УДК 621.869.4: 658

МОДЕЛИРОВАНИЕ ТРЕБОВАНИЙ К ПОДЪЕМНО-НАВЕСНОМУ УСТРОЙСТВУ ПАХОТНОГО АГРЕГАТА

В.П. Бойков 1 , В.Б. Попов 2

¹Белорусский национальный технический университет, г. Минск, Беларусь ²УО «Гомельский государственный технический университет имени П.О. Сухого», г. Гомель, Беларусь

Исходя из функционального назначения МТА, при его эксплуатации, а, следовательно, и при разработке подъемно-навесного устройства (ПНУ) трактора необходимо обеспечить:

1. Минимизацию нагрузок в элементах механизма навески (МН) при выполнении требований по грузоподъемности:

В результате кинематического анализа определяется аналитическое выражение передаточного числа МН [1] для плуга или другой навесной машины (HM) - $I_{s6}(S)$,

$$I_{s6}(S) = \varphi_3'(S) \cdot U_{s3}(S) \cdot \{L_{s6} \cdot \cos[\varphi_s(S)] + U_{65}(S) \cdot L_{s6} \cdot \cos[\varphi_6(S) + \varphi_{s6}]\}$$
(1)

где $\varphi_3'(S)$ - аналог угловой скорости поворотного рычага; $U_{53}(S)$ $U_{65}(S)$ - передаточные отношения; $L_{56}, \varphi_5(S)$ - длина нижней тяги и угол, образуемый ею в правой декартовой системе координат.

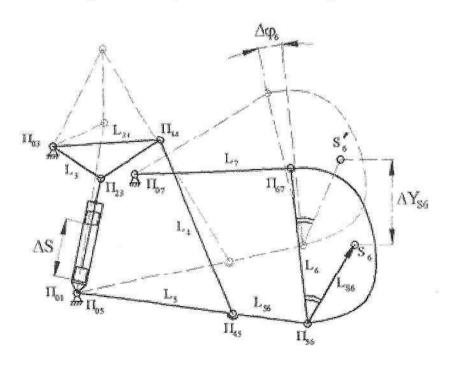


Рис. 1 - Схема подъема механизмом навески навесной машины

Выражение (1) это сумма двух слагаемых — передаточного числа на оси подвеса - $I_M(S)$, и компоненты, представляющей собою произведение аналога угловой скорости HM - $\varphi_6'(S)$ на проекцию вектора L_{S6} .

$$\varphi_6'(S) = \varphi_3'(S) \cdot U_{63}(S) = \varphi_3'(S) \cdot U_{53}(S) \cdot U_{65}(S)$$
 (2)

Минимизация нагрузок в звеньях МН и выполнение требований по грузоподъемности достигаются минимизацией максимума $I_{s6}(S)$ и сужением диапазона его изменения.

Помимо-этого, зная $I_{S6}(S)$ можно, не выполняя силовой анализ, определить приведенную к гидроцилиндрам МН полезную нагрузку - F(S):

$$F(S) = P_6 \cdot I_{S6}(S) \tag{3}$$

2. Возможность заглубления рабочих органов почвообрабатывающих НМ под действием собственного веса и стабильность их хода по глубине:

Для определения координат точки P - мгновенного центра вращения (МЦВ) навесной машины используем уравнения прямых, проходящих через верхнюю (L_7) и нижние тяги(L_{56}) внешнего четырехзвенника МН (рисунок 1). В результате решения уравнений получим положение МЦВ в зависимости от положения центров неподвижных и подвижных шарниров внешнего четырехзвенника МН:

$$X_{p} = \frac{\left(Y_{56} \cdot X_{05} - Y_{05} \cdot X_{56}\right) \cdot \left(X_{07} - X_{67}\right) - \left(X_{05} - X_{56}\right) \cdot \left(Y_{67} \cdot X_{07} - Y_{07} \cdot X_{67}\right)}{\left(Y_{07} - X_{67}\right) \cdot \left(X_{05} - X_{56}\right) - \left(X_{07} - X_{67}\right) \cdot \left(Y_{05} - Y_{56}\right)}$$

$$Y_{p} = X_{p} \cdot \frac{Y_{56} - Y_{05}}{X_{56} - X_{05}} + \frac{Y_{05} \cdot X_{56} - X_{05} \cdot Y_{56}}{X_{56} - X_{05}}$$

Способность рабочих органов к самозаглублению при любых условиях работы тракторного агрегата выражает следующая зависимость [2,3]:

$$\mathbf{M}_{\text{\tiny 3arm}} = R_{\text{\tiny pes}}\mathbf{C} > 0,$$

где ${
m M}_{\scriptscriptstyle 3 \rm arn}$ — заглубляющий момент; $R_{\scriptscriptstyle {
m pe3}}$ — проекция результирующей внешних сил, действующих на НМ; С — плечо силы.

За счет регулирования длины центральной тяги (L_7) и высоты присоединительного треугольника (L_6) координаты МЦВ НМ выбираются такими, чтобы заглубляющий момент имел положительное значение во всем диапазонекачании оси подвеса (Π_{56}) МН. При этом одновременно достигается удовлетворительное копирование опорной поверхности навесной техникой.

Литература

- 1. Попов В.Б. Аналитические выражения кинематических передаточных функций механизмов навески энергоносителей// Вестник ГГТУ им. П.О. Сухого 2000, №2, с. 25 29.
- 2. Гуськов В.В. Тракторы. Часть III. Конструирование и расчет/ В.В.Гуськов, И.П.Ксеневич. Минск.: Выш. школа, 1981, с. 383.
- 3. Чудаков Д.А. Основы теории и расчета трактора и автомобиля: учебное пособие. М.: Колос, 1975, с. 384.