентора задавался линейно-упругим, изотропным, с модулем упругости $E = 1,147 \cdot 10^{12}$ Па и коэффициентом Пуассона 0,07. В качестве материала образца был выбран песчаник, состоящий из зерен песка (SiO₂), сцементированных карбонатным, кремнистым или другим материалом. Песчаник характеризуется ши-

86 Секция II. Материаловедение и технологии обработки материалов

роким диапазоном упругих и прочностных свойств в зависимости от пористости, вида цементирующего вещества, размера зерен. Модель образца была построена без учета зернистости и принималась изотропной с модулем упругости $E = 12 \cdot 10^9$ Па и коэффициентом Пуассона 0,26, а также значением сцепления 13 МПа и углом внутреннего трения 45,2°. Для описания модели поведения исследуемого материала использовалась гипотеза Друкера–Прагера [3].

Рис. 1. Расчетная модель: *а* – конечно-элементная модель; *б* – граничные условия модели

В ходе моделирования были получены значения распределений главных напряжений σ_1 , σ_2 , σ_3 (рис. 2).

Рис. 2. Распределение главных напряжений: $a - \sigma_1$; $\delta - \sigma_2$; $s - \sigma_3$

С увеличением глубины внедрения происходит рост значений σ_1 , σ_2 , σ_3 в тоже время на протяжении всего процесса индентирования максимальные значения напряжений наблюдались в зоне контакта острия индентора с образцом.

Были определены зависимости максимальных главных напряжений от времени внедрения, по которым можно проследить, что значения напряжений σ_2 и σ_3 совпадают на протяжении всего процесса индентирования.

На рис. 3, а в сечении исследуемого образца лучами отмечены направления нормальные воображаемым изостатическим поверхностям равных деформаций и на-

пряжений. Начальной точкой направлений служила вершина индентора, в области которой возникала максимальная концентрация напряжений.

На построенных лучах были найдены точки, в которых главное напряжение σ_1 было равно напряжению, полученному во время тестового индентирования образца. Область, полученная соединением точек равных напряжений, может рассматриваться как фронт внутреннего разрушения материала образца (рис. 3, *a*).

Рис. 3. Фронт разрушения образца: *а* – численная модель; *б* – эксперимент

На рис. 3, б показано сечение образца предварительно испытанного для определения предела прочности на растяжение (Бразильский тест). В дальнейшем две части образца были скреплены оправкой и подвергнуты испытанию индентированием. На боковой поверхности образца после проведения индентирования выявлена боковая трещина, отражающая положение фронта внутреннего разрушения материала. Сопоставление между полученными картинами фронта разрушения на численной модели и экспериментальном образце показывает существенное расхождение между координатами, разделяющими область разрушенного материала и сохранившего свою целостность. Отмеченное противоречие, по-видимому, обусловлено необходимостью более точного учета реологии испытуемого материла в численной модели. А именно, исследования композиционного материала, состоящего из отдельных частиц кварца, соединенных цементом, а также обладающего пористостью.

Заключение. При индентировании область контакта материала с индентором можно разделить на две зоны: 1 – зона, примыкающая к индентору, в ней разрушается цемент, связывающий зерна, и происходит уплотнение зерен материала; 2 – зона за пределами фронта разрушения, характеризующаяся действием упругих сил. Анализ расположения фронта разрушения и величина градиента напряжений между отмеченными зонами являются граничным условием для определения прочности материала на сжатие методом неразрушающего контроля.

Литература

- 1. Оценка прочностных и деформационных характеристик минеральных компонентов горных пород методом микро и наноиндентирования / Ю. И. Головин [и др.] // Физико-технические проблемы разработки полезных ископаемых. 2014. № 4. С. 46–54.
- Жуковский, А. М. К вопросу оценки упруго-прочностных свойств горных пород неразрушающим методом на примере Ланско-Старооскольской залежи Речицкого месторождения / А. М. Жуковский, Р. Е. Гутман // Современные проблемы машиноведения : материалы XII Междунар. науч.-техн. конф. (науч. чтения, посвящ. П. О. Сухому), Гомель, 22–23 нояб. 2018 г. / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого, Филиал

88 Секция II. Материаловедение и технологии обработки материалов

ПАО «Компания «Сухой» ОКБ «Сухого» ; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2018. – С. 300–302.

3. Drucker, D. C. Soil mechanics and plastic analysis for limit design / D. C. Drucker, W. Prager // Quarterly of Applied Mathematics. – 1952. – Vol. 10. – № 2. – P. 157–165.