УДК 631.312.3.

## МОДЕЛИРОВАНИЕ ПАХОТНОГО АГРЕГАТА, РАБОТАЮЩЕГО ПО CXEME "PUSH-PULL"

В.Б. Попов<sup>1</sup>, П.В. Авраменко<sup>2</sup>

<sup>1</sup>УО «Гомельский государственный технический університет имени П.О. Сухого», г. Гомель, Беларусь

<sup>2</sup>УО «Белорусский государственный аграрный технический университет», г. Минск, Беларусь

Проблемой сельскохозяйственного производства являются повышенные энергозатраты при обработке почвы, особенно на пахоте. Решения этой проблемы можно достигнуть повышением тягово-сцепных качеств агрегатирующего трактора, увеличив его сцепной вес. Для этого в составе пахотного МТА примененяют плуги, агрегатируемые с трактором по схеме «push-pull» [1]. Установлено, что для трактора с номинальным тяговым усилием 30-32 кН фронтальный плуг должен иметь два корпуса, а задний - 4 (схема «2+4»).

Целью данного исследования является выбор расчетной схемы и аналитических выражений для оценки тягово-энергетических показателей работы пахотного агрегата, работающего по схеме «push-pull» с числом корпусов «2+4» (рисунок 1)



Рис.1 - Пахотный агрегат, состоящий из трактора XT3-16131, передненавесного (ПЛН-2-35) и задненавесного (ПЛН-4-35) плугов

Расчётная схема нагруженного колёсного трактора (рисунок 2) учитывает его вес  $P_T$ , силы сопротивления  $P^3$  и  $P^I$ , приложенные к заднему и переднему подъемно-навесным устройствам трактора под углами  $a^3$  и  $a^I$  к горизонту и опорные реакции колёс  $Z_A'$  и  $Z_A''$ , приложенные на расстоянии  $\mu \cdot r$  от опорных точек колёс.

Искомыми силами являются: вертикальные нагрузки на колеса трактора  $Z_A'$  и  $Z_A''$  и касательная сила  $P_\kappa$ 

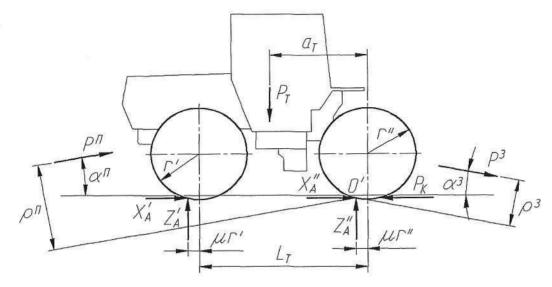



Рис. 2 - Расчётная схема МТА с работающими плугами

$$P_{\kappa} = X_{A}' + X_{A}'' + P^{3} \cos \alpha^{3} + P^{\Pi} \cos \alpha^{\Pi};$$

где  $X'_A$  и  $X''_A$  — силы сопротивления перекатыванию передних и задних колес трактора;  $\alpha^3$  и  $\alpha^I$  — углы наклона к горизонту сил  $P^3$  и  $P^I$ .

Сила тягового сопротивления  $P^3$  действует под углом  $\alpha^3$  к горизонту, который определяется по выражению [2]:

$$\alpha^3 = arctg \left[ \frac{\sin(\varphi_5 - \varphi_7)}{\cos \varphi_5 \cdot \cos \varphi_7} \right]$$

где  $\varphi_7$  и  $\varphi_5$  - углы, образуемые верхней –  $L_7$  и нижней –  $L_{56}$  тягами МН.

Плечо действия силы тягового сопротивления рассчитывается по выражению:

$$\rho^3 = Y_P \cdot \cos \alpha^3 - (X_P - \mu \cdot r'') \cdot \sin \alpha^3,$$

где  $X_P, Y_P$  - координаты МЦВ задненавесного плуга; r'' – радиус заднего колеса трактора

Из приведенных выражений очевидна связь ориентации силы тягового сопротивления  $P^3$  и плеча его действия - с координатами шарниров внешнего четырехзвенника МН, а также с размерами и ориентацией его верхней и нижней тяг.

Нагрузка на передних колёсах трактора  $Z_{A}^{\prime}$  определяется из уравнения моментов сил, действующих на трактор, относительно точки  $O^{\prime}$  :

$$Z'_{A} = \frac{P_{T} \cdot (\alpha_{T} - \mu \cdot r'') - P^{3} \cdot \rho^{3} - P^{II} \cdot \rho^{II}}{L_{T} + \mu(r' - r'')},$$

где r' и r'' - радиусы качения колес трактора;  $\rho^3$  и  $\rho^{I\!I}$  - плечи сил  $P^3$  и  $P^{I\!I}$  относительно точки O';  $\mu$  - коэффициент сопротивления перекатыванию колес трактора

Для определения силы  $Z_A''$  используем условие  $\sum Z=0$  , согласно которому:

$$Z_A'' = G_T + P^3 \sin \alpha^3 - P^{II} \sin \alpha^{II} - Z_A'$$

Составив уравнение  $\sum Z=0$  и решая его относительно  $P_{\kappa}$ , находим

$$P_{\kappa} = X_A' + X_A'' + P^3 \cos \alpha^3 + P^{\Pi} \cos \alpha^{\Pi}.$$

Теоретические исследования показывают, что за счет вертикальной составляющей тягового сопротивления фронтального плуга увеличивается догрузка передних колес, а значит и сцепной вес трактора. В результате это приводит не только к уменьшению его буксования, но и к снижению удельного расхода топлива пахотным агрегатом в целом.

## Литература

- 1. Надыкто В.Т. Исследование траекторных и тяговоэнергетических показателей работы пахотного агрегата по схеме «pushpull»/ В.Т. Надыкто, А.Д. Кистечок / Агропанорама. – 2016. – № 4, с. 2–6.
- 2. Попов В.Б. Влияние параметров механизма навески и плуга на тягово-энергетические показатели пахотного агрегата// Вестник ГГТУ им. П.О.Сухого,  $2013. N \cdot 4$ , с. 58-64.