

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Физика и электротехника»

ПРОЕКТИРОВАНИЕ ТРЕХФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по курсовому проектированию по дисциплинам «Электрические машины» и «Электромеханика» для студентов специальностей 1-43 01 02 «Электроэнергетические системы и сети» и 1-43 01 03 «Электроснабжение (по отраслям)» дневной и заочной форм обучения

Гомель 2019

УДК 621.313.333.2(075.8) ББК 31.26-028я73 П79

> Рекомендовано научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол № 9 от 29.05.2018 г.)

Составители: К. М. Медведев, А. В. Козлов

Рецензент: зав. каф. «Электроснабжение» ГГТУ им. П. О. Сухого канд. техн. наук, доц. А. О. Добродей

Проектирование трехфазного асинхронного электродвигателя : учеб.-метод. пособие по курсовому проектированию по дисциплинам «Электрические машины» и «Электромеханика» для студентов специальностей 1-43 01 02 «Электроэнергетические системы и сети» и 1-43 01 03 «Электроснабжение (по отраслям)» днев. и заоч. форм обучения / сост.: К. М. Медведев, А. В. Козлов. – Гомель : ГГТУ им. П. О. Сухого, 2019. – 157 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц ; 32 Мb RAM ; свободное место на HDD 16 Mb ; Windows 98 и выше ; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Содержит теоретические сведения по выбору основных размеров и расчету параметров асинхронной машины в режимах холостого хода, рабочих нагрузок и пуска. Рассмотрен подробный пример расчета в числах, приведена основная справочная информация. Пособие позволяет студентам освоить основные методики проектирования трехфазных асинхронных электрических машин.

Для студентов специальностей 1-43 01 02 «Электроэнергетические системы и сети» и 1-43 01 03 «Электроснабжение (по отраслям)» дневной и заочной форм обучения.

УДК 621.313.333.2(075.8) ББК 31.26-028я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2019

введение

Учебно-методическое пособие "Проектирование трёхфазного асинхронного электродвигателя" предназначено для студентов специальности 1-43 01 02 "Электроэнергетические системы и сети" дневной формы обучения и специальности 1-43 01 03 "Электроснабжение (по отраслям)" дневной и заочной форм обучения.

Пособие содержит базовые теоретические сведения по выбору основных размеров, расчёту параметров обмоток и пазов статора и ротора асинхронной машины, расчёту параметров двигателя в режимах холостого хода и рабочих нагрузок, расчёту и построению рабочих и пусковых характеристик машины.

Для эффективной работы студентов над выполнением курсового проекта методическое пособие содержит подробный пример расчёта, а основные справочные данные приведены в приложении.

Из-за ограниченности объёма методическое пособие не может содержать всю исчерпывающую информацию, необходимую для выполнения курсового проекта. Поэтому предполагается, что студент в своей работе над проектом будет пользоваться дополнительной литературой.

Пояснительная записка должна содержать следующие основные разделы:

1. Определение главных размеров электродвигателя.

2. Расчёт обмотки, паза и ярма статора.

3. Расчёт обмотки, паза и ярма ротора.

4. Расчёт магнитной цепи асинхронной машины.

5. Определение параметров асинхронной машины для рабочего режима.

6.Расчёт постоянных потерь мощности.

7. Рабочие характеристики асинхронного двигателя.

8. Пусковые характеристики асинхронного двигателя.

9. Тепловой расчёт.

Графическая часть проекта включает 3 листа формата А1 (раздел 10, стр. 77).

Таблица с исходными данными к курсовому проекту в соответствии с вариантом задания приведена в разделе 11 на стр. 78.

Выполнение курсового проекта предполагает исключительно самостоятельную работу студента под руководством консультанта-преподавателя.

1. Определение главных размеров электродвигателя

Подробно теория выбора главных размеров асинхронных машин представлена в [1] на стр. 340-350.

Высоту оси вращения h АД предварительно определяют по рис. П.1 для заданных P_2 и 2p в зависимости от исполнения двигателя.

Из стандартного ряда высот осей вращения (40, 45, 50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900 и 1000 мм) принимают ближайшее к предварительно найденному стандартному значению *h*.

Внешний диаметр сердечника статора двигателя D_a в зависимости от высоты оси вращения h при учебном проектировании может быть принят по данным табл. П.1.

На начальном этапе проектирования для определения внутреннего диаметра статора *D* используют эмпирические зависимости. Принимая, что размеры пазов не зависят от числа полюсов машины, *D* можно рассчитать по приближенному выражению:

$$D = K_D D_{\rm a}, \tag{1.1}$$

где *D* – внутренний диаметр статора АД, м;

K_D – коэффициент, характеризующий отношения внутренних и внешних диаметров сердечников статоров асинхронных двигателей серий 4А и АИ при различных числах полюсов (табл. П.2).

Далее находится полюсное деление двигателя, м:

$$\tau = \frac{\pi D}{2p},\tag{1.2}$$

где 2*р* – число полюсов машины.

Расчётную мощность двигателя P', В·А, находят по формуле:

$$P' = P_2 \cdot 10^3 \cdot \frac{k_E}{\eta \cos\phi},\tag{1.3}$$

где *P*₂ – номинальная мощность на валу АД, кВт;

k_E – коэффициент, характеризующий отношение ЭДС обмотки статора к номинальному напряжению (приближённо – по рис. П.2);

η – КПД машины, о.е., предварительное значение которого можно определить по рис. П.3 и П.4;

соѕ – коэффициент мощности АД, о.е., предварительное значение которого можно определить по рис. П.3 и П.4.

К выбору электромагнитных нагрузок АД необходимо отнестись с особым вниманием, поскольку они в значительной степени определяют размеры и характеристики машины. Предварительно значения величин B_{δ} , Тл, и A, А/м, можно определить по рис. П.5, П.6 и П.7.

Выбор типа обмотки статора осуществляется из следующих основных соображений. В двигателях малой мощности, как правило, применяют однослойные обмотки, тогда как в машинах средней и большой мощности (высота оси вращения 180 мм и выше, мощность от 15...16 кВт) применяют двухслойные обмотки статора [1, стр. 118].

Предварительное значение обмоточного коэффициента $k_{\rm oбм1}$ выбирают в зависимости от типа обмотки статора:

• однослойная обмотка – $k_{\text{обм1}} = 0,95...0,96$;

• двухслойная или одно-двухслойная обмотка при $2p = 2 - k_{\text{обм1}} = 0,9...0,91;$

• двухслойная или одно-двухслойная обмотка при $2p \ge 4 - k_{\text{обм1}} = 0,91...0,92$.

Предварительно коэффициент полюсного перекрытия a_{δ} и коэффициент формы поля $k_{\rm B}$ исходя из соображений, рассмотренных в [1, стр. 347], можно определить следующим образом:

$$a_{\delta} = \frac{2}{\pi} \approx 0.64; \qquad k_{\rm B} = \frac{\pi}{2 \cdot \sqrt{2}} = 1.11.$$
 (1.4)

Синхронная частота вращения двигателя, об/мин:

$$n_1 = \frac{60f_1}{p},$$
 (1.5)

где $f_1 = 50$ Гц – частота питающей сети;

р – число пар полюсов АД.

Синхронная угловая частота вращения АД, рад/с, определяется по формуле:

$$\omega = 2\pi \frac{n_1}{60}.\tag{1.6}$$

С учётом выбранных ранее параметров определяется расчётная длина магнитопровода двигателя, м:

$$l_{\delta} = \frac{P'}{D^2 \omega k_B k_{\text{o}\delta M1} A B_{\delta}}.$$
(1.7)

Проверить правильность выбора главных размеров *D* и l_{δ} можно с помощью вычисления отношения $\lambda = \frac{l_{\delta}}{\tau}$, которое обычно должно находится в пределах, показанных на рис. П.8.

Если λ чрезмерно велико, то необходимо повторить расчет для ближайшей из стандартного ряда большей высоты оси вращения h. Если λ слишком мало, то расчет повторяют для следующей в стандартном раду меньшей высоты h.

Для выполнения расчета магнитной цепи асинхронной машины (п.5) кроме расчётной длины магнитопровода l_{δ} необходимо также определить конструктивную длину (l_1 и l_2) и длину стали сердечников (l_{CT1} и l_{CT2}) статора и ротора соответственно.

В АД, длина сердечников которых не превышает 250...300 мм, радиальные вентиляционные каналы отсутствуют, поэтому:

$$l_1 = l_{\rm CT1} = l_{\delta}.$$
 (1.8)

В машинах с большей длиной сердечника последний делят на отдельные пакеты, которые разделены между собой радиальными вентиляционными каналами.

В двигателях с фазными роторами или со сварной короткозамкнутой обмоткой длина пакетов $l_{\text{пак}}$ составляет 40...60 мм. В двигателях с литым короткозамкнутым ротором число пакетов по технологическим причинам уменьшают и пакеты выполняют более длинными.

Число пакетов сердечника можно определить по формуле:

$$n_{\text{пак}} = \frac{l_{\text{СТ}}}{l_{\text{пак}}} \approx \frac{l_{\delta}}{l_{\text{пак}}} =$$
целое число. (1.9)

При этом число радиальных каналов:

$$n_{\rm K} = n_{\rm max} - 1.$$
 (1.10)

Таким образом, длина стали сердечника статора в длинных машинах:

$$l_{\rm CT1} = l_{\rm mak} n_{\rm mak},$$
 (1.11)

или если пакеты разной длины

$$l_{\rm CT1} = \sum l_{\rm mak} \,. \tag{1.12}$$

Конструктивная длина сердечника статора:

$$l_1 = l_{\rm CT1} + b_{\rm k} n_{\rm k}, \qquad (1.13)$$

где $b_{\rm k} = 10$ мм – стандартная ширина радиального воздушного канала между пакетами.

Окончательное значение расчётной длины магнитопровода l_{δ} в длинных машинах:

• воздушный зазор $\delta < 1,5$ мм

$$l_{\delta} \approx l_{\rm CT1}, \tag{1.14}$$

воздушный зазор δ ≥ 1,5 мм

$$l_{\delta} = l_1 - b'_{\kappa} n_{\kappa}, \qquad (1.15)$$

где b'_{κ} – расчетная ширина радиальных каналов, зависящая от соотношения δ и b_{κ} (табл. П.3).

Конструктивная длина сердечника ротора в машинах с *h* < 250 мм принимается равной длине сердечника статора:

$$l_2 = l_1.$$
 (1.16)

В двигателях с высотой оси $h \ge 250$ мм длина сердечника ротора выполняется длиннее за счёт увеличения длины его крайних пакетов на 5 мм, то есть:

$$l_2 = l_1 + 0,005. \tag{1.17}$$

Длина стали сердечника ротора:

$$l_{\rm CT2} = \sum l_{\rm mak} = l_2 - b_{\rm k} n_{\rm k}, \qquad (1.18)$$

или, если вентиляционные каналы отсутствуют

$$l_{\rm CT2} = l_2.$$
 (1.19)

2. Расчёт обмотки, паза и ярма статора

Основные теоретические положения, касающиеся расчёта параметров статора, приведены в [1] на стр. 350-368.

Предварительно по рис. П.9 определяют диапазон возможных значений зубцового деления статора электродвигателя, то есть $t_{z1\min}$ и $t_{z1\max}$. Далее находят предельные значения числа пазов статора АД исходя из принятых значений $t_{z1\min}$ и $t_{z1\max}$:

$$Z_{1min} = \frac{\pi D}{t_{z1max}}; \quad Z_{1max} = \frac{\pi D}{t_{z1min}}.$$
 (2.1)

Окончательное число пазов статора Z_1 выбирается из диапазона между значениями Z_{1min} и Z_{1max} . При этом необходимо учесть два условия:

1) число пазов Z_1 должно быть кратно числу фаз АД m_1 , то есть

$$\frac{Z_1}{m_1}$$
 = целое число; (2.2)

2) число пазов на полюс и фазу q_1 должно быть целым числом

$$q_1 = \frac{Z_1}{2 p m_1} =$$
 целое число. (2.3)

После выбора Z₁ рассчитывают окончательное значение зубцового деления статора

$$t_{z1} = \frac{\pi D}{2\,pm_1 q_1},\tag{2.4}$$

которое не должно выходить за пределы $t_{z1\min}$ и $t_{z1\max}$ более чем на 10% и в любом случае для АД с $h \ge 56$ мм не должно быть менее 6...7 мм.

Номинальный ток обмотки статора, А:

$$I_{1\text{HOM}} = \frac{P_2}{m_1 U_{1\text{HOM},\phi} \eta \cos\phi}, \qquad (2.5)$$

где $U_{1\text{ном.}\phi}$ – номинальное фазное напряжение АД.

При определении числа эффективных проводников в пазу u_n необходимо руководствоваться следующими соображениями (условиями):

1) $u_{\rm m}$ должно быть целым;

2) если обмотка статора двухслойная, u_n должно быть кратным числу 2, то есть чётным.

Алгоритм выбора u_{π} следующий:

1) рассчитывают предварительное значение числа эффективных проводников в пазу u'_{n} , приняв, что параллельные ветви в обмотке статора отсутствуют (число параллельных ветвей a=1)

$$u'_{\rm II} = \frac{\pi D A}{I_{\rm 1HOM} Z_1},$$
 (2.6)

где А – принятое ранее в п.1 значение линейной нагрузки, А/м;

2) полученное по (2.6) значение u'_{n} не округляют до целого, а подбирают такое число параллельных ветвей *a*, при котором будут выполняться условия 1 и 2 (смотри выше), и произведение au_{n} (целое число) будет лишь незначительно отличаться от u'_{n} .

При этом следует иметь ввиду, что возможное число параллельных ветвей a должно быть одним из делителей числа полюсов 2p, то есть соответствовать условию:

$$a = \frac{2p}{k} =$$
 целое число, (2.7)

где k – любое целое число не более 2p, при котором выполняется условие (2.7).

Например, при 2p = 2 число a = 2 при k = 1 и a = 1 при k = 2.

Таким образом, возможные варианты числа параллельных ветвей *а*:

• 1 и 2 при 2*p* = 2;

• 1, 2 и 4 при 2*p* = 4;

• 1, 2, 3 и 6 при 2*p* = 6;

• 1, 2, 4, и 8 при 2*p* = 8, и т.д.

Принятые на данном этапе значения *а* и u_n в дальнейшем могут измениться.

Число витков в фазе обмотки статора:

$$w_1 = \frac{u_{\rm n} Z_1}{2am_1}.$$
 (2.8)

Число w_1 , рассчитанное по (2.8), должно получиться целым числом, иначе необходимо искать ошибки в расчётах и выборе величин выше.

Находят окончательное значение линейной нагрузки, А/м:

$$A = \frac{2I_{1\rm HoM} w_1 m_1}{\pi D},$$
 (2.9)

которое может лишь незначительно отличаться от принятого ранее в п.1 и должно находиться в пределах границ соответствующих областей на рис. П.5, П.6 или П.7.

Как уже упоминалось в п.1, тип и схему обмотки статора выбирают исходя из мощности машины. Асинхронные машины мощностью до 12...15 кВт имеют, как правило, однослойную концентрическую обмотку из круглого изолированного провода (всыпная обмотка). В машинах средней и большой мощности применяют двухслойную обмотку, а при механизированной укладке – однослойно-двухслойную или двухслойную концентрическую [1, стр. 353].

В большинстве случаев в двухслойных обмотках асинхронных двигателей применяют укороченный шаг.

Расчетное укорочение β двухслойных обмоток, выполненных с одной большой катушкой в катушечной группе, зависит от число пазов на полюс и фазу q_1 и может быть найдено по формуле:

$$\beta = \frac{2}{3} \cdot \frac{q_1 + 1}{q_1}.$$
 (2.10)

Однослойные обмотки выполняются без укорочения шага, поэтому для них $\beta = 1$.

Если обмотка с укороченным шагом, то для неё необходимо определить коэффициент укорочения шага k_y (по рис. П.10 для 1-й гармоники) и коэффициент распределения k_p (по табл. П.4 для 1-й гармоники), после чего находят окончательное уточнённое значение обмоточного коэффициента для статора:

$$k_{\text{обм1}} = k_{\text{p}} k_{\text{y}}. \tag{2.11}$$

Если обмотка однослойная (или двухслойная без укорочения), то обмоточный коэффициент $k_{00M1} = 1$.

Магнитный поток асинхронной машины, Вб:

$$\Phi = \frac{k_E U_{1\text{HOM},\phi}}{4k_{\text{B}} w_1 k_{\text{o}6\text{M}1} f_1}.$$
(2.12)

Индукция магнитного поля в воздушном зазоре, Тл:

$$B_{\delta} = \frac{p\Phi}{Dl_{\delta}} , \qquad (2.13)$$

где *р* – число пар полюсов АД.

Полученное по (2.13) значение B_{δ} не должно выходить за границы рекомендуемой области (рис. П.5, П.6 или П.7) более чем на ±5%. Если данное требование не соблюдается, следует принять другое значение $u_{\rm n}$ и повторить расчёт по формулам (2.8)-(2.13). Предварительное значение плотности тока в обмотке статора, А/мм², можно определить по выражению:

$$J_1 = \frac{AJ}{A},\tag{2.14}$$

где значение произведения AJ, A^2/M^3 , находится по рис. П.11.

Предварительное значение сечения эффективного проводника обмотки, м², определяют исходя из номинального тока АД, числа параллельных ветвей и допустимой плотности тока в обмотке:

$$q_{\mathfrak{I}\phi} = \frac{I_{1\mathrm{HOM}}}{aJ_1}.$$
(2.15)

При сечени
и $q_{\scriptscriptstyle 9 \dot{\phi}}$ диаметр эффективного проводника, мм, будет равен:

$$d_{\rm np} = \sqrt{\frac{4q_{\rm sp}}{\pi}} \,. \tag{2.16}$$

При выборе проводников для обмоточного провода обмотки статора необходимо руководствоваться следующими рекомендациями:

• для всыпных обмоток (из круглого провода) могут использоваться обмоточные провода диаметром не более 1,8 мм, причём в современных АД используют провода с меньшим диаметром;

• в обмотках с механизированной укладкой применяют изолированные провода диаметром не более 1,4 мм;

• при ручной укладке (высота оси вращения машины *h* > 160 мм) применяют изолированные провода диаметром не более 1,7 мм.

Если диаметр провода, полученный по (2.16), выше рекомендованных значений, то эффективный проводник делят на несколько элементарных проводников. В этом случае подбираются значения стандартного сечения $q_{3\pi}$ (табл. П.6) и числа $n_{3\pi}$ элементарных проводников, составляющих один эффективный проводник, таким образом, чтобы диаметр $d_{_{3л}}$ (табл. П.6) одного элементарного проводника соответствовал приведённым выше рекомендациям, а их суммарная площадь была близка к площади эффективного проводника $q_{_{3\phi}}$.

Оптимальное число элементарных проводников $n_{_{3Л}}$ не должно превышать 6-8. В двухполюсных АД возможно увеличение $n_{_{3Л}}$ до 8-10 проводников.

Окончательное сечение эффективного проводника обмотки, мм², определяют по формуле:

$$q_{\mathrm{s}\phi} = q_{\mathrm{s}\pi} n_{\mathrm{s}\pi}. \tag{2.17}$$

По табл. П.6 определяют также диаметр обмоточного провода с учётом изоляции d_{μ_3} .

После выбора параметров обмотки вычисляют окончательное значение плотности тока в обмотке статора, А/мм²:

$$J_1 = \frac{I_{1\text{HOM}}}{a \, q_{_{3\Pi}} \, n_{_{3\Pi}}} = \frac{53.1}{2 \cdot 1,227 \cdot 4} \,. \tag{2.18}$$

Далее переходят к расчёту зубцовой зоны статора и определению воздушного зазора АД.

Обмотку статора из круглого провода укладывают в пазы одной из конфигураций, показанных на рис. П.13 (*a*, *б* – трапецеидальные пазы; *в* – паз с овальной нижней частью).

Для машин с $h \le 250$ мм чаще применяют полузакрытые трапецеидальные пазы (рис. 2.1).

Сначала по табл. П.7 задаются значениями магнитной индукции в зубцах статора при постоянном сечении B_{Z1} и в ярме статора B_a (2-я и 1-я строки таблицы соответственно). Затем проводят предварительный расчёт ширины зубца статора, мм

$$b_{Z1} = \frac{B_{\delta} t_{z1} l_{\delta}}{B_{Z1} l_{CT1} k_{C1}},$$
(2.19)

и высоты ярма статора, мм

$$h_{\rm a} = \frac{\Phi}{2B_{\rm a} \, l_{\rm CT1} \, k_{\rm C1}},\tag{2.20}$$

где k_{C1} – коэффициент заполнения сталью магнитопровода статора (табл. П.8).

В дальнейшем ширина зубца статора b_{Z1} может быть уточнена.

Рис. 2.1. Размеры трапецеидальных полузакрытых пазов статора асинхронного двигателя

Расчёт зубцовой зоны статора приведён здесь для трапецеидального паза, показанного на рис. 2.1.

В первую очередь определяют размеры паза в штампе:

• ширину шлица паза *b*_{ш1}, мм – по табл. П.10;

• высоту шлица паза $h_{\rm m1}$, мм (для машин общего назначения выбирают в пределах 0,5...1,0 мм);

• угол наклона грани клиновой части паза β_{κ} (в трапецеидальных пазах у двигателей с $h \le 250$ мм обычно равен 45°, при большей высоте оси вращения – 30°);

• высоту паза, мм

$$h_{\rm m1} = \frac{D_{\rm a} - D}{2} - h_{\rm a}; \qquad (2.21)$$

• меньшую ширину паза, мм

$$b_{1} = \frac{\pi (D + 2h_{\text{m}1} - b_{\text{m}1}) - Z_{1}b_{Z1}}{Z_{1} - \pi}; \qquad (2.22)$$

• бо́льшую ширину паза, мм

$$b_2 = \frac{\pi (D + 2h_{\pi 1})}{Z_1} - b_{Z_1}; \qquad (2.23)$$

• высоту клиновой части паза, мм

$$h_{\kappa} = \frac{b_1 - b_{\mu}}{2}$$
 при $\beta_{\kappa} = 45^{\circ}$, (2.24)

или
$$h_{\kappa} = \frac{b_1 - b_{\text{III}}}{2\sqrt{3}}$$
 при $\beta_{\kappa} = 30^\circ;$ (2.25)

• высота паза без учёта высоты клиновой части и высоты шлица, мм

$$h_{\text{II.K}} = h_{\text{III}} - \left(h_{\text{IIII}} + \frac{b_1 - b_{\text{IIII}}}{2}\right).$$
(2.26)

Затем, определив по табл. П.9 припуски на сборку по ширине Δb_{n1} и высоте Δh_{n1} паза, переходят к определению размеров паза "в свету" и рассчитывают:

• высоту паза, мм

$$h'_{n1} = h_{n1} - \Delta h_{n1}; \qquad (2.27)$$

• высоту паза без учёта высоты клиновой части и высоты шлица, мм

$$h'_{\rm n.\kappa} = h_{\rm n.\kappa} - \Delta h_{\rm n1}; \qquad (2.28)$$

• меньшую ширину паза, мм

$$b_1' = b_1 - \Delta b_{\pi 1};$$
 (2.29)

• бо́льшую ширину паза

$$b_2' = b_2 - \Delta b_{\mathrm{II}}.\tag{2.30}$$

Далее находят площадь, занимаемую корпусной изоляцией в пазу, мм²:

$$S_{\mu_3} = b_{\mu_3} (2h_{\pi_1} + b_1 + b_2), \qquad (2.31)$$

где $b_{_{\rm H3}}$ – односторонняя толщина изоляции в пазу, мм (табл. П.11, последний столбец).

Площадь, занимаемая прокладками в пазу при двухслойной обмотке, мм²:

• для АД с *h* = 180...250 мм

$$S_{\rm IID} = (0,9b_1 + 0,4b_2); \tag{2.32}$$

• для АД с *h* ≥ 280 мм

$$S_{\rm np} = 0.6(b_1 + b_2). \tag{2.33}$$

Для однослойной обмотки можно принять $S_{\rm np} = 0$ (при отсутствии прокладок в пазу).

Далее определяют площадь поперечного сечения паза статора, остающаяся свободной для размещения проводников обмотки, мм²:

$$S'_{\rm II} = \frac{b'_1 + b'_2}{2} h'_{\rm II.K} - \left(S_{\rm H3} + S_{\rm IIP}\right).$$
(2.34)

Критерием правильности расчёта обмотки и пазов статора является значение коэффициента заполнения паза статора

$$k_{3} = \frac{d_{\mu_{3}}^{2} u_{\Pi} n_{_{3\Pi}}}{S_{\Pi}'}, \qquad (2.35)$$

которое должно находится в пределах 0,69...0,71 для АД с 2p = 2, и 0,72...0,74 при $2p \ge 4$.

Если k_3 ниже указанных пределов, то необходимо уменьшить выбранные ранее значения B_{Z1} и/или B_a (табл. П.7), увеличив тем самым b_{Z1} (2.19) и/или h_a (2.20). Если при минимально допустимых по табл. П.7 значениях B_{Z1} и/или B_a не удаётся получить приемлемое значение коэффициента k_3 , это говорит о том, что главные размеры АД завышены. В этом случае необходимо уменьшить длину сердечника l_{CT1} (п.1) или перейти на ближайшую меньшую высоту оси вращения h.

Недопустимой является ситуация, когда k_3 оказывается выше указанных пределов. Снизить k_3 можно следующими способами:

• по табл. П.7 принять максимально допустимые значения B_{Z1} и/или B_a и пересчитать b_{Z1} и/или h_a ;

• уменьшить число элементарных проводников $n_{3\pi}$ и/или число параллельных ветвей *a*, одновременно пропорционально увеличивая в соответствии с табл. П.6 площадь $q_{3\pi}$ (при этом увеличится и $d_{\mu3}$) так, чтобы сохранить выполнение условия (2.17) и плотность тока J_1 (2.18) с учётом соответствующих рекомендаций.

Если после всех принятых мер значение коэффициента заполнения паза k_3 остаётся выше допустимого, необходимо сделать вывод о том, что размеры АД занижены. После чего нужно увеличить длину сердечника $l_{\rm CT1}$ (п.1) или перейти на ближайшую большую высоту оси вращения h.

Определяют ширину зубца статора в верхнем и нижнем сечениях, мм (рис. 2.1) соответственно:

$$b'_{Z1} = \pi \frac{D + 2(h_{\rm m1} + h_{\rm K})}{Z_1} - b_1; \qquad (2.36)$$

$$b_{Z1}'' = \pi \frac{D + 2h_{\pi 1}}{Z_1} - b_2.$$
(2.37)

Далее уточняют среднюю ширину паза статора, приняв её в качестве расчётного значения b_{71} :

• если $b'_{Z1} = b''_{Z1}$, то $b_{Z1} = b'_{Z1} = b''_{Z1}$ (обычно так и бывает при всыпной обмотке);

• если расхождение между b'_{Z1} и b''_{Z1} небольшое (до 0,5 мм), то

$$b_{Z1} = \frac{b'_{Z1} + b''_{Z1}}{2}; \qquad (2.38)$$

• при больших расхождениях (более 0,5 мм) b'_{Z1} и b''_{Z1} следует скорректировать размеры паза.

Заключительным этапом расчёта обмотки, паза и ярма статора является выбор воздушного зазора б между статором и ротором асинхронной машины.

Основные теоретические сведения по выбору δ приведены в [1, стр. 367-368]. В учебном проектировании при выборе воздушного зазора АД можно применить приближённый подход и воспользоваться рис. П.14. При этом значение δ следует округлять до 0,05 мм при $\delta \le 0,5$ мм, и до 0,1 мм при $\delta > 0,5$ мм. Например, зазор выбирают равным 0,35; 0,4; 0,45; 0,5; 0,6 мм и т.д.

3. Расчёт обмотки, паза и ярма ротора

Основные теоретические сведения, касающиеся расчёта параметров ротора, приведены в [1] на стр. 371-385.

Короткозамкнутые роторы асинхронных машин бывают двух основных типов: сварные и литые.

Машины мощностью до 300...400 кВт выполняются с короткозамкнутым литым ротором, обмотка которого представляет собой алюминиевые стержни, залитые в пазы и таким образом повторяющие форму последних. Одновременно со стержнями обмотки выплавляются алюминиевые замыкающие (короткозамкнутые) кольца с вентиляционными лопатками. Таким образом, литая алюминиевая обмотка ротора представляет собой единое целое из стержней и короткозамкнутых колец с лопатками.

Выбор числа пазов ротора Z_2 выполняется по табл. П.12 в зависимости от числа полюсов машины и наличия скоса пазов ротора. При этом нужно иметь в виду, что для машин небольшой мощности обычно $Z_2 < Z_1$, а для более мощных машин иногда число пазов ротора выбирают таким, что $Z_2 > Z_1$.

Скос пазов ротора [1, стр. 112-113] выполняют практически на всех машинах небольшой мощности. В учебном проектировании можно условно принять, что при $h \le 160$ мм скос пазов необходим. В двигателях бо́льших размеров можно обойтись без скоса пазов ротора.

После выбора числа пазов ротора вычисляют внешний диаметр ротора, мм:

$$D_2 = D - 2\delta. \tag{3.1}$$

Зубцовое деление ротора, мм:

$$t_{z2} = \frac{\pi D_2}{Z_2}.$$
 (3.2)

Сердечники роторов АД с $D_2 < 990$ мм выполняют с непосредственной посадкой на вал (без втулки), а если при этом $h \le 250$ мм, то при непосредственной посадке на вал не используют шпонку. В таком случае внутренний диаметр сердечника ротора D_j можно определить по выражению:

$$D_i = D_{\rm\scriptscriptstyle B} = k_{\rm\scriptscriptstyle B} D_{\rm\scriptscriptstyle a} \,, \tag{3.3}$$

где $D_{\rm B}$ – диаметр вала, мм или м;

k_в – коэффициент, значение которого выбирается по табл. П.13.

Предварительное значение коэффициента k_i , учитывающего влияние тока намагничивания на отношение токов $\frac{I_1}{I_2}$, можно оценить по выражению:

$$k_i = 0.2 + 0.8\cos\phi. \tag{3.4}$$

Коэффициент приведения токов:

$$v_i = \frac{2m_1 w_1 k_{\text{o}6M1}}{Z_2 k_{\text{c}\kappa}},$$
(3.5)

где $k_{c\kappa}$ – коэффициент скоса пазов.

Как было отмечено выше, скос пазов ротора выполняется в АД малой мощности. Обычно скос пазов выполняют в пределах одного зубцового деления ротора (рис. 3.1), то есть ширину скоса b_{ck} , мм, можно выбрать из условия

$$b_{\rm ck} = (0, 5...1, 0)t_{z2}, \tag{3.6}$$

а относительную ширину скоса пазов в долях зубцового деления определить по выражению

$$\beta_{c\kappa} = \frac{b_{c\kappa}}{t_{z2}} = (0, 5...1, 0) .$$
(3.7)

Тогда угол скоса в электрических радианах

$$\gamma_{c\kappa} = \beta_{c\kappa} \frac{2p}{Z_2}, \qquad (3.8)$$

а коэффициент скоса

$$k_{\rm cK} = \frac{2\sin\left(\frac{\gamma_{\rm cK}}{2}\right)}{\gamma_{\rm cK}}.$$
 (3.9)

Значение коэффициента скоса близко к единице.

Рис. 3.1. Скос пазов ротора асинхронной машины

Вычисляют предварительное значение тока в обмотке ротора, А:

$$I_2 = k_i I_{1\text{HOM}} \mathbf{v}_i, \qquad (3.10)$$

где $I_{1\text{ном}}$ – рассчитанный в п.2 номинальный ток статора, А.

Плотность тока J_2 в стержнях короткозамкнутого литого алюминиевого ротора АД выбирается в пределах (2,5...3,5)·10⁶ А/м² для машин закрытого обдуваемого исполнения (IP44), и на 10%-15% выше для машин защищённого исполнения (IP23). При этом чем больше мощность АД, тем меньшие значения плотности тока следует принимать.

Предварительно определяют площадь поперечного сечения алюминиевого стержня ротора, мм²:

$$q_{\rm c} = \frac{I_2}{J_2}.$$
 (3.11)

В большинстве асинхронных электродвигателей с короткозамкнутым ротором и литой обмоткой с высотой оси вращения $h \le 250$ мм выполняют трапецеидальные пазы ротора (рис. 3.2).

Рис. 3.2. Размеры трапецеидальных полузакрытых (а) и закрытых (б) пазов ротора асинхронного двигателя

В АД с h < 160 мм применяют полузакрытые пазы (рис. 3.2, a) с узкой прорезью в верхней части, имеющей следующие размеры (ширину b_{m2} и высоту h_{m2}):

• $b_{\text{III2}} = 1,0$ мм и $h_{\text{III2}} = 0,5$ мм при $h \le 100$ мм;

• $b_{\text{m2}} = 1,5$ мм и $h_{\text{m2}} = 0,75$ мм при h = 112...132 мм.

В двигателях с *h* = 160...250 мм применяют закрытые пазы (рис. 3.2, *б*) с размерами шлица:

- ширина шлица $b_{\text{m2}} = 1,5 \text{ мм};$
- высота шлица $h_{\text{III}2} = 0,7$ мм.

Над шлицом закрытого паза существует перемычка, высоту которой принимают равной:

- $\bar{h}'_{\text{m2}} = 1, 0...1, 5 \text{ мм}$ при 2p = 2;
- *h*′_{ш2} = 0,3 мм при 2*p* ≥ 4.

По табл. П.7 принимают значение магнитной индукции в зубцах ротора при постоянном сечении (трапецеидальный паз) B_{Z2} , Тл, после чего вычисляют допустимую ширину зубца ротора, м или мм:

$$b_{Z2,\pi} = \frac{B_{\delta} t_{z2} l_{\delta}}{B_{Z2} l_{CT2} k_{C2}},$$
(3.12)

где k_{C2} – коэффициент заполнения сталью магнитопровода ротора (табл. П.8).

Далее вычисляют размеры паза ротора (рис. 3.2):

• диаметр закругления верхней части паза, мм

$$b_1 = \frac{\pi (D_2 - 2h_{\text{iii}2} - 2h'_{\text{iii}2}) - Z_2 b_{Z2,\pi}}{Z_2 + \pi}; \qquad (3.13)$$

• диаметр закругления нижней части паза, мм

$$b_{2} = \sqrt{\frac{b_{1}^{2} \left(\frac{Z_{2}}{\pi} + \frac{\pi}{2}\right) - 4q_{c}}{\frac{Z_{2}}{\pi} + \frac{\pi}{2}}};$$
(3.14)

• расстояние между центрами закруглений верхней и нижней частей паза, мм

$$h_1 = (b_1 - b_2) \frac{Z_2}{2\pi}.$$
(3.15)

Диаметр закругления нижней части паза *b*₂ должен быть не меньше:

- 1,5...2,0 мм в двигателях с h ≤ 132 мм;
- 2,5...3,0 мм в двигателях с *h* ≥ 160 мм.

Полученные значения b_1 и b_2 необходимо округлить до десятых долей миллиметра и уточнить площадь сечения стержня ротора q_c , мм²:

$$q_{\rm c} = \frac{\pi}{8} \left(b_1^2 + b_2^2 \right) + \frac{1}{2} \left(b_1 + b_2 \right) h_1. \tag{3.16}$$

Определяют полную высоту паза ротора, мм: • для полузакрытого паза (рис. 3.2, *a*)

$$h_{\rm n2} = h_{\rm l} + h_{\rm m2} + \frac{b_{\rm l}}{2} + \frac{b_{\rm 2}}{2}; \qquad (3.17)$$

• для закрытого паза (рис. 3.2, *б*)

$$h_{\rm n2} = h_1 + h_{\rm m2} + h_{\rm m2}' + \frac{b_1}{2} + \frac{b_2}{2}.$$
 (3.18)

Далее по окончательно принятым размерам паза рассчитывают ширину зубца ротора в верхнем и нижнем сечениях, мм (рис. 3.2):

$$b'_{Z2} = \pi \frac{D_2 - 2(h_{\rm m} + h'_{\rm m}) - b_1}{Z_2} - b_1; \qquad (3.17)$$

$$b_{Z2}'' = \pi \frac{D_2 - 2h_{\pi 2} + b_2}{Z_2} - b_2.$$
(3.18)

При правильно выполненных расчётах разница между b'_{Z2} и b''_{Z2} должна отсутствовать или быть минимальной (не более 0,5 мм). Тогда окончательное значение средней ширины зубца ротора можно определить по выражению:

$$b_{Z2} = \frac{b'_{Z2} + b''_{Z2}}{2}.$$
 (3.19)

Если разница между b'_{Z2} и b''_{Z2} более 0,5 мм, необходимо скорректировать размеры паза ротора.

Уточнённое значение плотности тока в стержнях ротора, А/мм²:

$$J_2 = \frac{I_2}{q_c},$$
 (3.20)

где q_c – уточнённое (окончательное) значение площади сечения стержня ротора, найденное по (3.16).

Далее переходят к расчёту параметров замыкающих (короткозамкнутых) колец ротора (рис. 3.3).

В роторах с литой обмоткой замыкающие кольца, отливаемые одновременно с заливкой пазов, всегда плотно прилегают к торцам сердечника ротора. При этом, кроме своей основной функции, они также удерживают в спрессованном состоянии листы сердечника ротора.

Замыкающие кольца литой обмотки обычно выполняют с поперечным сечением в виде неправильной трапеции, прилегающей своим большим основанием к торцу ротора.

Одновременно с заливкой стержней и колец на замыкающих кольцах отливают вентиляционные лопатки (рис. 3.3), число которых выбирают равным простому числу приблизительно в 2-3 раза меньшему, чем число пазов ротора.

Рис. 3.3. Замыкающее кольцо короткозамкнутого ротора с литой алюминиевой обмоткой и его размеры

Коэффициент Δ для расчёта тока замыкающего кольца:

$$\Delta = 2\sin\frac{\pi p}{Z_2}.$$
(3.21)

Ток замыкающего кольца ротора, А:

$$I_{\rm KJI} = \frac{I_2}{\Delta}.$$
 (3.22)

Плотность тока в замыкающих кольцах $J_{\kappa n}$, А/мм², принимают на 15...20% меньше, чем плотность тока в алюминиевых стержнях J_2 .

Площадь поперечного сечения замыкающего кольца, мм²:

$$q_{\rm KJI} = \frac{I_{\rm KJI}}{J_{\rm KJI}}.$$
 (3.23)

Размеры замыкающих колец, мм, (рис. 3.3) можно выбрать по следующим выражениям:

• высота кольца

$$h_{\rm k,II} \ge 1, 2h_{\rm H2};$$
 (3.24)

• ширина кольца

$$b_{\rm km} = \frac{q_{\rm km}}{h_{\rm km}}; \tag{3.25}$$

• средний диаметр кольца

$$D_{\rm kn.cp} = D_2 - h_{\rm kn} \,. \tag{3.26}$$

Далее уточняют площадь поперечного сечения замыкающего кольца, мм², принимая полученное значение в качестве расчётного:

$$q_{\rm KJ} = b_{\rm KJ} h_{\rm KJ} \,. \tag{3.27}$$

4. Расчёт магнитной цепи асинхронной машины

Основные теоретические сведения, касающиеся расчёта магнитной цепи асинхронной машины, приведены в [1] на стр. 385-396.

Марку электротехнической стали для магнитопровода асинхронной машины рекомендуется выбирать в зависимости от высоты оси вращения проектируемого двигателя (табл. П.14).

Коэффициент γ_1 для расчёта магнитного напряжения воздушного зазора:

$$\gamma_1 = \frac{\left(\frac{b_{\rm m1}}{\delta}\right)^2}{5 + \frac{b_{\rm m1}}{\delta}}.$$
(4.1)

Коэффициент воздушного зазора, учитывающий увеличение магнитного напряжения при неравномерной индукции из-за наличия зубцов на статоре и роторе:

$$k_{\delta} = \frac{t_{z1}}{t_{z1} - \gamma_1 \delta}.$$
(4.2)

Магнитное напряжение воздушного зазора определяют по формуле, А:

$$F_{\delta} = \frac{2}{\mu_0} B_{\delta} \delta k_{\delta} \cdot 10^{-3}, \qquad (4.3)$$

где B_{δ} – индукция магнитного поля в воздушном зазоре, Тл, найденная по (2.13);

δ – воздушный зазор, мм;

 $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м = 12,56 $\cdot 10^{-7}$ Гн/м – магнитная проницаемость.

Расчётная высота зубца статора для трапецеидального паза, показанного на рис. 2.1 или П.13, *а*, мм или м:

$$h_{Z1} = h_{\pi 1} \,. \tag{4.4}$$

Находят расчётную индукцию в зубцах статора, Тл:

$$B'_{Z1} = \frac{B_{\delta} t_{z1} l_{\delta}}{b_{Z1} l_{CT1} k_{C1}}.$$
(4.5)

Если индукция в зубцах статора B'_{Z1} , найденная по (4.5), будет меньше 1,8 Тл, то её фактическое уточнённое значение:

$$B_{Z1} = B'_{Z1}. (4.6)$$

Если же B'_{Z1} окажется больше 1,8 Тл, то необходимо учесть ответвление части потока зубцового деления в паз, при котором действительная индукция в зубце уменьшается по сравнению с рассчитанной по (4.5). Алгоритм такого учёта заключается в выполнении следующих действий:

• находят коэффициент, определяющий отношение площадей поперечных сечений паза и зубца на высоте $h_{7,1}$

$$k_{\rm n1} = \frac{b_{\rm n1} l_{\delta}}{b_{\rm Z1} l_{\rm CT1} k_{\rm C1}},\tag{4.7}$$

где $b_{n1} = \frac{b_1 + b_2}{2}$ – средняя ширина паза статора;

• задаются произвольным значением действительной индукции B_{Z1} несколько меньшим, чем полученное по (4.5) B'_{Z1} ;

• для заданного B_{Z1} определяют по табл. П.17, П.20 или П.23 (в зависимости от марки стали) напряженность магнитного поля в сечении зубца статора H_{Z1} , А/м;

• проверяют выполнение равенства

$$B_{Z1} = B'_{Z1} - \mu_0 H_{Z1} k_{\pi 1}. \tag{4.8}$$

Если при выбранном значении B_{Z1} условие (4.8) выполняется, то в качестве действительного значения индукции принимают B_{Z1} , а в качестве напряжённости магнитного поля – H_{Z1} . Если же условие (4.8) не выполняется, принимают другое значение B_{Z1} и определяют соответствующее ему значение H_{Z1} , после чего опять проверяют условие (4.8). Таким образом значение индукции B_{Z1} подбирают до тех пор, пока не выполнится равенство (4.8).

Далее находят магнитное напряжение зубцовой зоны статора (для трапецеидальных пазов на рис. 2.1), А:

$$F_{Z1} = 2h_{Z1}H_{Z1}. (4.9)$$

Для трапецеидальных пазов ротора (рис. 3.2) расчётная высота зубца ротора, мм, определяется по выражению:

$$h_{Z2} = h_{n2} - 0.1b_2, \qquad (4.10)$$

где b_2 – полученное по (3.14) и округлённое до десятых долей миллиметра значение диаметра закругления нижней части паза ротора, мм.

Находят расчётную индукцию в зубцах ротора, Тл:

$$B'_{Z2} = \frac{B_{\delta} t_{z2} l_{\delta}}{b_{Z2} l_{CT2} k_{C2}}.$$
 (4.11)

Если индукция в зубцах ротора B'_{Z2} , найденная по (4.11), будет меньше 1,8 Тл, то её фактическое уточнённое значение:

$$B_{Z2} = B'_{Z2}. (4.12)$$

Если же B'_{Z2} окажется больше 1,8 Тл, то необходимо учесть ответвление части потока зубцового деления в паз таким же образом, что и для статора (выражения (4.7) и (4.8)).

Напряженность магнитного поля в сечении зубца ротора H_{Z2} определяется по табл. П.17, П.20 или П.23 (в зависимости от марки стали).

Магнитное напряжение зубцовой зоны ротора, А:

$$F_{Z2} = 2h_{Z2}H_{Z2}.$$
 (4.13)

После расчёта магнитных напряжений необходимо определить коэффициент насыщения зубцовой зоны:

$$k_Z = 1 + \frac{F_{Z1} + F_{Z2}}{F_{\delta}}.$$
(4.14)

Коэффициент k_Z позволяет предварительно оценить правильность выбора размеров и обмоточных данных АД. Значение k_Z должно находиться в пределах от 1,2 до 1,6. Если $k_Z > 1,6$, то присутствует избыточное насыщение зубцовой зоны машины. Если же $k_Z < 1,2$, то зубцовая зона недоиспользована или слишком велик воздушный зазор. В этих случаях необходимо скорректировать соответствующие параметры АД.

Длина средней силовой линии магнитного поля в ярме статора, м:

$$L_{\rm a} = \pi \frac{D_{\rm a} - h_{\rm a}}{2\,p}.\tag{4.15}$$

Расчётная высота ярма статора, м:

$$h'_{\rm a} = h_{\rm a} - \frac{2}{3} d_{\rm \kappa 1} m_{\rm \kappa 1}, \qquad (4.16)$$

где h_a – высоты ярма статора, найденная по (2.20) и при необходимости уточнённая в дальнейшем, м;

 $d_{\kappa 1}$ – диаметр аксиальных вентиляционных каналов в сердечнике статора, м;

*m*_{к1} – число рядов аксиальных вентиляционных каналов в сердечнике статора.

Статоры асинхронных машин с длиной сердечника $l_{\rm CT1} < 250...300$ мм выполняются без вентиляционных каналов. Двигатели с высотой оси вращения 250 мм и меньше имеют, как правило, длину сердечника, не выходящую за данные границы. В таких случаях $m_{\kappa 1} = 0$.

Индукция в ярме статора, Тл:

$$B_{\rm a} = \frac{\Phi}{2\,h_{\rm a}'\,l_{\rm CT1}\,k_{\rm C1}}\,.\tag{4.17}$$

Напряжённость поля ярма статора H_a при индукции B_a определяют по табл. П.16, П.19 или П.22 (в зависимости от марки стали).

Магнитное напряжение ярма статора, А, определяется по формуле:

$$F_{\rm a} = L_{\rm a} H_{\rm a} \,. \tag{4.18}$$

Выражения для определения расчётной высоты ярма ротора h'_j и длины средней силовой линии магнитного поля в ярме ротора L_j в АД с непосредственной посадкой ротора на вал зависят от числа полюсов машины 2*p* и размерных соотношений, определяемых условием (4.19):

$$0.75\left(\frac{D_{\rm a}}{2} - h_{\rm H2}\right) \ge D_{\rm B},$$
 (4.19)

где $D_{\rm B}$ – диаметр вала АД, мм или м, найденный по (3.3).

Если 2*p* = 2, то:

• высота ярма ротора, м

$$h_j = \frac{D_2 - D_{\rm B}}{2} - h_{\rm n2}; \qquad (4.20)$$

• расчётная высота ярма ротора, м

$$h'_{j} = \frac{2+p}{3,2p} \left(\frac{D_{2}}{2} - h_{\pi 2}\right) - \frac{2}{3} d_{\kappa 2} m_{\kappa 2}, \qquad (4.21)$$

где $d_{\kappa 2}$ – диаметр аксиальных вентиляционных каналов в сердечнике ротора, м;

 $m_{\kappa 2}$ – число рядов аксиальных вентиляционных каналов в сердечнике ротора;

• длина средней силовой линии магнитного поля в ярме ротора, м

$$L_i = 2h_i. ag{4.22}$$

Если 2*p* = 4, то:

• расчётная высота ярма ротора, м, при выполнении условия (4.19)

$$h'_{j} = \frac{D_2 - D_{\rm B}}{2} - h_{\rm n2}; \qquad (4.23)$$

• расчётная высота ярма ротора h'_j , м, при невыполнении условия (4.19) определяется по (4.21);

• длина средней силовой линии магнитного поля в ярме ротора, м

$$L_{j} = \pi \frac{D_{j} + h_{j}'}{2p}.$$
(4.24)

Если 2*p* ≥ 6, то:

• расчётная высота ярма ротора, м

$$h'_{j} = \frac{D_{2} - D_{j}}{2} - h_{n2}; \qquad (4.25)$$

• длина средней силовой линии магнитного поля в ярме ротора L_i определяется по (4.24).

Следует отметить, что аксиальные каналы ротора (рис. 4.1) выполняются в АД при $h \ge 250$ мм. Они могут располагаться в одном ряду (рис. 4.1, *a*) или в двух рядах (рис. 4.1, *б*). В первом случае $m_{\kappa 2} = 1$, во втором случае $m_{\kappa 2} = 2$ (для машин большой мощности). Число аксиальных каналов обычно находится в диапазоне от 9 до 12, а их диаметр $d_{\kappa 2}$ лежит в пределах от 15 до 30 мм (бо́льшие значения $d_{\kappa 2}$ соответствуют АД с бо́льшим числом полюсов). При $m_{\kappa 2} = 2$ диаметр $d_{\kappa 2}$ уменьшают. При h < 250 мм $m_{\kappa 2} = 0$.

Рис. 4.1. Аксиальные вентиляционные каналы в сердечнике ротора: (а) – расположение каналов в один ряд; (б) – расположение каналов в два ряда

Далее находят индукцию в ярме ротора, Тл

$$B_j = \frac{\Phi}{2\,h'_j\,l_{\rm CT2}\,k_{\rm C2}},\tag{4.26}$$

и магнитное напряжение ярма ротора

$$F_j = L_j H_j, \tag{4.27}$$

где напряжённость поля ярма ротора H_j при индукции B_j определяют по табл. П.16, П.19 или П.22 (в зависимости от марки стали).

Суммарное магнитное напряжение магнитной цепи машины на одну пару полюсов, А:

$$F_{\rm II} = F_{\delta} + F_{Z1} + F_{Z2} + F_{\rm a} + F_{j} \,. \tag{4.28}$$

Коэффициент насыщения магнитной цепи:

$$k_{\mu} = \frac{F_{\mu}}{F_{\delta}}.$$
(4.29)

Намагничивающий ток АД, А:

$$I_{\mu} = \frac{pF_{\mu}}{0.9m_1w_1k_{\text{obm}1}}.$$
 (4.30)

Относительное значение намагничивающего тока, о.е.:

$$I_{\mu}^{*} = \frac{I_{\mu}}{I_{1\text{HOM}}}.$$
(4.31)

Относительное значение намагничивающего тока служит определённым критерием правильности выбора и расчёта размеров и обмоток двигателя.

Значения I^*_{μ} , как правило, должны находится в пределах от 0,18 до 0,4. Если $I^*_{\mu} < 0,2...0,18$, это говорит о том, что размеры машины завышены и активные материалы недоиспользованы. Если же $I^*_{\mu} > 0,3...0,4$, то габариты АД занижены, при этом машина будет иметь низкие значения КПД и $\cos \varphi$.

Однако следует иметь в виду, что в АД малой мощности (ниже 2...3 кВт) даже при правильном выборе параметров машины I^*_{μ} может достигать значений 0,5...0,6, что считается допустимым.

5. Определение параметров асинхронной машины для рабочего режима

Основная теория, касающаяся параметров асинхронной машины в рабочем режиме, приведена в [1] на стр. 396-411.

Катушка обмотки статора АД состоит из двух частей – пазовой и лобовой (рис. 5.1).

Рис. 5.1. Катушка двухслойной обмотки статора

Длина пазовой части катушки обмотки статора, м:

$$l_{\rm n1} = l_1 = l_2 \,. \tag{5.1}$$

Средняя ширина катушки обмотки статора, м:

$$b_{\rm kt} = \frac{\pi (D + h_{\rm n1})}{2p} \beta.$$
(5.2)

Длина изогнутой лобовой части катушки l_{n1} и длина вылета лобовой части катушки $l_{выл1}$ обмотки статора, м, определяются по выражениям:

$$l_{\rm n1} = k_{\rm n} b_{\rm kt} + 2B; \qquad (5.3)$$

$$l_{\text{Bull}1} = k_{\text{Bull}} b_{\text{KT}} + B, \qquad (5.4)$$
где k_{π} и $k_{\text{выл}}$ – коэффициенты, значения которых принимают по табл. П.24;

В – длина вылета прямолинейной части катушек обмотки статора из паза от торца сердечника до начала отгиба лобовой части.

Длину В в формулах (5.3) и (5.4) принимают равной:

• B = 0,01 м – при укладке всыпной обмотки в пазы до запрессовки сердечника в корпус;

• *B* = 0,015 м – при укладке всыпной обмотки в пазы после запрессовки сердечника в корпус.

Средняя длина витка обмотки фазы статора, м:

$$l_{\rm cp1} = 2(l_{\rm n1} + l_{\rm n1}). \tag{5.5}$$

Длина проводников фазы обмотки статора, м:

$$L_1 = l_{\rm cp1} w_1. (5.6)$$

Расчётная температура v_{расч} обмотки принимается в зависимости от класса нагревостойкости изоляции:

- для классов А, Е и В $v_{\text{расч}} = 75 \,^{\circ}C$;
- для классов F и H $v_{\text{расч}} = 115 \,^{\circ}C$.

Удельные сопротивления материала проводника медной обмотки статора $\rho_{\rm M}$, Ом·м, и алюминиевой литой обмотки ротора и короткозамкнутого кольца $\rho_{\rm a}$, Ом·м, при расчётной температуре находят по табл. П.26.

Активное сопротивление обмотки статора, Ом:

$$r_1 = k_R \rho_{\rm M} \frac{L_1}{q_{\rm sop} a} \tag{5.7}$$

и его относительное значение, о.е.

$$r_{1*} = r_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}},$$
 (5.8)

где $q_{3\phi}$ – площадь сечения эффективного проводника обмотки статора, м², найденная по (2.17);

а – число параллельных ветвей обмотки статора, найденное по (2.7);

 $k_R = 1 -$ коэффициент увеличения активного сопротивления фазы обмотки статора от действия эффекта вытеснения тока.

Активное сопротивление алюминиевого стержня ротора, Ом:

$$r_{\rm c} = k_R \rho_{\rm a} \frac{l_2}{q_{\rm c}}, \qquad (5.9)$$

где $q_{\rm c}$ – площадь сечения стержня ротора, м², найденная по (3.16).

Активное сопротивление алюминиевого замыкающего кольца, Ом:

$$r_{\rm k\pi} = \rho_{\rm a} \frac{\pi D_{\rm k\pi,cp}}{Z_2 q_{\rm k\pi}},\tag{5.10}$$

где $q_{\kappa\pi}$ – площадь сечения замыкающего кольца, м², найденная по (3.23).

Активное сопротивление фазы алюминиевой обмотки ротора, Ом:

$$r_2 = r_{\rm c} + \frac{2r_{{\rm _{KJ}}}}{\Delta^2},\tag{5.11}$$

где Δ – коэффициент, найденный по (3.21).

Затем находят активное сопротивление ротора, приведённое к числу витков обмотки статора, Ом

$$r_2' = r_2 \frac{4m_1(w_1k_{\text{o}6M1})^2}{Z_2k_{c\kappa}^2},$$
(5.12)

и его относительное значение, о.е.

$$r_{2^{*}}' = r_{2}' \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}}.$$
(5.13)

Расчётная длина магнитопровода статора, м, определяется с учётом наличия или отсутствия радиальных вентиляционных каналов:

$$l'_{\delta} = l_1 - 0.5 n_{\kappa} b_{\kappa}, \qquad (5.14)$$

где *n*_к – число радиальных каналов статора;

 $b_{\rm \scriptscriptstyle K}$ – ширина одного радиального канала (обычно равна 10 мм).

Как было отмечено в п.4, для АД с длиной сердечника l_{CT1} менее 250...300 мм радиальные каналы не выполняют, тогда $n_{\kappa} = 0$.

Коэффициенты k_{β} и k'_{β} , необходимые для расчёта коэффициента магнитной проводимости пазового рассеяния статора, находят в зависимости от наличия укорочения шага обмотки:

обмотка без укорочения шага (β = 1)

$$k_{\beta} = k'_{\beta} = 1; \tag{5.15}$$

• обмотка с укороченным шагом при $0.67 \le \beta < 1$

$$k'_{\beta} = 0,25(1+3\beta); \tag{5.16}$$

• обмотка с укороченным шагом при $0.33 \le \beta < 0.67$

$$k'_{\beta} = 0,25(6\beta - 1). \tag{5.17}$$

Коэффициент *k*_β для обмотка с укороченным шагом при любых значениях β определяется по выражению:

$$k_{\beta} = 0.25(1 + 3k_{\beta}'). \tag{5.18}$$

Формула для нахождения коэффициент магнитной проводимости пазового рассеяния статора λ_{n1} зависит от конфигурации паза и расположения в нём проводников обмотки (рис. П.15). Для чаще всего применяемых типов пазов статора АД применяются следующие выражения:

• конфигурация паза на рис. П.15, в, г, обмотка однослойная и двухслойная

$$\lambda_{\pi 1} = \frac{h_2}{3b_1} k_{\beta} + \left(0,785 - \frac{b_{\mu 1}}{2b_1} + \frac{h_1}{b_1} + \frac{h_{\mu 1}}{b_{\mu 1}}\right) k_{\beta}'; \qquad (5.19)$$

• конфигурация паза на рис. П.15, *д*, *е*, обмотка однослойная и двухслойная

$$\lambda_{\pi 1} = \frac{h_2}{3b_1} k_{\beta} + \left(\frac{h_1}{b_1} + \frac{3h_{\kappa}}{b_1 + 2b_{\mu 1}} + \frac{h_{\mu 1}}{b_{\mu 1}}\right) k_{\beta}'.$$
(5.20)

Параметры h_1 и h_2 , присутствующие в формулах (5.19) и (5.20), изображены на рис. П.15. Будем считать, что проводники обмотки статора в пазу закреплены пазовой крышкой, поэтому $h_1 = 0$. Высоту обмотки в пазу h_2 , мм, найдём по выражению:

$$h_2 = h_{\Pi.\kappa} - 2b_{\mu_3}, \tag{5.21}$$

где $h_{\text{п.к}}$ и b_{μ_3} – величины, найденные в п.2.

Коэффициент магнитной проводимости лобового рассеяния статора:

$$\lambda_{\pi 1} = 0.34 \frac{q_1}{l'_{\delta}} (l_{\pi 1} - 0.64\beta\tau).$$
 (5.22)

Коэффициент ξ для нахождения коэффициента магнитной проводимости дифференциального рассеяния обмотки статора АД с полузакрытыми пазами определяют по формуле:

$$\xi = 2k'_{\rm ck}k_{\beta} - k_{\rm ofml}^2 \left(\frac{t_{z2}}{t_{z1}}\right)^2 \left(1 + \beta_{\rm ck}^2\right), \tag{5.23}$$

где $k'_{c\kappa}$ – коэффициент, который находят по рис. П.16 в зависимости от отношения $\frac{t_{z2}}{t_{z1}}$ и значения $\beta_{c\kappa}$ ($\beta_{c\kappa}$ было найдено в п.3 по (3.7)).

Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора:

$$\lambda_{\mu 1} = \frac{t_{z1}}{12\delta k_{\delta}} \xi. \tag{5.24}$$

После нахождения всех коэффициентов λ рассчитывают индуктивное сопротивление фазы обмотки статора, Ом,

$$x_{1} = 15.8 \frac{f_{1}}{100} \left(\frac{w_{1}}{100}\right)^{2} \frac{l_{\delta}'}{pq_{1}} \left(\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}\right)$$
(5.25)

и его относительное значение, о.е.

$$x_{1^*} = x_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}}.$$
 (5.26)

Формула для нахождения коэффициента магнитной проводимости пазового рассеяния короткозамкнутого ротора λ_{n2} зависит от конфигурации паза ротора (рис. П.18). Как отмечалось в п.3, в АД с короткозамкнутым ротором и литой обмоткой с $h \le 250$ мм выполняют полузакрытые или закрытые трапецеидальные пазы ротора. Тогда, если:

• паз полузакрытый (рис. П.18, а)

$$\lambda_{\rm m2} = \left[\frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c}\right)^2 + 0.66 - \frac{b_{\rm m2}}{2b_1}\right] k_{\rm H} + \frac{h_{\rm m2}}{b_{\rm m2}};$$
(5.27)

• паз закрытый (рис. П.18, а с верхней частью по рис. П.18, ж)

$$\lambda_{\pi 2} = \left[\frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c}\right)^2 + 0,66 - \frac{b_{m 2}}{2b_1}\right] k_{\pi} + \frac{h_{m 2}}{b_{m 2}} + 1,12 \cdot 10^6 \frac{h_{m 2}'}{I_2}, \quad (5.28)$$

где h_0 – параметр паза по рис.П.18, a

$$h_0 = h_1 + \frac{b_2}{2} - 0, 1b_2; \qquad (5.29)$$

 I_2 – ток ротора, рассчитанный по (3.10).

Коэффициент магнитной проводимости лобового рассеяния короткозамкнутого ротора с замыкающими кольцами, примыкающими к торцам сердечника (рис. 3.3):

$$\lambda_{\pi 2} = \frac{2,3D_{\kappa\pi.cp}}{Z_2 l'_{\delta} \Delta^2} lg \frac{4,7D_{\kappa\pi.cp}}{h_{\kappa\pi} + 2b_{\kappa\pi}}.$$
(5.30)

Коэффициент ξ для нахождения коэффициента магнитной проводимости дифференциального рассеяния короткозамкнутого ротора АД:

$$\xi = 1 + \frac{1}{5} \cdot \left(\frac{\pi p}{Z_2}\right)^2 - \frac{\Delta_Z}{1 - \left(\frac{p}{Z_2}\right)^2},$$
(5.31)

где Δ_Z – величина, определяемая по рис. П.17.

Если
$$\frac{Z_2}{p} \ge 10$$
, то можно принять $\xi = 1$.

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{\mu 2} = \frac{t_{z2}}{12\delta k_{\delta}} \xi. \tag{5.32}$$

Коэффициент проводимости скоса:

$$\lambda_{\rm c\kappa} = \frac{t_{z2}\beta_{\rm c\kappa}^2}{12k_{\delta}k_{\rm u}}.$$
(5.33)

Индуктивное сопротивление фазы обмотки ротора x_2 , Ом, и его приведённое к числу витков обмотки статора значение x'_2 , Ом:

$$x_{2} = 7,9 f_{1} l_{\delta}' \cdot 10^{-6} \cdot (\lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{cK}); \qquad (5.34)$$
$$x_{2}' = x_{2} \frac{4m_{1} (w_{1} k_{o \delta M 1})^{2}}{Z_{2} k_{cK}^{2}}. \qquad (5.35)$$

Последним находят относительное значение индуктивного сопротивления фазы ротора, о.е.:

$$x_{2^*} = x_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}}.$$
 (5.36)

6. Расчёт постоянных потерь мощности

Основная информация, касающаяся расчёта постоянных потерь мощности в асинхронной машине, приведена в [1] на стр. 411-417.

Потери в асинхронных машинах подразделяют на потери в стали, электрические, вентиляционные, механические и добавочные потери под нагрузкой.

Потери в стали считаются постоянными потерями (не зависят от режима нагрузки АД), и, в свою очередь, делятся на основные и добавочные. Основные потери в стали рассчитывают только в сердечнике статора, так как частота перемагничивания ротора в режимах, близких к номинальному, очень мала и потери в стали ротора даже при больших индукциях незначительны.

Для нахождения основных потерь в стали необходимо рассчитать массу ярма статора m_a и массу зубцов статора m_{Z1} , кг:

$$m_{\rm a} = \pi (D_{\rm a} - h_{\rm a}) h_{\rm a} l_{\rm CT1} k_{\rm C1} \gamma_{\rm c};$$
 (6.1)

$$m_{Z1} = h_{Z1} b_{Z1} Z_1 l_{CT1} k_{C1} \gamma_c, \qquad (6.2)$$

где $\gamma_c = 7,8 \cdot 10^3$ кг/м³ – удельная масса стали.

Основные потери активной мощности в стали статора АД, Вт, находят по выражению:

$$P_{\rm ct.och} = p_{1,0/50} \left(\frac{f_1}{50}\right)^b \left(k_{\rm ga} B_{\rm a}^2 m_{\rm a} + k_{\rm gz} B_{\rm Z1}^2 m_{\rm Z1}\right), \tag{6.3}$$

где $p_{1,0/50}$ – удельные потери мощности в стали при индукции 1 Тл и частоте перемагничивания 50 Гц, Вт/кг (по табл. П.27 в зависимости от марки стали);

 $k_{\rm дa}$ и $k_{\rm дz}$ – коэффициенты, учитывающие влияние на потери в стали неравномерности распределения потока по сечениям участков магнитопровода и технологических факторов (для машин мощностью менее 250 кВт можно принять, что $k_{\rm дa} = 1,6$ и $k_{\rm dz} = 1,8$);

b – показатель степени, учитывающий зависимость потерь в стали от частоты перемагничивания (для большинства электротехнических сталей *b* можно принять из диапазона 1,3...1,5).

Добавочные потери в стали (добавочные потери холостого хода) подразделяют на поверхностные и пульсационные.

Поверхностные $P_{\text{пов1}}$ и пульсационные $P_{\text{пул1}}$ потери в статоре АД с короткозамкнутым ротором незначительны, поэтому их расчёт обычно не проводят, или принимают $P_{\text{пов1}} = 0$ и $P_{\text{пул1}} = 0$.

Для нахождения поверхностных потерь в роторе в первую очередь вычисляют амплитуду пульсаций индукции в воздушном зазоре над коронками зубцов ротора, Тл:

$$B_{02} = \beta_{02} k_{\delta} B_{\delta}, \qquad (6.4)$$

где β_{02} – коэффициент, зависящий от отношения $\frac{b_{\rm m1}}{\delta}$, и определяемый по рис. П.19, δ (ширина шлица паза статора $b_{\rm m1}$ определена в п.2).

Удельные поверхностные потери, то есть потери, приходящиеся на 1 м² поверхности головок ротора, Вт/м²:

$$p_{\text{пов2}} = 0.5k_{02} \left(\frac{Z_1 n}{10000}\right)^{1.5} \left(B_{02} t_{z1} \cdot 10^3\right)^2, \tag{6.5}$$

где k_{02} – коэффициент, учитывающий влияние обработки поверхности головок зубцов ротора на удельные потери (для двигателей мощностью 160 кВт и менее принимают $k_{02} = 1, 4...1, 8$);

n – частота вращения АД (может быть принятой равной синхронной частоте двигателя *n*₁), об/мин.

Полные поверхностные потери ротора, Вт:

$$P_{\text{пов2}} = p_{\text{пов2}} (t_{z2} - b_{\text{III}2}) Z_2 l_{\text{CT2}}.$$
(6.6)

Для нахождения пульсационных потерь в роторе в первую очередь вычисляют амплитуду пульсаций индукции в среднем сечении зубцов ротора, Тл

$$B_{\Pi y \pi.2} = \frac{\gamma_1 \delta}{2t_{z2}} B_{Z2}, \qquad (6.$$

и массу стали зубцов ротора, кг

$$m_{Z2} = h_{Z2} b_{Z2} Z_2 l_{CT2} k_{C2} \gamma_c.$$
(6.8)

Тогда пульсационные потери в зубцах ротора, Вт:

$$P_{\Pi y \pi 2} = 0.11 \left(\frac{Z_1 n}{1000} B_{\Pi y \pi .2} \right)^2 m_{Z2}.$$
 (6.9)

Добавочные потери в стали включают в себя поверхностные и пульсационные потери, Вт:

$$P_{\text{ст.доб}} = P_{\text{пов1}} + P_{\text{пул1}} + P_{\text{пов2}} + P_{\text{пул2}}, \qquad (6.10)$$

где, как было отмечено выше, $P_{\text{пов1}} = 0$ и $P_{\text{пул1}} = 0$.

Обычно $P_{\text{ст.доб}}$ в 4...8 раз меньше, чем $P_{\text{ст.осн}}$.

Полные потери в стали, Вт, определяются как сумма основных и добавочных потерь:

$$P_{\rm ct} = P_{\rm ct.och} + P_{\rm ct.do6}. \tag{6.11}$$

Формула, по которой рассчитывают механические потери АД, зависит от системы охлаждения машины.

По способу циркуляции воздушных потоков в асинхронной машине можно выделить две основные системы вентиляции – радиальная и аксиальная (рис. 6.1).

Аксиальная система подразумевает наличие аксиальных (вдоль оси машины) каналов в статоре и роторе (рис. 6.1, a). Аксиальные ка-

налы, как правило, выполняют в АД с высотой оси вращения 250 мм и более.

Радиальная система вентиляции предполагает, что сердечники статора и ротора вдоль всей длины делят на отдельные пакеты по 40...60 мм, между которыми оставляют промежутки шириной 10 мм, которые и являются радиальными каналами (рис. 6.1, б). Радиальная система вентиляции может быть и без радиальных каналов (для машин небольших и средних размеров с длиной сердечника до 250...300 мм).

Если машина не имеет ни аксиальных, ни радиальных каналов (как правило, АД с высотой оси вращения h < 250 мм), её система охлаждения будет считаться радиальной без радиальных каналов.

Рис. 6.1. Аксиальная (а) и радиальная (б) системы вентиляции асинхронной машины: 1 – статор; 2 – ротор

В большинстве асинхронных машин с короткозамкнутым ротором общего назначения воздушные потоки охлаждения могут создаваться двумя основными путями – с помощью вентиляционных алюминиевых лопаток, являющихся частью замкнутого кольца (система охлаждения IC01 в АД со степенью защиты IP23), и с помощью внешнего вентилятора, расположенного на валу машины. В последнем случае внешний вентилятор является дополнением к внутреннему вентилятору в виде лопаток на роторе (система охлаждения IC0141 в АД со степенями защиты IP44 и IP54).

Таким образом, расчёт механических потерь в Вт будет выполняться по приведённым ниже формулам:

• АД с короткозамкнутым ротором имеет радиальную систему вентиляции без радиальных и аксиальных каналов, с вентиляционными лопатками на замыкающих кольцах (система охлаждения IC01, степень защиты машины IP23, h < 250 мм и $l_{\rm CT} < 250...300$ мм)

$$P_{\rm Mex} = K_{\rm T} \left(\frac{n}{1000}\right)^2 (10 \cdot D)^3, \qquad (6.12)$$

где $K_{\rm T} = 5$ при 2p = 2 и $D_{\rm a} \le 0.25$ м; $K_{\rm T} = 6$ при $2p \ge 4$ и $D_{\rm a} \le 0.25$ м; $K_{\rm T} = 6$ при 2p = 2 и $D_{\rm a} > 0.25$ м; $K_{\rm T} = 7$ при $2p \ge 4$ и $D_{\rm a} \le 0.25$ м;

• АД с короткозамкнутым ротором при 0,1 м $\leq D_a \leq 0,5$ м имеет радиальную систему вентиляции без радиальных и аксиальных каналов, с вентиляционными лопатками на замыкающих кольцах и обдувом от внешнего вентилятора (система охлаждения IC0141, степень защиты машины IP44 или IP54, h < 250 мм и $l_{\rm CT} < 250...300$ мм)

$$P_{\rm Mex} = K_{\rm T} \left(\frac{n}{10}\right)^2 D_{\rm a}^4, \qquad (6.13)$$

где $K_{\rm T} = 1$ при 2p = 2; $K_{\rm T} = 1,3 \cdot (1 - D_{\rm a})$ при $2p \ge 4;$

• АД с короткозамкнутым ротором средней и большой мощности (длина сердечника $l_{\rm CT} > 250...300$) имеет радиальную систему вентиляции с радиальными каналами

$$P_{\rm Mex} = 1, 2 \cdot 2 p \tau^3 (n_{\rm K} + 11) \cdot 10^3, \qquad (6.14)$$

где $n_{\rm k}$ – число радиальных вентиляционных каналов;

• АД с короткозамкнутым ротором имеет аксиальную систему вентиляции, вентиляционные лопатки на замыкающих кольцах и обдув от внешнего вентилятора (система охлаждения IC0141, степень защиты машины IP44 или IP54 и $h \ge 250$ мм)

$$P_{\rm Mex} = K_{\rm T} \left(\frac{n}{1000}\right)^2 \left(10 \cdot D_{\rm BeHT}\right)^3, \tag{6.15}$$

где $D_{\text{вент}}$ – наружный диаметр вентилятора, м (можно принять $D_{\text{вент}} = D_{\text{a}}$); $K_{\text{т}} = 2,9$ при $D_{\text{a}} \le 0,25$ м; $K_{\text{т}} = 3,6$ при $D_{\text{a}} = 0,25...0,5$ м;

• АД с короткозам
кнутым ротором большой мощности (0,5 м < $D_{\rm a} \leq 0,9$ м)

$$P_{\rm Mex} = K_{\rm T} (10 \cdot D)^3, \tag{6.16}$$

где $K_{\rm T}$ принимают по табл. П.28.

Электрические потери в статоре АД в режиме холостого хода машины, Вт:

$$P_{\mathfrak{s}1.\mathbf{x}} = m_1 I_{\mu}^2 r_1. \tag{6.17}$$

При определении активной составляющей тока холостого хода $I_{x.a}$, А, принимают, что потери на трение и вентиляцию, а также потери в стали при холостом ходе двигателя такие же, как и в номинальном режиме. Тогда:

$$I_{x.a} = \frac{P_{cT} + P_{Mex} + P_{\mathfrak{I}.x}}{m_1 U_{1HOM,\phi}}.$$
 (6.18)

Реактивная составляющая тока холостого хода принимается равной намагничивающему току АД

$$I_{\mathbf{x}.\mathbf{p}} = I_{\mu},\tag{6.19}$$

тогда ток холостого хода двигателя, А

$$I_{\rm x} = \sqrt{I_{\rm x.a}^2 + I_{\rm x.p}^2} \,. \tag{6.20}$$

На последнем этапе вычисляют коэффициент мощности АД в режиме холостого хода:

$$\cos\varphi_{x} = \frac{I_{xa}}{I_{x}}.$$
(6.21)

7. Рабочие характеристики асинхронного двигателя

Основной алгоритм расчёта и построения рабочих характеристик асинхронного двигателя рассмотрен в [1] на стр. 418-425.

Под рабочими характеристиками асинхронных двигателей называют понимают зависимости активной мощности статора двигателя P_1 , тока статора I_1 , коэффициента мощности двигателя $cos\phi$, КПД двигателя η и скольжения двигателя s от полезной мощности на валу двигателя P_2 . После расчёта рабочие характеристики строятся в виде графиков зависимостей $P_1 = f(P_2)$, $I_1 = f(P_2)$, $cos\phi = f(P_2)$, $\eta = f(P_2)$ и $s = f(P_2)$.

Методы расчёта рабочих характеристик асинхронной машины базируются на Г-образной схеме замещения (рис. 7.1) и составленной на её основе системе уравнений токов и напряжений.

Рис. 7.1. Г-образная схема замещения асинхронной машины (а) и соответствующая ей векторная диаграмма (б)

В настоящее время расчёт рабочих характеристик асинхронных машин выполняется, как правило, аналитическим методом.

Для расчёта необходимо задаться значениями скольжений *s*, o.e., из диапазона с минимальным значением, близким к режиму холостого хода, и максимальным, несколько превышающим предполагаемое номинальное скольжение. Номинальное скольжение можно предварительно принять $s_{\text{ном}} \approx r'_{2^*}$.

При расчёте вручную достаточно учесть 5-6 точек (значений скольжения *s*). Если же вычисления выполняется с помощью компьютерной программы, количество расчётных точек может быть намного

большим, поскольку это увеличит точность построения рабочих характеристик.

Перед расчётом рабочих характеристик необходимо вычислить некоторые параметры, которые не зависят от режима работы АД, а значит и от скольжения *s*.

Сопротивления r_{12} и x_{12} схемы замещения на рис. 7.1, *a*, Ом:

$$r_{12} = \frac{P_{\text{ст.осн}}}{m_1 I_{\mu}^2};$$
(7.1)

$$x_{12} = \frac{U_{1\text{HOM}.\phi}}{I_{\mu}} - x_1.$$
(7.2)

Находят значение угла ү, град:

$$\gamma = \operatorname{arctg} \frac{r_1 x_{12} - r_{12} x_1}{r_{12} (r_1 + r_{12}) + x_{12} (x_1 + x_{12})}.$$
(7.3)

Если $|\gamma| \le 1^{\circ}$ (что, как правило, имеет место для АД мощностью более 2...3 кВт), то для расчёта коэффициента c_1 и величин a, a', b и b' используют приближённый метод:

• коэффициент *c*₁, о.е.

$$c_1 = 1 + \frac{x_1}{x_{12}}; \tag{7.4}$$

• параметры a' и b', o.e.

 $a' = c_1^2; \qquad b' = 0; \tag{7.5}$

• параметры a и b, Ом

$$a = c_1 r_1; \qquad b = c_1 (x_1 + c_1 x_2').$$
 (7.6)

Если же $|\gamma| > 1^{\circ}$, то при расчёте коэффициента c_1 необходимо учесть его реактивную составляющую c_{1p} . Тогда:

• активная c_{1a} и реактивная c_{1p} составляющие коэффициента c_1

$$c_{1a} = \frac{r_{12}(r_1 + r_{12}) + x_{12}(x_1 + x_{12})}{r_{12}^2 + x_{12}^2};$$

$$c_{1p} = \frac{x_1 r_{12} - r_1 x_{12}}{r_{12}^2 + x_{12}^2};$$
(7.7)
(7.8)

• модуль коэффициента c_1

$$c_1 = \sqrt{c_{1a}^2 + c_{1p}^2};$$
 (7.9)

• параметры *a*′ и *b*′, о.е.

$$a' = c_{1a}^2 - c_{1p}^2; \qquad b' = 2c_{1a}c_{1p};$$
 (7.10)

• параметры а и b, Ом

$$a = c_{1a}r_1 - c_{1p}x_1 - b'x'_2; \qquad b = c_{1a}x_1 + c_{1p}r_1 + a'x'_2.$$
(7.11)

Дале находят активную $I_{0{\rm a}}$ и реактивную $I_{0{\rm p}}$ составляющие тока синхронного холостого хода АД, А

$$I_{0a} = \frac{P_{\text{ст.осн}} + 3I_{\mu}^{2}r_{1}}{3U_{1\text{ном.}\phi}}; \qquad I_{0p} \approx I_{\mu}, \qquad (7.12)$$

а также сумму потерь мощности в АД, не зависящих от скольжения, кВт

$$P_{\rm ct} + P_{\rm Mex}. \tag{7.13}$$

Расчёт рабочих характеристик удобно проводить в виде специального формуляра (табл. 7.1), в котором в соответствующей последовательности приведены все необходимые расчётные формулы для вычисления следующих величин:

• *R* – активное сопротивление правой ветви схемы замещения на рис. 7.1, Ом;

• *X* – реактивное сопротивление правой ветви схемы замещения на рис. 7.1, Ом;

• Z – модуль полного сопротивления правой ветви схемы замещения на рис. 7.1, Ом;

• I_2'' – ток правой ветви схемы замещения на рис. 7.1 (ток ротора), А;

• $\cos \phi'_2$ и $\sin \phi'_2$ – параметры для правой ветви схемы замещения на рис. 7.1;

• I_{1a} и I_{1p} – активная и реактивная составляющие тока статора соответственно, А;

• I_1 – полный ток статора, А;

• I'_2 – приведённый ток ротора, А;

• *P*₁ – активная мощность статора АД, кВт;

• $P_{_{91}}$ и $P_{_{92}}$ – электрические потери статора и ротора АД соответственно, кВт;

• Р_{доб} – добавочные потери АД, кВт;

∑*P* − суммарные потери АД, кВт;

• Р₂ – полезная активная мощность на валу АД, кВт;

η – КПД двигателя, о.е.;

• cos φ – коэффициент мощности АД.

После расчёта всех необходимых параметров строятся рабочие характеристики АД (численный пример расчёта и сами зависимости $P_1 = f(P_2), I_1 = f(P_2), cos\phi = f(P_2), \eta = f(P_2)$ и $s = f(P_2)$ показаны в пункте 12 "Пример расчёта" данных методических указаний).

По построенным рабочим характеристикам необходимо уточнить номинальные параметры двигателя по известной из условия проектирования номинальной мощности $P_{2,\text{ном}}$:

• номинальный ток $I_{1.\text{ном}};$

- номинальный коэффициент мощности *cos* $\phi_{\text{ном}}$;
- номинальный КПД η_{ном};
- номинальное скольжение *s*_{ном}.

Таблица 7.1. Расчётные выражения для построения рабочих характеристик асинхронного двигателя

N⁰	Расчётная	Ед.		Ск	ольжен	ие <i>s</i>		
п/п	формула	ИЗМ.					/	S _{HOM}
1	$\underline{a'r_2'}$	Ом				6		
2	S	0						
Z	$R = a + \frac{a r_2}{s}$	Ом						
3	X	Ом						
4	$Z = \sqrt{R^2 + X^2}$	Ом			2			
5	$I_2'' = \frac{U_{1\text{HOM},\phi}}{Z}$	A		Z				
6	$\cos\varphi_2' = \frac{R}{Z}$	—		\overline{D}				
7	$\sin \varphi_2' = \frac{X}{Z}$	_						
8	I _{0a}	A						
9	I _{0p}	Α						
10	$I_{1a} = I_{0a} + I_2'' \cos\varphi_2'$	Α						
11	$I_{1p} = I_{0p} + I_2'' sin\phi_2'$	Α						
12	$I_1 = \sqrt{{I_{1a}}^2 + {I_{1p}}^2}$	А						
13	$I_2' = c_1 I_2''$	Α						
14	$P_1 = 3U_{1{\rm Hom.}\phi}I_{1{\rm a}}\cdot 10^{-3}$	кВт						
15	$P_{\rm 31} = 3I_1^2 r_1 \cdot 10^{-3}$	кВт						
16	$P_{32} = 3(I_2')^2 r_2' \cdot 10^{-3}$	кВт						
17	$P_{\rm ct} + P_{\rm mex}$	кВт						
18	$P_{\rm доб} = 0,005P_1$	кВт						
19	$\sum P = P_{\rm ct} + P_{\rm mex} +$	кВт						
	$+P_{\mathfrak{I}}+P_{\mathfrak{I}}+P_{\mathfrak{I}}+P_{\mathfrak{I}}$							

N⁰	Расчётная	Ед.	Скольжение s							
п/п	формула	ИЗМ.							S _{HOM}	
20	$P_2 = P_1 - \sum P$	_								
21	$\eta = 1 - \frac{\sum P}{P_1}$	_					~/	2		
22	$cos\phi = \frac{I_{1a}}{I_1}$	_					X			

Для уточнённого значения номинального скольжения s_{ном} pacсчитывают параметры в табл. 7.1 и заносят результаты в последний столбец.

8. Пусковые характеристики асинхронного двигателя

Основной алгоритм расчёта и построения пусковых характеристик асинхронного двигателя рассмотрен в [1] на стр. 425-440.

8.1 Расчёт пусковых характеристик с учётом эффекта вытеснения тока

Пусковые характеристики асинхронной машины – это зависимости тока статора $I_{1\pi}$ и момента машины M (как правило, в относительных единицах) от скольжения s, то есть $M^* = f(s)$ и $I_{1\pi}^* = f(s)$.

В пусковом режиме частота тока в короткозамкнутом роторе возрастает по сравнению с частотой в рабочих режимах. В результате возникает эффект вытеснения тока ротора – плотность тока в верхней части стержня возрастает, а в нижней части снижается. Следствием такого процесса является увеличение активного сопротивления ротора и снижение его реактивного сопротивления.

Алгоритм расчёта пусковых характеристик АД с учётом эффекта вытеснения тока приведён ниже.

Расчёт начинают с определения высоты стержня в пазу ротора h_{c2} (рис. П.24):

• полузакрытый паз (рис. 3.2, *a*)

$$h_{\rm c2} = h_{\rm H2} - h_{\rm H2}; \tag{8.1}$$

• закрытый паз (рис. 3.2, б)

$$h_{\rm c2} = h_{\rm m2} - \left(h_{\rm m2} + h_{\rm m2}'\right). \tag{8.2}$$

Далее определяют так называемую "приведённую высоту" алюминиевого стержня ротора литой короткозамкнутой обмотки в зависимости от расчётной температуры обмотки (п.5):

• при расчётной температуре $v_{pacy} = 75 \ ^{o}C$

$$\zeta = 65,15h_{c2}\sqrt{s} ; (8.3)$$

• при расчётной температуре $v_{pacy} = 115 \ ^{\circ}C$

$$\zeta = 63,61h_{\rm c2}\sqrt{s} \,, \tag{8.4}$$

где *s* – скольжение двигателя, о.е.

Определяют глубину проникновения тока в стержень ротора при пуске (рис. П.24), мм:

$$h_r = \frac{h_{\rm c2}}{1+\varphi},\tag{8.5}$$

где $\phi-\varphi$ ункция, которую находят по рис. П.22 в зависимости от ζ .

В зависимости от значения величины h_r выбирают формулы для расчёта площади сечения верхней части стержня ротора q_r , по которому распространяется ток при пуске, и коэффициента k_r . Формулы приведены для пазов на рис. 3.2 (или П.24, *в*).

Если
$$\frac{b_1}{2} \le h_r \le h_1 + \frac{b_1}{2}$$
, то
• площадь q_r , мм²

$$q_r = \frac{\pi b_1^2}{8} + \frac{b_1 + b_r}{2} \left(h_r - \frac{b_1}{2} \right), \tag{8.6}$$

где b_r – ширина паза на глубине проникновения тока, мм

$$b_r = b_1 - \frac{b_1 - b_2}{h_1} \left(h_r - \frac{b_1}{2} \right);$$
(8.7)

• коэффициент k_r

$$k_r = \frac{q_c}{q_r}.$$
(8.8)

Если $h_r < \frac{b_1}{2}$, то:

• площадь q_r , мм²

$$q_r = \frac{\pi b_1^2}{4(\varphi_{\rm KP} + 1)},\tag{8.9}$$

где $\phi_{\kappa p} - \phi$ ункция, которую находят по рис. П.22 в зависимости от ζ ;

• коэффициент k_r – по формуле (8.8).

Если же $h_r > h_1 + \frac{b_1}{2}$, то принимают $q_r \approx q_c$ и $k_r = 1$.

Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока:

$$K_R = \frac{r_2 + r_c'(k_r - 1)}{r_2}.$$
 (8.10)

В выражении (8.10) сопротивление $r'_{\rm c}$ находится в зависимости от системы вентиляции и конструкции ротора:

• ротор без радиальных каналов, с литой алюминиевой обмоткой и прилегающими к ней замыкающими кольцами, Ом

$$r_{\rm c}' = r_{\rm c};$$
 (8.11)

• ротор с радиальными вентиляционными каналами и отставленными замыкающими кольцами, Ом

$$r_{\rm c}' = r_{\rm c} \frac{l_{\rm c} - n_{\rm \kappa} b_{\rm \kappa}}{l_2},$$
 (8.12)

где l_c – полная длина стержня, равная расстоянию между замыкающими кольцами, м.

Приведенное активное сопротивление ротора с учетом влияния эффекта вытеснения тока, Ом:

$$r_{2\zeta}' = K_R r_2'. (8.13)$$

Коэффициент магнитной проводимости участка паза ротора, занятого проводником с обмоткой (для паза на рис. П.18, *a*):

$$\lambda_{n2}' = \frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c} \right)^2 + 0.66 - \frac{b_{m2}}{2b_1}.$$
 (8.14)

Коэффициент магнитной проводимости пазового рассеяния с учетом эффекта вытеснения тока:

$$\lambda_{\pi 2\zeta} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2\zeta}, \qquad (8.15)$$

где $\Delta \lambda_{\pi 2 \zeta} = \lambda'_{\pi 2} (1 - k_{\pi}),$ $k_{\pi} = \phi'$ (функцию ϕ' находят по рис. П.23 в зависимости от ζ).

Коэффициент, показывающий изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока:

$$K_X = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}}.$$
(8.16)

Приведенное индуктивное сопротивление ротора с учетом влияния эффекта вытеснения тока, Ом:

$$x'_{2\zeta} = K_X x'_2. (8.17)$$

В пусковых режимах при токах, многократно превышающих номинальный, активным сопротивлением r_{12} на рис. 7.1 можно пренебречь, тогда в пусковом режиме $r_{12\pi} = 0$.

Индуктивное сопротивление взаимоиндукции в пусковом режиме в схеме замещения АД (рис. 7.1) может быть найдено по выражению, Ом:

$$x_{12\pi} = k_{\mu} x_{12}, \qquad (8.18)$$

где k_{μ} – коэффициент насыщения магнитной цепи (по (4.29)).

Коэффициент c_1 в пусковом режиме АД :

$$c_{1\Pi} = 1 + \frac{x_1}{x_{12\Pi}} = 1 + \frac{0.345}{21.81} = 1.016.$$
 (8.19)

Тогда активное *R* и реактивное *X* сопротивления правой ветви схемы замещения на рис. 7.1 в пусковом режиме с учётом вытеснения тока будут определяться выражениями, Ом:

$$R_{\rm m} = r_1 + \frac{c_{1\rm m}r'_{2\zeta}}{s}; \qquad (8.20)$$
$$X_{\rm m} = x_1 + c_{1\rm m}x'_{2\zeta}. \qquad (8.21)$$

Дале находят токи ротора $I'_{2\pi}$ и статора $I_{1\pi}$ в пусковом режиме с учётом вытеснения тока, А:

$$I'_{2\pi} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\pi}^{2} + X_{\pi}^{2}}}; \qquad (8.22)$$

$$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + x_{12\pi})^{2}}}{c_{1\pi} x_{12\pi}}.$$
 (8.23)

В заключение расчёта находят кратность пускового тока $I_{1\pi}^*$ и кратность пускового момента M^* АД с учётом вытеснения тока, о.е.:

$$I_{1\Pi}^* = \frac{I_{1\Pi}}{I_{1\rm HOM}};$$
(8.24)

$$M^{*} = \left(\frac{I'_{2\Pi}}{I'_{2HOM}}\right)^{2} K_{R} \frac{S_{HOM}}{s}.$$
 (8.25)

где $I'_{2\text{ном}}$ – приведённый ток ротора при номинальном скольжении $s_{\text{ном}}$, значение которого берётся из табл. 7.1 (13-я строка и последний столбец) по результатам расчёта рабочих характеристик АД.

Используя выражения (8.1) - (8.25), можно рассчитать токи и момент в пусковых режимах АД в диапазоне скольжений s от 1 и ниже (до 0,1...0,05).

Расчёт пусковых характеристик выполняется по выражениям (8.1) - (8.25) в виде формуляра (табл. 8.1) в выбранном диапазоне скольжений *s*.

Расчётный диапазон скольжений заканчивается в точке s = 1,0, а начинаться должен в точке, соответствующей скольжению несколько ниже критического $s_{\rm kp}$, которое он также должен содержать. Предварительно определить критическое скольжение можно по выражению:

$$s_{\rm \kappa p} = \frac{r_2'}{\frac{x_1}{c_{1\pi}} + x_2'}.$$
(8.26)

При ручном расчёте в диапазон скольжений достаточно включить 6-7 расчётных точек, включая s = 1,0 и $s_{\rm kp}$.

При выполнении расчёта пусковых характеристик с помощью компьютера число точек можно значительно увеличить, что даст гораздо большую точность построения зависимостей.

Численный пример расчёта и построенные зависимости $M^* = f(s)$ и $I_{1\pi}^* = f(s)$ показаны в пункте 12 "Пример расчёта" данных методических указаний.

По построенным пусковым характеристикам необходимо уточнить значение критического скольжения *s*_{кр} и найти максимальный момент АД, соответствующий критическому скольжению, с учётом вытеснения тока, о.е.:

$$M_{\max}^{*} = \left(\frac{I_{2\pi(s_{\rm kp})}'}{I_{2\rm HOM}'}\right)^{2} K_{R(s_{\rm kp})} \frac{s_{\rm HOM}}{s_{\rm kp}} .$$
(8.27)

Таблица 8.1. Расчётные выражения для построения пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока

No	Расчётная	Ед.	Скольжение s			
п/п	формула	ИЗМ.		S _{кр}		1,0
1	$\zeta = 63,61h_{\rm c2}\sqrt{s}$	—				
2	$\varphi = f(\zeta)$	_				
3	$h_r = \frac{h_{c2}}{1 + \varphi}$	MM				
4	$k_r = \frac{q_c}{q_r}$	_				
5	$K_{R} = \frac{r_{2} + r_{c}'(k_{r} - 1)}{r_{2}}$	_		$\langle \rangle$		
6	$r_{2\zeta}' = K_R r_2'$	Ом				
7	$k_{\rm A} = \varphi' = f(\zeta)$	Þ		-		
8	$\lambda_{\pi 2 \zeta} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2 \zeta}$	Ň				
9	$K_{X} = \frac{\lambda_{\pi 2 \zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}}$					
10	$x_{2\zeta}' = K_X x_2'$	Ом				
11	$R_{\rm m} = r_1 + \frac{c_{1\rm m}r_{2\zeta}'}{s}$	Ом				
12	$X_{\rm m} = x_1 + c_{1\rm m} x_{2\zeta}'$	Ом				
13	$I'_{2\pi} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\pi}^{2} + X_{\pi}^{2}}}$	A				
14	$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + x_{12\pi})^{2}}}{c_{1\pi}x_{12\pi}}$	A				
15	$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}}$	_				
16	$M^* = \left(\frac{I'_{2\pi}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{S_{\text{HOM}}}{s}$	_				
		63				

8.2 Расчёт пусковых характеристик с учётом насыщения магнитной системы асинхронной машины

Расчёты параметров холостого хода и рабочих режимов АД, выполнявшиеся в предыдущих разделах, предполагали, что сталь магнитопровода машины не насыщена полями рассеяния.

При скольжениях выше критического и в пусковых режимах токи в обмотках АД возрастают и потоки рассеяния увеличиваются, при этом коронки зубцов статора и ротора в машинах средней и большой мощности оказываются сильно насыщенными, что в свою очередь приводит к увеличению магнитного сопротивления части потока рассеяния, магнитные линии которого замыкаются через верхнюю часть паза (рис. П.25). По этой причине коэффициент магнитной проводимости пазового рассеяния снижется, несколько уменьшается также и магнитная проводимость дифференциального рассеяния.

Алгоритм расчёта пусковых характеристик АД с учётом насыщения приведён ниже.

Перед расчётом пусковых характеристик нужно определить необходимость учёта влияния насыщения. Для этого находят значение полного тока паза статора в начальный момент времени пуска двигателя, то есть при s = 1,0:

$$I_{1\pi a 3a} = \frac{I_{1\pi} u_{\pi}}{a}, \qquad (8.28)$$

где $I_{1\pi}$ – значение тока статора АД при s = 1,0 (табл. 8.1, 14-я строка, последний столбец), А.

Если полученный по (8.28) ток $I_{1 \text{паза}} < 400$ А, то учитывать насыщение не обязательно, и в качестве расчёта пусковых характеристик можно принять результаты вычислений в табл. 8.1.

Если же $I_{1 \text{паза}} \ge 400$ А, то учёт влияния насыщения от полей рассеяния на пусковые характеристики необходим.

Алгоритм расчёта пусковых характеристик АД с учётом насыщения приведён ниже.

Расчётный ряд скольжений *s* желательно принят тем же, что и при расчёте с учётом только вытеснения тока (табл. 8.1). При выполнении расчёта пусковых характеристик с помощью компьютера коли-

чество точек можно значительно увеличить, что даст гораздо большую точность построения зависимостей $M^* = f(s)$ и $I_{1\pi}^* = f(s)$.

Первоначально необходимо задаться значениями коэффициента увеличения тока от насыщения зубцовой зоны полями рассеяния $k_{\rm hac}$, учитывая некоторые соображения:

• для значений скольжений *s* близких к 0,1...0,15 и меньших коэффициент $k_{\text{нас}}$ можно принять равным $k_{\text{нас}} = 1$;

• для каждого значения s > 0,1...0,15 из принятого ранее расчётного диапазона задаются значением $k_{\text{нас}}$ приближённо исходя из его линейной зависимости от скольжения $k_{\text{нас}} = f(s)$.

В дальнейшем может возникнуть необходимость скорректировать некоторые значения $k_{\rm Hac}$.

Далее определяют среднюю МДС обмотки, отнесенную к одному пазу обмотки статора, А:

$$F_{\text{n.cp}} = 0.7 \frac{k_{\text{Hac}} I_{1\pi} u_{\pi}}{a} \left(k_{\beta}' + k_{y} k_{\text{o}6\text{M}1} \frac{Z_{1}}{Z_{2}} \right), \qquad (8.29)$$

где I_{1n} – значение тока статора АД при соответствующем скольжении *s* (табл. 8.1), А.

Вычисляют фиктивную индукцию потока рассеяния в воздушном зазоре, ТЛ:

$$B_{\phi\delta} = \frac{F_{\text{n.cp}}}{1,6\delta C_N} \cdot 10^{-3}, \qquad (8.30)$$

где коэффициент C_N

$$C_N = 0.64 + 2.5\sqrt{\frac{\delta}{t_{z1} + t_{z2}}}$$
 (8.31)

Коэффициент K_{δ} , характеризующий отношение потока рассеяния при насыщении к потоку рассеяния ненасыщенной машины и являющийся функцией фиктивной индукции $B_{\phi\delta}$, находят по (рис. П.26).

Дополнительное эквивалентное раскрытие пазов статора и ротора, мм, определяют соответственно по выражениям:

$$c_{91} = (t_{z1} - b_{m1})(1 - K_{\delta}); \qquad (8.32)$$
$$c_{92} = (t_{z2} - b_{m2})(1 - K_{\delta}). \qquad (8.33)$$

Уменьшение коэффициента магнитной проводимости рассеяния паза статора для полузакрытых пазов (рис. П.27, *в*, *г*):

$$\Delta \lambda_{\rm m1. Hac} = \frac{h_{\rm m1} + 0.58h_{\rm K}}{b_{\rm m1}} \frac{c_{\rm s1}}{c_{\rm s1} + 1.5b_{\rm m1}}.$$
 (8.34)

Уменьшение коэффициента магнитной проводимости рассеяния пазов ротора различной конфигурации (рис. П.27, *д*, *e*, *ж*):

• открытый и полузакрытый паз

$$\Delta \lambda_{\rm n2. hac} = \frac{h_{\rm m2}}{b_{\rm m2}} \frac{c_{\rm 32}}{b_{\rm m2} + c_{\rm 32}}; \qquad (8.35)$$

• закрытый паз

$$\Delta\lambda_{\rm m2.Hac} = \frac{h_{\rm m2} + h_{\rm m2}'}{b_{\rm m2}} \frac{c_{\rm 32}}{b_{\rm m2} + c_{\rm 32}}.$$
 (8.36)

Коэффициенты магнитной проводимости пазового рассеяния при насыщении статора и ротора соответственно:

$$\lambda_{\Pi 1.\text{Hac}} = \lambda_{\Pi 1} - \Delta \lambda_{\Pi 1.\text{Hac}}; \qquad (8.37)$$

$$\lambda_{\Pi 2\zeta,\text{Hac}} = \lambda_{\Pi 2\zeta} - \Delta \lambda_{\Pi 2,\text{Hac}}. \qquad (8.38)$$

Коэффициенты проводимости дифференциального рассеяния при насыщении участков зубцов статора и ротора соответственно:

$$\lambda_{\rm gl. \rm Hac} = \lambda_{\rm gl} K_{\delta}; \qquad (8.39)$$

$$\lambda_{\rm g2. hac} = \lambda_{\rm g2} K_{\delta}. \tag{8.40}$$

Индуктивные сопротивления обмоток статора и ротора с учетом насыщения от полей рассеяния, Ом:

$$x_{1.\text{Hac}} = x_1 \frac{\lambda_{\pi 1.\text{Hac}} + \lambda_{\pi 1.\text{Hac}} + \lambda_{\pi 1}}{\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}}; \qquad (8.41)$$

$$x'_{2\zeta,\text{Hac}} = x'_2 \frac{\lambda_{\Pi 2 \zeta,\text{Hac}} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}}{\lambda_{\Pi 2} + \lambda_{\Lambda 2} + \lambda_{\Lambda 2}}.$$
(8.42)

Коэффициент c_1 в пусковом режиме АД с учётом насыщения:

$$c_{1\Pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\Pi}}.$$
 (8.43)

Находят активное $R_{\text{п.нас}}$ и реактивное $X_{\text{п.нас}}$ сопротивления правой ветви Г-образной схемы замещения АД (рис. 7.1) в пусковом режиме с учётом вытеснения тока и насыщения, Ом:

$$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}} r_{2\zeta}'}{s}; \qquad (8.44)$$

 $X_{\Pi,\text{hac}} = x_{1.\text{hac}} + c_{1\Pi,\text{hac}} x'_{2\zeta,\text{hac}} \,. \tag{8.45}$

Ток в обмотке ротора в пусковом режиме с учётом вытеснения тока и насыщения, А:

$$I'_{2\Pi,\text{Hac}} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\Pi,\text{Hac}}^2 + X_{\Pi,\text{Hac}}^2}}.$$
(8.46)

Ток статора с учётом вытеснения тока и насыщения, А:

$$I_{1\Pi,\text{Hac}} = I'_{2\Pi,\text{Hac}} \frac{\sqrt{R_{\Pi,\text{Hac}}^2 + (X_{\Pi,\text{Hac}} + x_{12\Pi})^2}}{c_{1\Pi,\text{Hac}} x_{12\Pi}} .$$
(8.47)

Кратность тока статора АД с учётом вытеснения тока и насыщения, о.е.:

$$I_{1\Pi}^* = \frac{I_{1\Pi.\text{Hac}}}{I_{1\text{HOM}}}.$$
(8.48)

Кратность пускового момента АД с учётом вытеснения тока и насыщения, о.е.:

$$M^{*} = \left(\frac{I'_{2\Pi,\text{Hac}}}{I'_{2\text{HOM}}}\right)^{2} K_{R} \frac{S_{\text{HOM}}}{s}.$$
 (8.49)

В завершение необходимо вычислить фактическое значение коэффициента насыщения $k'_{\rm Hac}$

$$k'_{\rm Hac} = \frac{I_{1\Pi,\rm Hac}}{I_{1\Pi}}$$
(8.50)

и сравнить полученный результат с коэффициентом насыщения $k_{\text{нас}}$, принятым перед началом расчёта.

Если $k'_{\text{нас}}$ отличается от $k_{\text{нас}}$ более чем на 10...15%, необходимо скорректировать значение $k_{\text{нас}}$ и повторить весь расчёт по формулам (8.29) – (8.50) для данного скольжения *s*.

Рассмотренный выше порядок расчёта пусковых характеристик АД с учётом насыщения необходимо оформить в виде формуляра (табл. 8.2).

Численный пример расчёта и построенные зависимости $M^* = f(s)$ и $I_{1\pi}^* = f(s)$ показаны в пункте 12 "Пример расчёта" данных методических указаний.

По построенным пусковым характеристикам необходимо графически уточнить значение критического скольжения $s_{\rm kp}$ и найти максимальный момент $M^*_{\rm max}$, соответствующий критическому скольжению, с учётом вытеснения тока и насыщения от полей рассеяния. Таблица 8.2. Расчётные выражения для построения пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока и насыщения от полей рассеяния

N⁰	Расчётная	Ед.	Скольжение s					
п/п	формула	ИЗМ.		S _{кр}				1,0
1	k _{hac}	_					7	
2	$E = 0.7 k_{\text{Hac}} I_{1\Pi} u_{\Pi}$	Α						
	$T_{\rm n.cp} = 0, 7 - a$							
	$\times \left(k'_{\beta} + k_{y} k_{\text{обм1}} \frac{Z_{1}}{Z_{2}} \right)$							
3	$F_{\text{II.cp}}$ 10^{-3}	Тл						
	$B_{\phi\delta} = \frac{1}{1,6\delta C_N} \cdot 10$							
4	$K_{\delta} = f(B_{\phi\delta})$	_						
5	$c_{31} = (t_{z1} - b_{III})(1 - K_{\delta})$	MM						
6	$\Delta \lambda = \frac{h_{\rm m1} + 0.58h_{\rm K}}{\kappa} \times$							
	$b_{\rm ml}$							
	$rac{c_{31}}{rac{31}}$		S. 1					
	$c_{31} + 1,5b_{m1}$							
7	$\lambda_{\pi 1.\text{Hac}} = \lambda_{\pi 1} - \Delta \lambda_{\pi 1.\text{Hac}}$	Þ						
8	$\lambda_{\rm d1. hac} = \lambda_{\rm d1} K_{\delta}$	- (
9	$x_{1.\text{Hac}} = x_1 \times$							
	$\lambda_{n1.\text{Hac}} + \lambda_{d1.\text{Hac}} + \lambda_{n1}$	Ом						
	$\hat{\lambda}_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}$							
10	$c_{32} = (t_{z2} - b_{iii2})(1 - K_{\delta})$	MM						
11	$h_{\rm III2} = \frac{h_{\rm III2} + h'_{\rm III2}}{\lambda}$							
	$b_{\rm III2. Hac}$ $b_{\rm III2}$	_						
	$\sim - c_{32}$							
	$b_{\text{III}2} + c_{32}$							
12	$\lambda_{\Pi 2\zeta.\text{Hac}} = \lambda_{\Pi 2\zeta} - \Delta \lambda_{\Pi 2.\text{Hac}}$	_						
13	$\lambda_{\rm d2. hac} = \lambda_{\rm d2} K_{\delta}$	_						

No	Расчётная	Ед.	Скольжение <i>s</i>			
п/п	формула	ИЗМ.		S _{кр}		1,0
14	$x'_{2\zeta,\text{Hac}} = x'_2 \times$					
	$\times \frac{\lambda_{{}_{\Pi 2 \zeta. {}_{Hac}}} + \lambda_{{}_{\Pi 2}. {}_{Hac}} + \lambda_{{}_{\Pi 2}}}{\lambda_{{}_{\Pi 2}} + \lambda_{{}_{\Pi 2}} + \lambda_{{}_{\Pi 2}}}$	Ом				
15	$c_{1 \pi. \text{Hac}} = 1 + \frac{x_{1. \text{Hac}}}{x_{12 \pi}}$	_			S	
16	$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}}r'_{2\zeta}}{s}$	Ом				
17	$X_{\Pi,\text{Hac}} = x_{1,\text{Hac}} + c_{\Pi,\text{Hac}} x'_{2\zeta,\text{Hac}}$	Ом				
18	$I'_{2\Pi,\text{Hac}} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\Pi,\text{Hac}}^{2} + X_{\Pi,\text{Hac}}^{2}}}$	A				
19	$I_{1\pi,\text{Hac}} = I'_{2\pi,\text{Hac}} \times \frac{\sqrt{R_{\pi,\text{Hac}}^{2} + (X_{\pi,\text{Hac}} + x_{12\pi})^{2}}}{\sqrt{R_{\pi,\text{Hac}}^{2} + (X_{\pi,\text{Hac}} + x_{12\pi})^{2}}}$	A				
20	С _{1п.нас} <i>х</i> _{12п}					
20	$k'_{\text{нас}} = \frac{I_{1 \text{п.нас}}}{I_{1 \text{п}}}$ (сравнить с					
	І-й строкой данной таб- лицы)					
21	$I_{1\pi}^* = \frac{I_{1\pi,\text{Hac}}}{I_{1\text{HOM}}}$	-				
22	$M^* = \left(\frac{I'_{2\Pi,\text{Hac}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{S_{\text{HOM}}}{S}$	_				
		70				

9. Тепловой расчёт

Основные теоретические сведения, касающиеся теплового расчёта, приведены в [1] на стр. 449-456.

В первую очередь находят электрические потери в пазовой части обмотки статора АД, Вт:

$$P'_{\text{sm1}} = k_{\rho} P_{\text{s1}} \frac{2l_1}{l_{\text{cp1}}},$$
(9.1)

где P_{31} – электрические потери мощности в обмотке статора в номинальном режиме (15-я строка в табл. 7.1, столбец для s_{HOM}), Вт;

k_ρ – коэффициент увеличения потерь, зависящий от класса нагревостойкости изоляции

• для класса $\mathbf{B} - k_{\rho} = 1,15$,

- для класса F $k_{0} = 1,07$,
- для класса H $k_{\rho} = 1,45$.

Вычисляют превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя, °*C*:

$$\Delta \vartheta_{\text{пов1}} = K \frac{P_{\Im\Pi1}' + P_{\text{ст.осн}}}{\pi D l_1 \alpha_1}, \qquad (9.2)$$

где K – коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду (табл. П.29);

 α_1 – коэффициент теплоотдачи с поверхности, $\frac{BT}{M^2 \cdot {}^\circ C}$ (рис. П.28 или П.29).

Расчетный периметр поперечного сечения полузакрытого трапецеидального паза статора (рис. П.13, *а* и рис. 2.1), м, находят по выражению:

$$\Pi_{\Pi_1} = 2h_{\Pi,\kappa} + b_1 + b_2. \tag{9.3}$$

Перепад температуры в изоляции пазовой части обмотки статора, °C:

$$\Delta \vartheta_{_{\rm H3,\Pi1}} = \frac{P_{_{\rm 3\Pi1}}'}{Z_1 \Pi_{_{\Pi1}} l_1} \left(\frac{b_{_{\rm H3}}}{\lambda_{_{_{\rm 3KB}}}} + \frac{b_1 + b_2}{16\lambda_{_{\rm 3KB}}'} \right) \cdot 10^{-3}, \qquad (9.4)$$

где $\lambda_{_{3KB}}$ – средняя эквивалентная теплопроводность пазовой изоляции, $\frac{BT}{M \cdot {}^{\circ}C}$ (для классов изоляции B, F и H $\lambda_{_{3KB}} = 0,16 \frac{BT}{M \cdot {}^{\circ}C}$); $\lambda'_{_{3KB}} = 1,3 \frac{BT}{M \cdot {}^{\circ}C}$ – среднее значение коэффициента теплопроводности внутренней изоляции катушки всыпной обмотки из эмалированных проводников с учетом неплотного прилегания проводников друг к другу, $\frac{BT}{M \cdot {}^{\circ}C}$ (принимают по рис. П.30 в зависимости от отношения параметров провода обмотки статора $\frac{d}{d_{_{H3}}}$).

Электрические потери в лобовых частях катушек обмотки статора, Вт:

$$P'_{\mathfrak{I}\mathfrak{I}\mathfrak{I}} = k_{\rho} P_{\mathfrak{I}\mathfrak{I}} \frac{2l_{\mathfrak{I}\mathfrak{I}}}{l_{\mathfrak{c}\mathfrak{P}\mathfrak{I}}}.$$
(9.5)

Перепад температуры по толщине изоляции лобовых частей обмотки статора, °*C*:

$$\Delta \Theta_{_{\rm H3,\Pi1}} = \frac{P_{_{\rm 3\Pi1}}'}{2Z_1 \Pi_{_{\Pi1}} l_{_{\Pi1}}} \left(\frac{b_{_{\rm H3,\Pi1}}}{\lambda_{_{\rm 3KB}}} + \frac{h_{_{\Pi1}}}{16\lambda_{_{\rm 3KB}}'} \right) \cdot 10^{-3}, \qquad (9.6)$$

где Π_{n1} – периметр условной поверхности охлаждения лобовой части одной катушки обмотки статора, м ($\Pi_{n1} \approx \Pi_{n1}$);

 $b_{_{\rm H3, 11}}$ – односторонняя толщина изоляции лобовой части катушки, м (при отсутствии изоляции в лобовых частях $b_{_{\rm H3, 11}} = 0$).
Превышение температуры наружной поверхности изоляции лобовых частей обмотки статора над температурой воздуха внутри машины, $^{\circ}C$:

$$\Delta \vartheta_{\text{пов.л1}} = K \frac{P_{\Im \Pi}'}{2\pi D l_{\text{выл1}} \alpha_1}.$$
(9.7)

Среднее превышение температуры обмотки статора над температурой воздуха внутри двигателя, °*C*:

$$\Delta \vartheta_{1}^{\prime} = \frac{\left(\Delta \vartheta_{\text{пов1}} + \Delta \vartheta_{\text{из.п1}}\right) 2l_{1} + \left(\Delta \vartheta_{\text{из.п1}} + \Delta \vartheta_{\text{пов.п1}}\right) 2l_{\text{л1}}}{l_{\text{cp1}}}.$$
 (9.8)

Эквивалентную поверхность охлаждения корпуса АД, м², определяют в зависимости от наличия на корпусе станины продольных рёбер:

• корпус с рёбрами (степень защиты машины IP44)

$$S_{\rm kop} = (\pi D_{\rm a} + 8\Pi_{\rm p}) (l_1 + 2l_{\rm BbIJ1}), \qquad (9.9)$$

где Π_p – условный периметр поперечного сечения ребер корпуса двигателя, м (определяют по рис. П.31 в зависимости от высоты оси вращения *h*);

• корпус без рёбер (степень защиты машины IP23)

$$S_{\rm kop} = \pi D_{\rm a} \ (l_1 + 2l_{\rm BLIT1}). \tag{9.10}$$

Сумма потерь, отводимых в воздух внутри двигателя, Вт, зависит от наличия внешнего вентилятора охлаждения:

• АД с внешним вентилятором (степень защиты двигателя IP44, система охлаждения IC0141)

$$\sum P'_{\rm B} = \sum P + (k_{\rm \rho} - 1)(P_{\rm 31} + P_{\rm 32}) - (1 - K)(P'_{\rm 311} + P_{\rm ct.och}) - 0.9P_{\rm Mex}, \quad (9.11)$$

где $\sum P$ – суммарные потери активной мощности АД в номинальном режиме (из табл. 7.1, 19-я строка, последний столбец для $s_{\text{ном}}$);

 $P_{_{92}}$ – электрические потери мощности в обмотке ротора АД в номинальном режиме (из табл. 7.1, 16-я строка, последний столбец для $s_{_{\rm HOM}}$);

• АД без внешнего вентилятора (степень защиты двигателя IP23, система охлаждения IC01)

$$\sum P'_{\rm B} = \sum P + (k_{\rho} - 1)(P_{\rm 31} + P_{\rm 32}) - (1 - K)(P'_{\rm 311} + P_{\rm ct.och}).$$
(9.12)

Превышение температуры воздуха внутри машины над температурой окружающей среды, °*C*, вычисляется по формуле:

$$\Delta \vartheta_{\rm B} = \frac{\sum P_{\rm B}'}{S_{\rm kop} \alpha_{\rm B}},\tag{9.13}$$

где $\alpha_{\rm B}$ – коэффициент подогрева воздуха, $\frac{{\rm Br}}{{\rm M}^2\cdot{}^{\circ}C}$ (рис. П.28 или П.29).

Основным результатом теплового расчёта является среднее превышение температуры обмотки статора над температурой окружающей среды, $^{\circ}C$:

$$\Delta \vartheta_1 = \Delta \vartheta'_1 + \Delta \vartheta_{\scriptscriptstyle \rm B} \,. \tag{9.14}$$

Полученное по (9.14) среднее превышение температуры $\Delta \vartheta_1$ не должно превышать допустимое для данного класса изоляции значение, которое определяется по табл. П.30.

Последним этапом теплового расчёта является оценка требуемого для охлаждения машины расхода воздуха, обеспечиваемого системой вентиляции.

Требуемый для охлаждения расход воздуха, $\frac{M^3}{c}$, в машинах со степенью защиты IP23 и системой охлаждения IC01:

$$Q_{\rm\scriptscriptstyle B} = \frac{\sum P_{\rm\scriptscriptstyle B}'}{1100\Delta \vartheta_{\rm\scriptscriptstyle B}'},\tag{9.15}$$

где $\Delta \vartheta'_{\rm B}$ – превышение температуры выходящего из двигателя воздуха над температурой входящего, °*C* (может быть принято $\Delta \vartheta'_{\rm B} = 2\Delta \vartheta_{\rm B}$).

Расход воздуха, фактически обеспечиваемый машиной со степенью защиты IP23 и системой охлаждения IC01, $\frac{M^3}{c}$:

$$Q'_{\rm B} = m' (n_{\rm K} b_{\rm K} + 0.1) \frac{n_1}{100} D_{\rm a}^2, \qquad (9.16)$$

где m' – коэффициент, значения которого зависят от числа полюсов машины (m' = 2,6 при 2p = 2, и m' = 3,15 при $2p \ge 4$).

При отсутствии радиальных вентиляционных каналов $n_{\rm k} = 0$.

Коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором, в машинах со степенью защиты IP44 и системой охлаждения IC0141:

$$k_m = m' \sqrt{\frac{n_1}{100}} D_{\rm a} , \qquad (9.17)$$

где коэффициент *m*' определяется исходя из следующих условий

- *m*′ = 2,6 для АД с 2*p* = 2 и *h* ≤132 мм;
- *m*′ = 3,3 для АД с 2*p* = 2 и *h* ≥160 мм;
- *m*′ = 1,8 для АД с 2*p* ≥ 4 и *h* ≤ 132 мм;
- *m*′ = 2,5 для АД с 2*p* ≥ 4 и *h* ≥160 мм.

Требуемый для охлаждения расход воздуха, $\frac{M^3}{c}$, в машинах со степенью защиты IP44 и системой охлаждения IC0141:

$$Q_{\rm B} = \frac{k_m \sum P_{\rm B}'}{1100\Delta \Theta_{\rm B}}.$$
(9.18)

Расход воздуха, фактически обеспечиваемый машиной со степенью защиты IP44 и системой охлаждения IC0141, $\frac{M^3}{c}$:

$$Q'_{\rm B} = 0.6D_{\rm a}^3 \frac{n_1}{100}.$$
 (9.19)

Фактически обеспечиваемый расход воздуха (формулы (9.16) и (9.19)) должен быть больше требуемого (формулы (9.15) и (9.18)), то есть должно выполняться условие:

$$Q'_{\rm\scriptscriptstyle B} > Q_{\rm\scriptscriptstyle B}$$
.

(9.20)

10. Графическая часть проекта

Графическая часть курсового проекта должна содержать 3 чертежа на листах формата А1:

• лист 1 "Сборочный чертёж АД в двух проекциях с продольным и поперечным разрезами";

• лист 2 "Схема обмотки статора АД";

• лист 3 "Чертёж заполнения пазов статора и ротора. Рабочие и пусковые характеристики АД".

На листе 1 необходимо изобразить в масштабе асинхронный двигатель, соответствующий варианту задания. Примеры АД в двух проекциях с продольным и поперечным разрезами показаны на рис. П.32 и П.33. На чертеже необходимо указать основные установочные размеры АД в соответствии с ГОСТ 31606-2012 (рис. П.34, табл. П.31).

На листе 2 нужно изобразить развертку обмотки двигателя в соответствии с её типом. Правила расчёта основных параметров обмоток и построения их развёрток с примерами даны в [3].

На листе 3 необходимо в подходящем масштабе изобразить в разрезе по 3-4 паза статора и ротора соответственно с указанием всех основных размеров пазов (рис. 2.1 и 3.2). Если в пазах присутствуют аксиальные вентиляционные каналы, их также нужно показать (рис. 4.1). На этом же листе нужно изобразить рассчитанные и построенные в п.7 и п.8 рабочие и пусковые характеристики.

Все чертежи необходимо выполнить в соответствии с правилами ЕСКД.

11. Варианты задания к курсовому проекту

Задание на курсовое проектирование содержит следующие основные исходные данные (табл. 11.1):

• номинальную мощность на валу двигателя P_2 , кВт;

• номинальные фазное/линейное напряжения (для всех проектируемых машин $U_{1\text{ном.}\phi}/U_{1\text{ном}} = 220/380$ В);

• число полюсов машины 2 р;

• конструктивное исполнение IM (для всех проектируемых машин исполнение IM1);

• исполнение по способу защиты ІР...;

• способ охлаждения ІС...;

• климатическое исполнение и категория размещения (для всех проектируемых машин исполнение УЗ);

• установочный размер (буква *S*, *L* или *M*);

• класс нагревостойкости изоляции (буква В, F или H).

T ~ 111	D				
	Капианты	запания к	KVDCOF	RUMA L	INOEKTV
140/14/4 11.1.	Dupnantbi	Задания к	κγρου	JUNIY I.	ipoenty

No	P_2 ,	2 <i>p</i>	IP	IC	Установочный	Класс
вар.	ҝ҅Вт				размер	нагревостойкости
1	1,5				М	В
2	2,2				M	F
3	7,5				M	Н
4	11		. 5.		М	В
5	15				S	F
6	18,5				М	Н
7	22	2	IP44	IC0141	S	В
8	30		6 Y		M	F
9	37				M	Н
10	45		r		L	В
11	55				M	F
12	75				S	Н
13	90				M	В
14	15				S	F
15	18,5				M	Н
16	22	2	IP23	IC01	S	B
17	30				M	F
18	37				M	Н

N⁰	P_2 ,	2 <i>p</i>	IP	IC	Установочный	Класс
вар.	кВт				размер	нагревостойкости
19	45				L	В
20	55	2	IP23	IC01	М	F
21	75				S	Н
22	90				M	В
23	1,1				М	F
24	1,5				М	Н
25	5,5				М	В
26	7,5				М	F
27	11				M	Н
28	15		10.4.4	100111	S	В
29	18,5	4	IP44	IP44 IC0141	М	F
30	22				S	Н
31	30				M	В
32	37				М	F
33	45				L	Н
34	55				M	В
35	75				S	F
36	90				M	Н
37	15				S	В
38	18,5				M	F
39	22				S	Н
40	30				M	В
41	37	4	IP23	IC01	M	F
42	45				L	Н
43	55				M	В
44	75				S	F
45	90				M	Н
46	0,75		\sim		M	В
47	1,1				M	F
48	3				M	H
49	4				M	В
50	5,5				M	F
51	7,5				M	Н
52	11	6	IP44	IC0141	S	В
53	15				M	F
54	18,5				M	Н
55	22				M	В
56	30				L	F
57	37				M	Н

	P_2 ,	2 <i>p</i>	IP	IC	Установочный	Класс
вар.	кВт				размер	нагревостоикост
58	45	-			S	В
59	55				M	F
60	11	-			S	Н
61	15	-			<u> </u>	B
62	18,5		1000	1001	<u> </u>	F
63	22	6	IP23	IC01	<u> </u>	H
64	30	-			L	B
65	37	-			<u> </u>	F
66	45	-			S	H
67	55				<u> </u>	B
68	0,55	-			<u> </u>	<u> </u>
<u>69</u>	2,2	-		100141	M	H
70	3	-	ID44		M	B
71	4	-			M	<u> </u>
72	5,5	-			<u> </u>	H
72	7,5	0			S	B
74	11	8	1P44	100141	M	F
75	15	-			M	H
76	18,5	-			<u> </u>	B
77	22	-			L	<u> </u>
<u> </u>	30	-			<u> </u>	H
<u> </u>	37	-			<u> </u>	B
80	45				<u>M</u>	F
81	7,5	-	. 6.		<u> </u>	H
82	11	-			<u>M</u>	B
83	15		1022	IC01	<u>M</u>	<u> </u>
84	18,5	8	IP23	ICUI	<u>M</u>	H
85	22		KY I			B
86	30				<u>M</u>	<u> </u>
87	37		2		<u> </u>	H
88	45				M	F

12. Пример расчёта

Задание

Разработать проект трёхфазного асинхронного электродвигателя с короткозамкнутым ротором со следующими основными параметрами в качестве исходных данных:

- номинальная мощность на валу: $P_2 = 30 \,\mathrm{kBt}$;
- номинальные напряжения: $U_{1\text{ном.}\phi}/U_{1\text{ном}} = 220/380\text{ B};$
- число полюсов: 2p = 4;
- конструктивное исполнение: IM1;
- исполнение по способу защиты: IP44;
- способ охлаждения IC0141;
- климатическое исполнение и категория размещения: УЗ;
- установочный размер: *S*;
- класс нагревостойкости изоляции: *F*.

Определение главных размеров электродвигателя

1. Предварительное значение высоты оси вращения (рис. П.1, a): h = 175 мм = 0,175 м.

Принимаем ближайшее стандартное значение:

h = 180 MM = 0,18 M.

Тогда по табл. П.1 принимаем значение внешнего диаметра статора АД: $D_a = 320 \text{ мм} = 0,32 \text{ м}.$

2. Коэффициент K_D по табл. П.2:

 $K_D = 0,67.$

3. Внутренний диаметр статора:

 $D = K_D D_a = 0.67 \cdot 0.32 \text{ MM} = 0.214 \text{ M}.$

4. Полюсное деление:

$$\tau = \frac{\pi D}{2p} = \frac{3,14 \cdot 0,214}{4} = 0,168 \,\mathrm{M}\,.$$

5. Коэффициент k_E по рис. П.2, η и соs ϕ по рис. П.3, *a*: $k_E = 0.977$; $\eta = 0.93$; *cos* $\phi = 0.92$.

6. Расчетная мощность:

$$P' = P_2 \frac{k_E}{\eta \cos \varphi} = 30 \cdot 10^3 \cdot \frac{0.977}{0.93 \cdot 0.92} = 34257 \text{ B} \cdot \text{A}.$$

7. Электромагнитные нагрузки (предварительные значения по рис. П.5, б):

 $B_{\delta} = 0,77 \,\mathrm{Tr}; A = 35 \cdot 10^3 \,\mathrm{A/M}.$

8. Для двигателей с высотами оси вращения 180 мм (как в данном примере) и выше обмотки статора, как правило, выполняются двухслойными. Поэтому значение обмоточного коэффициента примем на основе рекомендаций на стр. 5 (предварительное значение для двухслойной обмотки):

 $k_{\text{обм1}} = 0,92$.

9. Предварительные значения коэффициентов a_{δ} и $k_{\rm B}$ по (1.4): $a_{\delta} = 0.64$; $k_{\rm B} = 1.11$. 10. Синхронная частота вращения АД *n*₁: $n_1 = \frac{60f_1}{n} = \frac{60 \cdot 50}{2} = 1500$ об/мин ($f_1 = 50$ Гц). 11. Синхронная угловая частота АД ω: $\omega = 2\pi \frac{n_1}{60} = 2 \cdot 3,14 \cdot \frac{1500}{60} = 157 \text{ pag/c}.$ 12. Расчетная длина магнитопровода: $l_{\delta} = \frac{P'}{D^2 \omega k_{\rm n} k_{\rm of stat} AB_{\delta}} = \frac{34257}{0.214^2 \cdot 157 \cdot 1.11 \cdot 0.92 \cdot 35 \cdot 10^3 \cdot 0.77} = 0.173 \,\mathrm{M} \approx 0.17 \,\mathrm{M}.$

13. Определим правильность выбора главных размеров D и l_{δ} по выражению:

$$\lambda = \frac{l_{\delta}}{\tau} = \frac{0.17}{0.168} = 1.01.$$

Данное значение лежит в допустимых пределах для АД принятого исполнения IP44 (рис. П.8).

Расчёт обмотки, паза и ярма статора

14. Предельные значения зубцового деления t_{z1} (по рис. П.9): $t_{z1\min} = 12,3 \text{ mm}; t_{z1\max} = 15,8 \text{ mm}.$ 15. Предельные значения числа пазов Z₁ статора: $Z_{1min} = \frac{\pi D}{t} = \frac{3,14 \cdot 0,214}{0.0158} \approx 43;$

$$-\frac{1}{t_{z1max}}$$
 - 0,0158

$$Z_{1max} = \frac{\pi D}{t_{z1min}} = \frac{3,14 \cdot 0,214}{0,0123} \approx 54.$$

16. С учётом рекомендаций на стр. 9 окончательно принимаем число пазов:

 $Z_1 = 48$.

Тогда принятое число пазов $Z_1 = 48$ будет кратно числу фаз m_1 АД ($m_1 = 3$), а число пазов на полюс и фазу q_1 будет целым числом:

$$\frac{Z_1}{m_1} = \frac{48}{3} = 16;$$

$$q_1 = \frac{Z_1}{2pm_1} = \frac{48}{4 \cdot 3} = 4.$$

Обмотка статора – двухслойная.

17. Окончательное значение зубцового деления обмотки статора:

$$t_{z1} = \frac{\pi D}{2pm_1q_1} = \frac{3,14 \cdot 0,214}{4 \cdot 3 \cdot 4} = 14,0 \cdot 10^{-3} \text{ M} = 14 \text{ MM}.$$

18. Номинальный ток обмотки статора АД:

$$I_{1\text{HOM}} = \frac{P_2}{m_1 U_{1\text{HOM},\phi} \eta \cos\phi} = \frac{30 \cdot 10^3}{3 \cdot 220 \cdot 0.93 \cdot 0.92} = 53.1 \text{ A}.$$

18. Число эффективных проводников в пазу (предварительное значение при условии, что число параллельных ветвей обмотки *a*=1 (параллельные ветви отсутствуют):

$$u'_{\rm m} = \frac{\pi D A}{I_{\rm 1HOM} Z_1} = \frac{3,14 \cdot 0,214 \cdot 35 \cdot 10^3}{53,1 \cdot 48} = 9,2.$$

19. Согласно рекомендациям на стр. 10 и 11, принимаем число параллельных ветвей *а*:

a = 2.

Тогда фактическое число эффективных проводников в пазу $u_{\rm n}$ при a=2 (в нашем случае обмотка двухслойная):

$$u_{\rm m} = a \, u'_{\rm m} = 2 \cdot 9, 2 = 18, 4 \approx 18.$$

Таким образом, $u_{\rm n} = 18$ проводников.

20. Число витков в фазе обмотки статора:

$$w_1 = \frac{u_{\pi} Z_1}{2am_1} = \frac{18 \cdot 48}{2 \cdot 2 \cdot 3} = 72.$$

21. Линейная нагрузка:

$$A = \frac{2I_{1\text{HOM}}w_1m_1}{\pi D} = \frac{2 \cdot 53, 1 \cdot 72 \cdot 3}{3, 14 \cdot 0, 214} = 34, 1 \cdot 10^3 \text{ A/m}.$$

Значение А находится в допустимых пределах (рис. П.5).

22. Для двухслойных обмоток коэффициент укорочения $k_y < 1$. Определим расчётное укорочение шага обмотки:

$$\beta = \frac{2}{3} \cdot \frac{q_1 + 1}{q_1} = \frac{2}{3} \cdot \frac{4 + 1}{4} = 0,83.$$

Тогда для 1-й гармоники по рис. П.10 определим значение коэффициента укорочения:

 $k_{\rm y} = 0,97$.

23. Коэффициент распределения k_p определим по табл. П.4 (для 1-й гармоники) в зависимости от q_1 :

 $k_{\rm p} = 0.958$.

24. Уточнённое значение обмоточного коэффициента: $k_{\text{обм1}} = k_{\text{p}} k_{\text{y}} = 0,958 \cdot 0,97 = 0,929$.

25. Магнитный поток:

$$\Phi = \frac{k_E U_{1\text{HOM},\Phi}}{4k_{\text{B}} w_1 k_{\text{o}6\text{M}1} f_1} = \frac{0,977 \cdot 220}{4 \cdot 1,11 \cdot 72 \cdot 0,929 \cdot 50} = 14,5 \cdot 10^{-3} \,\text{B6}\,.$$

26. Индукция магнитного поля в воздушном зазоре:

$$B_{\delta} = \frac{p\Phi}{Dl_{\delta}} = \frac{2 \cdot 14, 5 \cdot 10^{-3}}{0,214 \cdot 0,17} = 0,797 \text{ Tл}.$$

Полученное значение B_{δ} выходит за пределы рекомендуемой области (рис. П.5) менее, чем на 5%, что допустимо (стр. 12).

27. Значение произведения линейной нагрузки на плотность тока *АJ* найдём по рис. П.11:

 $AJ = 185 \cdot 10^9 \text{ A}^2 / \text{m}^3$.

28. Плотность тока в обмотке статора (предварительное значение):

$$J_1 = \frac{AJ}{A} = \frac{185 \cdot 10^9}{34,1 \cdot 10^3} = 5,42 \cdot 10^6 \text{ A}/\text{m}^2 = 5,42 \text{ A}/\text{mm}^2.$$

29. Площадь поперечного сечения эффективного проводника (предварительное значение):

$$q_{\mathrm{b}\phi} = \frac{I_{\mathrm{1HOM}}}{aJ_1} = \frac{53.1}{2 \cdot 5.42 \cdot 10^6} = 4.9 \cdot 10^{-6} \,\mathrm{m}^2 = 4.9 \,\mathrm{mm}^2.$$

При таком сечении диаметр эффективного проводника будет равен:

$$d_{\rm np} = \sqrt{\frac{4q_{\rm sp}}{\pi}} = \sqrt{\frac{4\cdot 4.9}{3.14}} = 2.5\,{\rm mm}\,,$$

что превышает рекомендованные значения (стр. 13).

30. В качестве обмоточного провода принимаем круглый медный изолированный провод марки ПЭТВ сечением $q_{_{3Л}} = 1,227 \text{ мm}^2$ и диаметром $d_{_{3Л}} = 1,25 \text{ мm}$ (табл. П.6). Диаметр провода с учётом изоляции $d_{_{H3}} = 1,33 \text{ мm}$.

С учётом рекомендаций на стр. 13 и 14, принимаем число элементарных проводников $n_{_{3Л}} = 4$. Тогда уточнённое значение площади поперечного сечения эффективного проводника:

 $q_{\mathrm{s}\phi} = q_{\mathrm{s}\pi} n_{\mathrm{s}\pi} = 1,227 \cdot 4 = 4,91 \,\mathrm{Mm}^2.$

31. Плотность тока в обмотке статора (уточнённое значение):

$$J_1 = \frac{I_{1\text{HOM}}}{a \, q_{\text{D}\pi} \, n_{\text{D}\pi}} = \frac{53,1}{2 \cdot 1,227 \cdot 4} = 5,41 \,\text{A} \,/\,\text{MM}^2.$$

32. Всыпную обмотку статора с круглым обмоточным проводом будем укладывать в пазы трапецеидальной формы (рис. П.13, *a*).

33. Длина стали сердечника статора l_{CT1} (стр. 6) и коэффициент заполнения сталью магнитопровода статора k_{C1} (табл. П.8):

$$l_{\rm CT1} = l_{\delta} = 0,17 \,\rm m$$
;

$$k_{\rm C1} = 0,97$$
.

34. По табл. П.7 предварительно принимаем значения:

• магнитной индукции в зубцах статора при постоянном сечении $B_{7,1} = 1,9$ Тл;

• магнитной индукции в ярме статора $B_{\rm a} = 1,6\,{\rm Tr}$.

35. Ширина зубца статора (предварительное значение):

$$b_{Z1} = \frac{B_{\delta} t_{z1} l_{\delta}}{B_{Z1} l_{CT1} k_{C1}} = \frac{0.797 \cdot 140 \cdot 10^{-3} \cdot 0.17}{1.9 \cdot 0.17 \cdot 0.97} = 6005 \cdot 10^{-3} \text{ m} = 6005 \text{ mm}.$$

36. Высота ярма статора:

$$h_{\rm a} = \frac{\Phi}{2 B_{\rm a} l_{\rm CT1} k_{\rm C1}} = \frac{14,5 \cdot 10^{-3}}{2 \cdot 1,6 \cdot 0,17 \cdot 0,97} = 27,5 \cdot 10^{-3} \,\mathrm{m} = 27,5 \,\mathrm{mm} \,\mathrm{.}$$

37. Размеры паза в штампе определим с учётом приведённых на стр. 15 и 16 рекомендаций и рассчитаем по соответствующим выражениям (рис. 2.1):

- ширина шлица паза $b_{\rm m1}$ = 3,7 мм (табл. П.10);
- высота шлица паза *h*_{ш1} = 1,0 мм (стр. 15);
- угол наклона грани клиновой части паза β_к = 45° (стр. 15);
- высота паза

$$h_{\rm n1} = \frac{D_{\rm a} - D}{2} - h_{\rm a} = \frac{0.32 - 0.214}{2} - 0.0275 = 0.0255 \,\mathrm{m} = 25.5 \,\mathrm{mm};$$

• меньшая ширина паза

$$b_1 = \frac{\pi (D + 2h_{\text{m1}} - b_{\text{m1}}) - Z_1 b_{Z1}}{Z_1 - \pi} = \frac{3.14 \cdot (214 + 2 \cdot 1 - 3.7) - 48 \cdot 6.05}{48 - 3.14} = 8.4 \text{ MM};$$

$$b_2 = \frac{\pi (D + 2h_{\pi 1})}{Z_1} - b_{Z1} = \frac{3.14 \cdot (214 + 2 \cdot 25.5)}{48} - 6.05 = 11.3 \,\mathrm{Mm};$$

• высота клиновой части паза

$$h_{\rm k} = \frac{b_1 - b_{\rm iii}}{2} = \frac{8, 4 - 3, 7}{2} = 2,35 \,\rm mm$$
;

• высота паза без учёта высоты клиновой части и высоты шлица

$$h_{\text{II.K}} = h_{\text{III}} - \left(h_{\text{IIII}} + \frac{b_1 - b_{\text{IIII}}}{2}\right) = 25,5 - \left(1,0 + \frac{8,4 - 3,7}{2}\right) = 22,2 \text{ MM}.$$

38. Припуски на сборку по ширине Δb_{n1} и высоте Δh_{n1} паза (табл. П.9):

 $\Delta b_{\pi 1} = 0,2 \text{ mm}; \ \Delta h_{\pi 1} = 0,2 \text{ mm}.$

39. Размеры паза "в свету":

• высота паза

 $h'_{\Pi 1} = h_{\Pi 1} - \Delta h_{\Pi 1} = 25, 5 - 0, 2 = 25, 3 \text{ mm};$

• высота паза без учёта высоты клиновой части и высоты шлица $h'_{\text{п.к}} = h_{\text{п.к}} - \Delta h_{\text{п1}} = 22, 2 - 0, 2 = 22, 0$ мм;

• меньшая ширина паза

 $b_1' = b_1 - \Delta b_{\pi 1} = 8, 4 - 0, 2 = 8, 2 \text{ mm};$

• большая ширина паза

 $b_2' = b_2 - \Delta b_{II} = 11,3 - 0,2 = 11,1$ мм.

39. Односторонняя толщина изоляции в пазу (табл. П.11):

 $b_{_{\rm H3}} = 0,4\,{
m mm}$;

40. Площадь, занимаемая корпусной изоляцией в пазу:

 $S_{\mu_3} = b_{\mu_3}(2h_{\mu_1} + b_1 + b_2) = 0,4 \cdot (2 \cdot 25,5 + 8,4 + 11,3) = 28,3 \text{ mm}^2.$

41. Площадь, занимаемая прокладками в пазу для двухслойной обмотки:

$$S_{\text{пр}} = (0,9b_1 + 0,4b_2) = (0,9 \cdot 8,4 + 0,4 \cdot 11,3) = 12,1 \text{ MM}^2$$

42. Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки:

$$S'_{\rm m} = \frac{b'_1 + b'_2}{2} h'_{\rm m.k} - \left(S_{\rm m3} + S_{\rm mp}\right) = \frac{8,2 + 11,1}{2} 22 - \left(28,3 + 12,1\right) = 171,9 \text{ mm}^2.$$

43. Коэффициент заполнения паза статора:

 $k_{_{3}} = \frac{d_{_{\mu_{3}}}^{2}u_{_{\Pi}}n_{_{\Im\Pi}}}{S'_{_{\Pi}}} = \frac{1,33^{2} \cdot 18 \cdot 4}{171,9} = 0,74$, что является допустимым зна-

чением (стр. 18) и говорит о том, что расчёт обмотки статора и выбор главных размеров АД были выполнены верно.

44. Уточняем среднее значение ширины зубца статора b_{Z1} , приняв его в качестве расчётного:

$$b'_{Z1} = \pi \frac{D + 2(h_{\text{m1}} + h_{\text{k}})}{Z_1} - b_1 = 3,14 \cdot \frac{214 + 2 \cdot (1,0 + 2,35)}{48} - 8,4 = 6,05 \text{ mm};$$

$$b''_{Z1} = \pi \frac{D + 2h_{\text{m1}}}{Z_1} - b_2 = 3,14 \cdot \frac{214 + 2 \cdot 25,5}{48} - 11,3 = 6,05 \text{ mm}.$$

Значения $b'_{Z1} = b''_{Z1}$, поэтому $b_{Z1} = b'_{Z1} = b''_{Z1} = 6,05 \,\mathrm{MM}$.

45. Пользуясь рекомендациями на стр. 19 и рисунком П.14 определим величину воздушного зазора между статором и ротором АД:

 $\delta = 0,6 \, \text{mm}$.

Расчёт обмотки, паза и ярма ротора

46. Число пазов ротора (по табл. П.12): $Z_2 = 38$. 47. Внешний диаметр ротора: $D_2 = D - 2\delta = 0,214 - 2 \cdot 0,6 \cdot 10^{-3} = 0,2128 \text{ м} = 212,8 \text{ мм}$. 48. Длина сердечника ротора (стр. 7-8): $l_2 = l_{\text{СТ2}} = l_{\text{СТ1}} = l_{\delta} = 0,17 \text{ м}$; 49. Зубцовое деление ротора: $t_{z2} = \frac{\pi D_2}{Z_2} = \frac{3,14 \cdot 0,2128}{38} = 0,0176 \text{ м} = 17,6 \text{ мм}$.

50. Сердечник ротора двигателя выполнен с непосредственной посадкой на вал (стр. 20-21), поэтому внутренний диаметр сердечника ротора определим по выражению:

 $D_{i} = D_{\rm B} = k_{\rm B} D_{\rm a} = 0.23 \cdot 0.32 = 0.0736 \,\,\mathrm{M} \approx 74 \,\mathrm{MM}\,,$

где $D_{\rm B}$ – диаметр вала;

 $k_{\rm B} = 0,23$ – коэффициент, выбранный по табл. П.13.

51. Коэффициент k_i , учитывающий влияние тока намагничивания на отношение токов $\frac{I_1}{I_2}$ (предварительное значение):

$$k_i = 0.2 + 0.8 \cos \varphi = 0.2 + 0.8 \cdot 0.92 = 0.936$$
.

52. Высота оси АД 180 мм, поэтому ротор можно выполнить без скоса пазов (стр. 20-22). Тогда коэффициент скоса пазов $k_{ck} = 1$.

53. Коэффициент приведения токов:

$$v_i = \frac{2m_1w_1k_{\text{обм1}}}{Z_2k_{\text{ск}}} = \frac{2\cdot 3\cdot 72\cdot 0,929}{38\cdot 1} = 10,56.$$

54. Ток в обмотке ротора (предварительное значение):

 $I_2 = k_i I_{1\text{HOM}} v_i = 0.936 \cdot 53.1 \cdot 10.56 = 524.8 \text{ A}.$

55. В качестве обмотки ротора принимаем литую конструкцию с алюминиевыми стержнями и короткозамкнутыми кольцами (стр. 20).

Задаёмся плотностью тока в алюминиевых стержнях ротора (стр. 22):

 $J_2 = 2,7 \cdot 10^6 \text{ A/m}^2$.

56. Площадь поперечного сечения стержня (предварительное значение):

$$q_{\rm c} = \frac{I_2}{J_2} = \frac{524.8}{2.7 \cdot 10^6} = 194.4 \cdot 10^{-6} \,{\rm m}^2 = 194.4 \,{\rm mm}^2.$$

57. В данном двигателе применяются трапецеидальные закрытые пазы (рис. 3.2, стр. 23). Принимаем:

• ширина шлица паза *b*_{ш2} = 1,5 мм (стр. 23);

• высота шлица паза *h*_{ш2} = 0,7 мм (стр. 23);

• высота перемычки над пазом $h'_{m2} = 0,3$ мм (стр. 24).

По табл. П.7 принимаем значение магнитной индукции в зубцах ротора при постоянном сечении $B_{72} = 1,8$ Тл.

58. Допустимая ширина зубца ротора:

$$b_{Z2,\pi} = \frac{B_{\delta} t_{z2} l_{\delta}}{B_{Z2} l_{CT2} k_{C2}} = \frac{0,797 \cdot 17,6 \cdot 10^{-3} \cdot 0,17}{1,8 \cdot 0,17 \cdot 0,97} = 8,03 \cdot 10^{-3} \text{ M} = 8,03 \text{ MM},$$

где $k_{C2} = 0.97$ – коэффициент заполнения сталью магнитопровода ротора (табл. П.8).

59. Размеры паза ротора:

• диаметр закругления верхней части паза

$$b_{1} = \frac{\pi (D_{2} - 2h_{\text{m2}} - 2h'_{\text{m2}}) - Z_{2}b_{\text{Z2.A}}}{Z_{2} + \pi} = \frac{3.14 \cdot (212.8 - 2 \cdot 0.7 - 2 \cdot 0.3) - 38 \cdot 8.03}{38 + 3.14} = 8.67 \text{ MM};$$

• диаметр закругления нижней части паза

$$b_2 = \sqrt{\frac{b_1^2 \left(\frac{Z_2}{\pi} + \frac{\pi}{2}\right) - 4q_c}{\frac{Z_2}{\pi} + \frac{\pi}{2}}} = \sqrt{\frac{8,67^2 \cdot \left(\frac{38}{3,14} + \frac{3,14}{2}\right) - 4 \cdot 194,4}{\frac{38}{3,14} + \frac{3,14}{2}}} = 4,28 \text{ MM};$$

• расстояние между центрами закруглений верхней и нижней частей паза

$$h_1 = (b_1 - b_2) \frac{Z_2}{2\pi} = (8,67 - 4,28) \cdot \frac{38}{2 \cdot 3,14} = 26,56 \text{ MM} \cdot \frac{38}{2 \cdot 3,14} =$$

60. Округлим до десятых и примем окончательные значения b_1 , b_2 и h_1 :

 $b_1 = 8,7$ мм; $b_2 = 4,3$ мм (рекомендации на стр. 24); $h_1 = 26,6$ мм. 61. Полная высота паза ротора по (3.18): $h_{n2} = h_1 + h_{m2} + h'_{m2} + \frac{b_1}{2} + \frac{b_2}{2} = 26,6 + 0,7 + 0,3 + \frac{8,7}{2} + \frac{4,3}{2} = 34,1$ мм.

62. Уточняем ширину зубцов ротора:

$$b'_{Z2} = \pi \frac{D_2 - 2(h_{\rm m} + h'_{\rm m}) - b_1}{Z_2} - b_1 = 3,14 \cdot \frac{212,8 - 2 \cdot (0,7 + 0,3) - 8,7}{38} - 8,7 = 8,0 \,\rm{mm};$$

$$b''_{Z2} = \pi \frac{D_2 - 2h_{\rm m2} + b_2}{Z_2} - b_2 = 3,14 \cdot \frac{212,8 - 2 \cdot 34,1 + 4,3}{38} - 4,3 = 8,0 \,\rm{mm}.$$

63. Уточнённое значение ширины зубца ротора: $b_{Z2} = b'_{Z2} = b'_{Z2} = 8,0$ мм.

64. Уточнённое значение площади поперечного сечения стержня:

$$q_{c} = \frac{\pi}{8} (b_{1}^{2} + b_{2}^{2}) + \frac{1}{2} (b_{1} + b_{2}) h_{1} = \frac{3.14}{8} \cdot (8.7^{2} + 4.3^{2}) + \frac{1}{2} \cdot (8.7 + 4.3) \cdot 26.6 = 209.9 \text{ MM}^{2}$$

65. Плотность тока в стержне ротора (уточнённое значение):

$$J_2 = \frac{I_2}{q_c} = \frac{524.8}{209.9} = 2.5 \cdot 10^6 \text{ A/m}^2.$$

66. Коэффициент Δ для расчёта тока короткозамкнутого кольца:

$$\Delta = 2\sin\frac{\pi p}{Z_2} = 2 \cdot \sin\frac{3,14 \cdot 2}{38} = 0,329$$

67. Ток короткозамкнутого кольца ротора:

$$I_{\rm KJI} = \frac{I_2}{\Delta} = \frac{524,8}{0,329} = 1595,1 \,\mathrm{A}\,.$$

68. Плотность тока в короткозамкнутых кольцах принимаем согласно рекомендациям на стр. 27:

$$J_{\rm KJI} = 0.85 J_2 = 0.85 \cdot 2.5 \cdot 10^6 = 2.13 \cdot 10^6 \,\text{A/m}^2$$

69. Площадь поперечного сечения короткозамкнутого кольца:

$$q_{\rm km} = \frac{I_{\rm km}}{J_{\rm km}} = \frac{1595.1}{2.13 \cdot 10^6} = 748.9 \cdot 10^{-6} \,\mathrm{m}^2 = 748.9 \,\mathrm{mm}^2.$$

69. Размеры короткозамкнутых колец (рис. 3.3):

• высота кольца по (3.24)

$$h_{\rm km} = 1,2h_{\rm m2} = 1,2 \cdot 34,1 = 40,9 \,\rm mm$$
;

• ширина кольца

$$b_{\rm kn} = \frac{q_{\rm kn}}{h_{\rm kn}} = \frac{748,9}{40,9} = 18,3 \,\rm mm$$
;

• средний диаметр кольца

$$D_{\rm kjl,cd} = D_2 - h_{\rm kjl} = 212,8 - 40,9 = 171,9 \,\mathrm{mm}$$
.

70. Расчётное уточнённое значение площади поперечного сечения короткозамкнутого кольца:

$$q_{\rm km} = b_{\rm km} h_{\rm km} = 18,3 \cdot 40,9 = 748,5 \,\,{\rm mm}^2 \approx 748 \,\,{\rm mm}^2$$
.

Расчёт магнитной цепи асинхронной машины

71. Марку стали магнитопровода принимаем согласно рекомендациям таблицы П.14: сталь марки 2013.

72. Коэффициент γ₁ для расчёта магнитного напряжения воздушного зазора:

$$\gamma_1 = \frac{\left(\frac{b_{\text{m}1}}{\delta}\right)^2}{5 + \frac{b_{\text{m}1}}{\delta}} = \frac{\left(\frac{3.7}{0.6}\right)^2}{5 + \frac{3.7}{0.6}} = 3.4.$$

73. Коэффициент k_{δ} для расчёта магнитного напряжения воздушного зазора:

$$k_{\delta} = \frac{t_{z1}}{t_{z1} - \gamma_1 \delta} = \frac{14}{14 - 3.4 \cdot 0.6} = 1.17$$

74. Магнитное напряжение воздушного зазора:

$$F_{\delta} = \frac{2}{\mu_0} B_{\delta} \delta k_{\delta} = \frac{2}{12,56 \cdot 10^{-7}} \cdot 0,797 \cdot 0,6 \cdot 10^{-3} \cdot 1,17 = 890,9 \text{ A},$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м = $4 \cdot 3,14 \cdot 10^{-7}$ Гн/м = $12,56 \cdot 10^{-7}$ Гн/м – магнитная проницаемость (стр. 28).

 $h_{\rm Z1} = h_{\rm m1} = 25,5 \,\mathrm{MM} = 25,5 \cdot 10^{-3} \,\mathrm{M}$.

76. Расчётная индукция в зубцах статора:

$$B'_{Z1} = \frac{B_{\delta} t_{z1} l_{\delta}}{b_{Z1} l_{CT1} k_{C1}} = \frac{0.797 \cdot 14.0 \cdot 0.17}{6.05 \cdot 0.17 \cdot 0.97} = 1.901 \,\mathrm{Tr}\,.$$

76. Так как расчётная индукция $B'_{Z1} = 1,901$ Тл > 1,8 Тл, необходимо учесть ответвление потока в паз и найти действительную индукцию в зубце статора B_{Z1} (рекомендации на стр. 29-30). Для этого:

• найдём коэффициент, определяющий отношение площадей поперечных сечений паза и зубца на высоте *h*_{Z1}

$$k_{\pi 1} = \frac{b_{\pi 1} l_{\delta}}{b_{Z1} l_{CT1} k_{C1}} = \frac{9,85 \cdot 0,17}{6,05 \cdot 0,17 \cdot 0,97} = 1,68,$$

где $b_{\pi 1} = \frac{b_1 + b_2}{2} = \frac{8,4 + 11,3}{2} = 9,85$ мм – средняя ширина паза статора

• зададимся значением действительной индукции $B_{Z1} = 1,9$ Тл и определим по табл. П.1.7 напряженность магнитного поля в сечении зубца статора

 $H_{\rm Z1} = 2070 \, {\rm A/m};$

• проверим выполнение условия $B_{71} = B'_{71} - \mu_0 H_{71} k_{-1}$.

или
$$1,9 = 1,901 - 12,56 \cdot 10^{-7} \cdot 2070 \cdot 1,68$$
,

или 1,9 =1,9, то есть условие выполняется.

Таким образом:

 $B_{\rm Z1} = 1,9 \,\,{\rm Tr}$,

 $H_{\rm Z1} = 2070 \text{ A/m}$.

77. Магнитное напряжение зубцовой зоны статора:

 $F_{Z1} = 2h_{Z1}H_{Z1} = 2 \cdot 25, 5 \cdot 10^{-3} \cdot 2070 = 105, 6 \text{ A}.$

78. Расчётная высота зубца ротора по (4.10):

 $h_{Z2} = h_{\Pi 2} - 0.1b_2 = 34.1 - 0.1 \cdot 4.3 = 33.7 \cdot 10^{-3} \text{ m} = 33.7 \text{ mm}.$

79. Расчётная индукция в зубцах ротора:

 $B'_{Z2} = \frac{B_{\delta} t_{z2} l_{\delta}}{b_{Z2} l_{CT2} k_{C2}} = \frac{0,797 \cdot 17,6 \cdot 0,17}{8,0 \cdot 0,17 \cdot 0,97} = 1,81 \text{ Tл}.$

Значение индукции фактически близко к 1,8Тл, поэтому учёт ответвления потока в паз не требуется (стр. 30). Тогда:

 $B_{Z2} = B'_{Z2} = 1,81$ Тл.

80. Напряженность магнитного поля в сечении зубца ротора (табл. П.1.7):

 $H_{\rm Z2} = 1570 \text{ A/m}.$

81. Магнитное напряжение зубцовой зоны ротора:

 $F_{Z2} = 2h_{Z2}H_{Z2} = 2 \cdot 33,7 \cdot 10^{-3} \cdot 1570 = 105,8 \text{ A}.$

82. Коэффициент насыщения зубцовой зоны:

$$k_Z = 1 + \frac{F_{Z1} + F_{Z2}}{F_{\delta}} = 1 + \frac{105, 6 + 105, 8}{890, 9} = 1,24.$$

Значение коэффициента насыщения зубцовой зоны k_Z находится в пределах от 1,2 до 1,6, что предварительно говорит о правильности выбранных размерных соотношений и обмоточных данных АД (стр. 31).

83. Длина средней силовой линии магнитного поля в ярме статора:

$$L_{\rm a} = \pi \frac{D_{\rm a} - h_{\rm a}}{2p} = 3,14 \cdot \frac{0,32 - 0,0275}{4} = 0,23 \text{ M}.$$

84. Проектируемый АД имеет длину сердечника статора $l_{CT1} = 0,17 \text{ м} < 300 \text{ мм}$, поэтому вентиляционные каналы в статоре отсутствуют (стр. 31). В этом случае расчётная высота ярма статора:

 $h'_{\rm a}=h_{\rm a}=0,0275$ м = 27,5 мм (формула (4.16) при $m_{\kappa 1}=0$).

85. Индукция в ярме статора:

$$B_{\rm a} = \frac{\Phi}{2 \, h'_{\rm a} \, l_{\rm CT1} \, k_{\rm C1}} = \frac{14,5 \cdot 10^{-3}}{2 \cdot 0,0275 \cdot 0,17 \cdot 0,97} = 1,6 \, {\rm Tm} \, .$$

86. Напряжённость поля ярма статора при индукции B_a (табл. П.1.6):

 $H_{\rm a} = 750 \, \text{A/m}$.

87. Магнитное напряжение ярма статора:

 $F_{\rm a} = L_{\rm a} H_{\rm a} = 0,23 \cdot 750 = 172,5 \,\,{\rm A} \,.$

88. Сердечник ротора проектируемого АД является сердечником с непосредственной посадкой на вал. Определим значение следующего выражения и оценим выполнения условия (4.19):

$$0.75\left(\frac{D_{\rm a}}{2} - h_{\rm n2}\right) = 0.75 \cdot \left(\frac{0.32}{2} - 0.0341\right) = 0.0944 \text{ M} > (D_{\rm B} = 0.074 \text{ M}).$$

Поэтому для АД с 2p = 4 расчётная высота ярма ротора определится по выражению (4.23):

$$h'_{j} = \frac{D_{2} - D_{\text{b}}}{2} - h_{\text{m2}} = \frac{0,2128 - 0,074}{2} - 0,0341 = 0,0353 \text{ m} = 35,3 \text{ mm}.$$

89. Длина средней силовой линии магнитного поля в ярме ротора по (4.24):

$$L_j = \pi \frac{D_j + h'_j}{2p} = 3,14 \cdot \frac{0,074 + 0,0353}{4} = 0,0858 \text{ M} = 85,8 \text{ MM}.$$

90. Индукция в ярме ротора:

$$B_{j} = \frac{\Phi}{2 h_{j}' l_{\text{CT2}} k_{\text{C2}}} = \frac{14,5 \cdot 10^{-3}}{2 \cdot 0,0353 \cdot 0,17 \cdot 0,97} = 1,25 \,\text{Tr}.$$

91. Напряжённость поля ярма ротора при индукции B_j (табл. П.1.6):

$$H_i = 289 \text{ A/m}.$$

92. Магнитное напряжение ярма ротора:

 $F_j = L_j H_j = 0,0858 \cdot 289 = 24,8$ A.

93. Суммарное магнитное напряжение магнитной цепи на одну пару полюсов:

 $F_{II} = F_{\delta} + F_{Z1} + F_{Z2} + F_{a} + F_{j} = 890,9 + 105,6 + 105,8 + 172,5 + 24,8 = 1299,6$ А. 94. Коэффициент насыщения магнитной цепи:

$$k_{\mu} = \frac{F_{\mu}}{F_{\delta}} = \frac{1299,6}{890,9} = 1,46.$$

95. Намагничивающий ток АД:

$$I_{\mu} = \frac{pF_{\mu}}{0.9m_1w_1k_{obm1}} = \frac{2 \cdot 1299.6}{0.9 \cdot 3 \cdot 72 \cdot 0.929} = 14,39 \text{ A}.$$

96. Относительное значение намагничивающего тока:

$$I_{\mu}^{*} = \frac{I_{\mu}}{I_{1\text{HOM}}} = \frac{14,39}{53,1} = 0,27.$$

Значение I^*_{μ} лежит в пределах от 0,2 до 0,3, что говорит о корректном выборе размеров двигателя и параметров его обмоток (стр. 35).

Определение параметров асинхронной машины для рабочего режима

97. Длина пазовой части катушки обмотки статора:

$$l_{\rm III} = l_1 = l_2 = 0,17 \,\,{\rm M}\,.$$

98. Средняя ширина катушки обмотки статора:

$$b_{\rm kt} = \frac{\pi (D + h_{\rm m1})}{2p} \beta = \frac{3.14 \cdot (0.214 + 0.0255)}{4} 0.83 = 0.15 \text{ M}.$$

99. Коэффициенты k_{π} и $k_{вы\pi}$ для расчёта длины лобовой части катушки обмотки статора (табл. П.24, обмотка всыпная с неизолированными лобовыми частями):

 $k_{\rm m} = 1,3; k_{\rm BMM} = 0,4.$

100. Длина вылета прямолинейной части катушек обмотки статора из паза от торца сердечника до начала отгиба лобовой части (стр. 37 для случая, когда всыпная обмотка укладывается в пазы до запрессовки сердечника в корпус):

B = 0,01 м.

101. Длина изогнутой лобовой части катушки обмотки статора: $l_{\rm n1} = k_{\rm n} b_{\rm kt} + 2B = 1,3 \cdot 0,15 + 2 \cdot 0,01 = 0,215$ м.

102. Длина вылета лобовой части катушки обмотки статора: $l_{\text{выш}1} = k_{\text{выш}} b_{\text{кт}} + B = 0.4 \cdot 0.15 + 0.01 = 0.07 \text{ м}$.

103. Средняя длина витка обмотки фазы статора:

 $l_{\rm cp1} = 2(l_{\rm II} + l_{\rm II}) = 2 \cdot (0.17 + 0.215) = 0.77 \text{ M}.$

104. Длина проводников фазы обмотки статора:

 $L_1 = l_{cp1} w_1 = 0,77 \cdot 72 = 55,44 \text{ M}.$

105. Расчётная температура ν_{расч} и удельное сопротивление материала проводника медной обмотки статора ρ_м при расчётной температуре (стр. 37 и табл. П.26):

 $v_{\text{расч}} = 115 \,^{\circ}C$ (для класса изоляции *F*); $\rho_{\text{м}} = \frac{1}{41} \cdot 10^{-6} \,\text{ Ом} \cdot \text{м}$. 106. Активное сопротивление обмотки статора: $r_{1} = k_{R}\rho_{\text{м}} \frac{L_{1}}{q_{3\phi}a} = 1 \cdot \frac{1}{41} \cdot 10^{-6} \cdot \frac{55,44}{4,91 \cdot 10^{-6} \cdot 2} = 0,138 \,\text{ Ом}$,

где $k_R = 1$ (стр. 38).

107. Относительное значение активного сопротивления обмотки статора:

$$r_{1*} = r_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}} = 0,138 \cdot \frac{53,1}{220} = 0,0333 \text{ o.e.}$$

108. Удельное сопротивление материала алюминиевой литой обмотки ротора и короткозамкнутого кольца ρ_a при расчётной температуре $\nu_{\text{расч}} = 115 \,^{\text{o}}C$ (стр. 37):

$$\rho_a = \frac{1}{20,5} \cdot 10^{-6} \text{ Ом} \cdot \text{м}$$
(табл. П.26).

109. Активное сопротивление алюминиевого стержня ротора:

$$r_{\rm c} = k_R \rho_{\rm a} \frac{l_2}{q_{\rm c}} = 1 \cdot \frac{1}{20.5} \cdot 10^{-6} \cdot \frac{0.17}{209.9 \cdot 10^{-6}} = 39.51 \cdot 10^{-6} \,\,\mathrm{Om}\,,$$

где $k_R = 1$ (стр. 38).

110. Активное сопротивление алюминиевого короткозамкнутого кольца:

$$r_{\rm km} = \rho_{\rm a} \, \frac{\pi D_{\rm km,cp}}{Z_2 q_{\rm km}} = \frac{1}{20.5} \cdot 10^{-6} \cdot \frac{3.14 \cdot 0.1719}{38 \cdot 748 \cdot 10^{-6}} = 0.93 \cdot 10^{-6} \,\, {\rm Om} \,.$$

111. Активное сопротивление фазы алюминиевой обмотки ротора:

$$r_2 = r_c + \frac{2r_{\text{кл}}}{\Delta^2} = 39,51 \cdot 10^{-6} + \frac{2 \cdot 0,93 \cdot 10^{-6}}{0,329^2} = 56,69 \cdot 10^{-6} \text{ Om}.$$

112. Активное сопротивление ротора, приведённое к числу витков обмотки статора:

$$r_2' = r_2 \frac{4m_1(w_1k_{\text{обм1}})^2}{Z_2k_{\text{ск}}^2} = 56,69 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (72 \cdot 0,929)^2}{38 \cdot 1^2} = 0,08 \text{ Om}.$$

113. Относительное значение приведённого активного сопротивления ротора:

$$r'_{2*} = r'_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}} = 0,08 \cdot \frac{53,1}{220} = 0,0193 \text{ o.e.}$$

114. Радиальные вентиляционные каналы в данном АД отсутствуют, поэтому расчётная длина магнитопровода статора (по (5.14) при $n_{\rm K} = 0$):

$$l'_{\delta} = l_1 = 0,17 \text{ м.}$$

115. Коэффициенты k_{β} и k'_{β} (стр. 39, формула (5.16) и (5.18)):
 $k'_{\beta} = 0,25(1+3\beta) = 0,25 \cdot (1+3 \cdot 0,83) = 0,85$;
 $k_{\beta} = 0,25(1+3k'_{\beta}) = 0,25 \cdot (1+3 \cdot 0,85) = 0,89$.

116. Коэффициент магнитной проводимости пазового рассеяния статора (стр. 40, формула (5.20), рис. П.15):

$$\lambda_{\Pi 1} = \frac{h_2}{3b_1}k_{\beta} + (\frac{h_1}{b_1} + \frac{3h_{\kappa}}{b_1 + 2b_{\Pi 1}} + \frac{h_{\Pi 1}}{b_{\Pi 1}})k_{\beta}' =$$

= $\frac{21.4}{3 \cdot 8.4} \cdot 0.89 + (\frac{0}{8.4} + \frac{3 \cdot 2.35}{8.4 + 2 \cdot 3.7} + \frac{1.0}{3.7}) \cdot 0.85 = 1.36,$

где $h_1 = 0$ (проводники закреплены пазовой крышкой), и $h_2 = h_{\text{п.к}} - 2b_{\text{из}} = 22, 2 - 2 \cdot 0, 4 = 21, 4$ мм (стр. 40, формула (5.21)).

117. Коэффициент магнитной проводимости лобового рассеяния статора:

$$\lambda_{\pi 1} = 0.34 \frac{q_1}{l'_{\delta}} (l_{\pi 1} - 0.64\beta\tau) = 0.34 \cdot \frac{4}{0.17} \cdot (0.215 - 0.64 \cdot 0.83 \cdot 0.168) = 1.03.$$

118. Коэффициент ξ (паз статора – полузакрытый, скос пазов ротора отсутствует, поэтому $\beta_{c\kappa} = 0$):

$$\xi = 2k_{c\kappa}'k_{\beta} - k_{o\deltaM1}^2 \left(\frac{t_{z2}}{t_{z1}}\right)^2 \left(1 + \beta_{c\kappa}^2\right) = 2 \cdot 1,3 \cdot 0,89 - 0,929^2 \cdot \left(\frac{17,6}{14}\right)^2 \cdot \left(1 + 0^2\right) = 0,95.$$

119. Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора:

$$\lambda_{\mu 1} = \frac{t_{z1}}{12\delta k_{\delta}} \xi = \frac{14}{12 \cdot 0.6 \cdot 1.17} \cdot 0.95 = 1.58$$

120. Индуктивное сопротивление фазы обмотки статора:

$$x_{1} = 15.8 \frac{f_{1}}{100} \left(\frac{w_{1}}{100}\right)^{2} \frac{l_{\delta}'}{pq_{1}} \left(\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}\right) = 15.8 \cdot \frac{50}{100} \cdot \left(\frac{72}{100}\right)^{2} \cdot \frac{0.17}{2 \cdot 4} \cdot \left(1.36 + 1.03 + 1.58\right) = 0.345 \text{ Om}.$$

121. Относительное значение индуктивного сопротивления фазы статора

$$x_{1*} = x_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}} = 0,345 \cdot \frac{53,1}{220} = 0,0833 \text{ o.e.}$$

122. Коэффициент магнитной проводимости пазового рассеяния короткозамкнутого ротора (рис. П.18, рекомендации на стр. 41-42):

$$\lambda_{\Pi 2} = \left[\frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c} \right)^2 + 0.66 - \frac{b_{\Pi 2}}{2b_1} \right] k_{\Pi} + \frac{h_{\Pi 2}}{b_{\Pi 2}} + 1.12 \cdot 10^6 \frac{h'_{\Pi 2}}{I_2} = \\ = \left[\frac{24.88}{3 \cdot 8.7} \cdot \left(1 - \frac{3.14 \cdot 8.7^2}{8 \cdot 209.9} \right)^2 + 0.66 - \frac{1.5}{2 \cdot 8.7} \right] \cdot 1 + \frac{0.7}{1.5} + 1.12 \cdot 10^6 \cdot \frac{0.3 \cdot 10^{-3}}{524.8} = 2.36, \\ \text{где} \quad h_0 = h_1 + \frac{b_2}{2} - 0.1b_2 = 26.6 + \frac{4.3}{2} - 0.1 \cdot 4.3 = 24.88 \text{ MM} \quad (\text{рис. } \Pi.18 \text{ M}) \\ \text{гис. } 2.2 \text{ here using } (5.20))$$

рис. 3.2, формула (5.29)).

123. Коэффициент магнитной проводимости лобового рассеяния ротора:

$$\lambda_{\pi 2} = \frac{2,3D_{\kappa\pi,cp}}{Z_2 l_{\delta}' \Delta^2} lg \frac{4,7D_{\kappa\pi,cp}}{h_{\kappa\pi} + 2b_{\kappa\pi}} = \frac{2,3 \cdot 0,1719}{38 \cdot 0,17 \cdot 0,329^2} \cdot lg \frac{4,7 \cdot 0,1719}{0,0409 + 2 \cdot 0,0183} = 0,576.$$

124. Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора:

$$\lambda_{\mu 2} = \frac{t_{z2}}{12\delta k_{\delta}} \xi = \frac{17.6}{12 \cdot 0.6 \cdot 1.17} \cdot 1 = 2.09,$$

где коэффициент $\xi = 1$ (согласно рекомендациям на стр. 42, так как $\frac{Z_2}{Z_2} = \frac{38}{Z_2} = 19 > 10$).

125. Коэффициент проводимости скоса:

$$\lambda_{\rm ck} = \frac{t_{z2}\beta_{\rm ck}^2}{12k_{\delta}k_{\mu}} = \frac{17.6\cdot 0}{12\cdot 1.17\cdot 1.46} = 0.$$

126. Индуктивное сопротивление фазы обмотки ротора:

$$x_{2} = 7,9 f_{1} l_{\delta}' \cdot 10^{-6} \cdot (\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{c\kappa}) =$$

 $= 7,9 \cdot 50 \cdot 0,17 \cdot 10^{-6} \cdot (2,36 + 0,576 + 2,09 + 0) = 337,5 \cdot 10^{-6} \text{ Om}.$

127. Индуктивное сопротивление фазы обмотки ротора, приведённое к числу витков обмотки статора:

$$x_2' = x_2 \frac{4m_1(w_1k_{\text{обм1}})^2}{Z_2k_{\text{ск}}^2} = 337,5 \cdot 10^{-6} \cdot \frac{4 \cdot 3 \cdot (72 \cdot 0.929)^2}{38 \cdot 1^2} = 0,477 \text{ Om}.$$

128. Относительное значение индуктивного сопротивления фазы ротора:

$$x_{2*} = x_2 \frac{I_{1\text{HOM}}}{U_{1\text{HOM},\phi}} = 0,477 \cdot \frac{53,1}{220} = 0,115 \text{ o.e.}$$

Расчёт постоянных потерь мощности

129.Удельные потери мощности в стали марки 2013 при индукции 1 Тл и частоте перемагничивания 50 Гц (табл. П.27):

 $p_{1,0/50} = 2,5$ Вт/кг.

130. Масса стали ярма статора:

$$m_{\rm a} = \pi (D_{\rm a} - h_{\rm a}) h_{\rm a} l_{\rm CT1} k_{\rm C1} \gamma_{\rm c} =$$

= 3,14 · (0,32 - 0,0275) · 0,0275 · 0,17 · 0,97 · 7,8 · 10³ = 32,49 кг,

где $\gamma_c = 7,8 \cdot 10^3$ кг/м³ – удельная масса стали (стр. 44).

131. Масса стали зубцов статора:

$$m_{Z1} = h_{Z1} b_{Z1} Z_1 l_{CT1} k_{C1} \gamma_c =$$

 $= 0,0255 \cdot 0,00605 \cdot 48 \cdot 0,17 \cdot 0,97 \cdot 7,8 \cdot 10^{3} = 9,52 \text{ Kr},$

132. Коэффициенты для нахождения основных потерь в стали (стр. 44):

 $k_{\rm da} = 1.6; k_{\rm dz} = 1.8; b = 1.4.$

133. Основные потери активной мощности в стали статора АД:

$$P_{\text{ст.осн}} = p_{1,0/50} \left(\frac{f_1}{50}\right)^b \left(k_{\text{да}} B_{\text{a}}^2 m_{\text{a}} + k_{\text{дz}} B_{\text{Z}1}^2 m_{\text{Z}1}\right) =$$

= 2,5 \cdot $\left(\frac{50}{50}\right)^{1,4} \cdot \left(1,6 \cdot 1,6^2 \cdot 32,49 + 1,8 \cdot 1,9^2 \cdot 9,52\right) = 487,4 \text{ BT},$

134. Отношение ширины шлица пазов статора АД к воздушному зазору:

$$\frac{b_{\rm III1}}{\delta} = \frac{3.7}{0.6} = 6.2.$$

135. По рис. П.19, δ находим значения коэффициента β_{02} :

$$\beta_{02} = f\left(\frac{b_{\text{III}1}}{\delta}\right) = 0.33.$$

136. Амплитуда пульсации индукции в воздушном зазоре над коронками зубцов ротора *B*₀₂:

 $B_{02} = \beta_{02} k_{\delta} B_{\delta} = 0,33 \cdot 1,17 \cdot 0,797 = 0,308$ Тл.

137. Удельные поверхностные потери, т.е. потери, приходящиеся на 1 м² поверхности головок ротора:

$$p_{\text{пов2}} = 0.5k_{02} \left(\frac{Z_1 n}{10000}\right)^{1.5} \left(B_{02} t_{z1} \cdot 10^3\right)^2 =$$

= 0.5 \cdot 1.6 \cdot $\left(\frac{48 \cdot 1500}{10000}\right)^{1.5} \cdot \left(0.308 \cdot 0.014 \cdot 10^3\right)^2 = 287.4 \text{ BT/m}^2,$

где $k_{02} = 1,6$ (стр. 45); $n \approx n_1 = 1500$ об/мин.

138. Полные поверхностные потери ротора: $P_{\text{пов2}} = p_{\text{пов2}}(t_{z2} - b_{\text{III2}})Z_2 l_{\text{CT2}} = 287,4 \cdot (0,0176 - 0,0015) \cdot 38 \cdot 0,17 = 29,9 \text{ Bt.}$

139. Амплитуда пульсаций индукции в среднем сечении зубцов ротора:

$$B_{\Pi y \pi.2} = \frac{\gamma_1 \delta}{2t_{z2}} B_{Z2} = \frac{3,4 \cdot 0,0006}{2 \cdot 0,0176} \cdot 1,81 = 0,105 \text{ T}\pi,$$

140. Масса стали зубцов ротора:

$$m_{Z2} = h_{Z2} b_{Z2} Z_2 l_{CT2} k_{C2} \gamma_{c} =$$

$$= 0,0337 \cdot 0,008 \cdot 38 \cdot 0,17 \cdot 0,97 \cdot 7,8 \cdot 10^{3} = 13,18$$
 кг,

141. Пульсационные потери в зубцах ротора:

$$P_{\text{пул2}} = 0.11 \left(\frac{Z_1 n}{1000} B_{\text{пул.2}}\right)^2 m_{Z2} = 0.11 \cdot \left(\frac{48 \cdot 1500}{1000} \cdot 0.105\right)^2 \cdot 13.18 = 82.9 \text{ BT}.$$

142. Поверхностные и пульсационные потери в статоре АД с короткозамкнутым ротором незначительны, поэтому принимаем:

$$P_{\text{пов1}} = 0$$
 и $P_{\text{пул1}} = 0$ (стр. 45).

143. Добавочные потери в стали: $P_{\text{ст.доб}} = P_{\text{пов1}} + P_{\text{пул1}} + P_{\text{пов2}} + P_{\text{пул2}} = 0 + 0 + 29,9 + 82,9 = 112,8 \text{ Bt}.$ 144. Полные потери в стали:

 $P_{\rm ct} = P_{\rm ct.och} + P_{\rm ct.gob} = 487, 4 + 112, 8 = 600, 2$ Bt .

145. Асинхронные двигатели с системой охлаждения IC0141 имеют внешний обдув от центробежного вентилятора (рекомендации на стр. 46-49), поэтому механические потери найдём по выражению (6.13):

$$P_{\text{Mex}} = K_{\text{T}} \left(\frac{n}{10}\right)^2 D_{\text{a}}^4 = 0,884 \cdot \left(\frac{1500}{10}\right)^2 \cdot 0,32^4 = 208,6 \text{ Br},$$

где $K_{\rm T} = 1,3(1-D_{\rm a}) = 1,3 \cdot (1-0,32) = 0,884$ (пояснение к формуле (6.13)).

146. Электрические потери в статоре в режиме холостого хода АД:

$$P_{\mathfrak{s}1.x} = m_1 I_{\mu}^2 r_1 = 3.14,39^2 \cdot 0,138 = 85,7 \text{ BT}.$$

147. Активная составляющая тока холостого хода:

$$I_{\rm x.a} = \frac{P_{\rm cT} + P_{\rm Mex} + P_{91.x}}{m_{\rm l} U_{\rm 1 HOM, \phi}} = \frac{600, 2 + 208, 6 + 85, 7}{3 \cdot 220} = 1,36 \text{ A}.$$

148. Реактивная составляющая тока холостого хода: $I_{\rm x.p} \approx I_{\mu} = 14,39$ А.

149. Ток холостого хода АД:

$$I_{\rm x} = \sqrt{I_{\rm x.a}^2 + I_{\rm x.p}^2} = \sqrt{1,36^2 + 14,39^2} = 14,45$$
 A.

150. Коэффициент мощности АД в режиме холостого хода: $cos\phi_x = \frac{I_{x.a}}{I_x} = \frac{1,36}{14,45} = 0,094$.

Рабочие характеристики асинхронного двигателя

151. Параметры
$$r_{12}$$
 и x_{12} схемы замещения на рис. П.20, б:
 $r_{12} = \frac{P_{\text{ст.осн}}}{m_1 I_{\mu}^2} = \frac{487.4}{3.14.39^2} = 0,785 \text{ Ом};$
 $x_{12} = \frac{U_{1\text{ном.}\phi}}{I_{\mu}} - x_1 = \frac{220}{14.39} - 0,345 = 14,94 \text{ Ом}.$

152. Угол ү:

$$\gamma = \operatorname{arctg} \frac{r_1 x_{12} - r_{12} x_1}{r_{12}(r_1 + r_{12}) + x_{12}(x_1 + x_{12})} =$$

= $\frac{0,138 \cdot 14,94 - 0,785 \cdot 0,345}{0,785 \cdot (0,138 + 0,785) + 14,94 \cdot (0,345 + 14,94)} = 0,45^{\circ} < 1^{\circ},$

поэтому для расчёта величин a, a', b и b' будем использовать приближённый метод (рекомендации на стр. 52-53).

152. Определим величины c_1 , a, a', b и b':

$$c_{1} = 1 + \frac{x_{1}}{x_{12}} = 1 + \frac{0,345}{14,94} = 1,023;$$

$$a = c_{1}r_{1} = 1,023 \cdot 0,138 = 0,141 \text{ OM};$$

$$a' = c_{1}^{2} = 1,023^{2} = 1,047;$$

$$b = c_{1}(x_{1} + c_{1}x_{2}') = 1,023 \cdot (0,345 + 1,023 \cdot 0,477) = 0,852 \text{ OM};$$

$$b' = 0.$$

153. Расчёт рабочих характеристик будем вести по алгоритму, приведённому в табл. 12.1, для следующих значений скольжения *s*: 0,004; 0,008; 0,012; 0,016; 0,019; 0,022.

Одной из точек принятого расчётного ряда скольжений является номинальное скольжение, значение которого предварительно примем $s_{\text{ном}} \approx r'_{2^*} = 0,019$.

При выполнении расчёта рабочих характеристик с помощью компьютерных программ количество точек можно увеличить для улучшения точности построения характеристик.

154. Рассчитаем некоторые параметры из табл. 12.1, значения которых не зависят от скольжения *s*:

• реактивное сопротивление *X* правой ветви Г-образной схемы замещения АД (рис. 7.1)

$$X = b + \frac{b'r'_2}{s} = 0,852 + \frac{0 \cdot 0,08}{s} = 0,852$$
 OM;

• активная составляющая тока синхронного холостого хода

$$I_{0a} = \frac{P_{\text{ct.och}} + 3I_{\mu}^2 r_1}{3U_{1\text{HOM},\phi}} = \frac{487,4 + 3.14,39^2 \cdot 0,138}{3.220} = 0,868 \text{ A};$$

• реактивная составляющая тока синхронного холостого хода $I_{0p} \approx I_{\mu} = 14,39 \text{ A}$;

• потери мощности, не зависящие от скольжения $P_{\rm ct} + P_{\rm mex} = 600,2 + 208,6 = 808,8 \ {\rm Bt} \approx 0,809 \ {\rm \kappa Bt}$.

155. Выражения для расчёта рабочих характеристик в порядке вычисления и результаты расчёта приведены в табл. 12.1.

На рис. 12.1 приведены сами рабочие характеристики АД, представляющие собой графики зависимостей $P_1 = f(P_2)$, $I_1 = f(P_2)$, $cos\phi = f(P_2)$, $\eta = f(P_2)$ и $s = f(P_2)$.

Таблица 12.1. Расчётные выражения и результаты расчёта рабочих характеристик асинхронного двигателя

r									
N⁰	Расчётная	Ед.			Ск	ольжен	ие <i>s</i>		
п/п	формула	ИЗМ.	0,004	0,006	0,01	0,015	0,019	0,022	$s_{\rm HOM} = 0,02$
1	$\frac{a'r_2'}{s}$	Ом	20,94	13,96	8,38	5,58	4,41	3,81	4,19
2	$R = a + \frac{a'r_2'}{s}$	Ом	21,08	14,10	8,52	5,73	4,55	3,95	4,33
3	X	Ом	0,852	0,852	0,852	0,852	0,852	0,852	0,852
4	$Z = \sqrt{R^2 + X^2}$	Ом	21,10	14,13	8,56	5,79	4,63	4,04	4,41
5	$I_2'' = \frac{U_{1\text{HOM},\phi}}{Z}$	A	10,43	15,57	25,70	38,01	47,53	54,47	49,86
6	$cos\phi_2' = \frac{R}{Z}$		0,999	0,998	0,995	0,989	0,983	0,978	0,981
7	$\sin \phi_2' = \frac{X}{Z}$	5	0,040	0,060	0,100	0,147	0,184	0,211	0,193
8	I _{0a}	A	0,868	0,868	0,868	0,868	0,868	0,868	0,868
9	I _{0p}	A	14,39	14,39	14,39	14,39	14,39	14,39	14,39
10	$I_{1a} = I_{0a} + I_2'' \cos\varphi_2'$	A	11,29	16,41	26,44	38,46	47,59	54,11	49,79
11	$I_{1p} = I_{0p} + I_2'' sin\phi_2'$	A	14,81	15,33	16,95	19,98	23,14	25,88	24,02
12	$I_1 = \sqrt{{I_{1a}}^2 + {I_{1p}}^2}$	A	18,62	22,46	31,41	43,35	52,91	59,98	55,28
13	$I_2' = c_1 I_2''$	A	10,67	15,93	26,29	38,88	48,62	55,72	51,01
14	$P_1 = 3U_{1\text{HOM}.\phi} I_{1a} \cdot 10^{-3}$	кВт	7,45	10,83	17,45	25,39	31,41	35,71	32,86
15	$P_{\rm 31} = 3I_1^2 r_1 \cdot 10^{-3}$	кВт	0,144	0,209	0,408	0,778	1,159	1,489	1,265

N⁰	Расчётная	Ед.	Скольжение s								
п/п	формула	ИЗМ.							$S_{\text{HOM}} =$		
			0,004	0,006	0,01	0,015	0,019	0,022	= 0,02		
16	$P_{32} = 3(I_2')^2 r_2' \cdot 10^{-3}$	кВт	0,027	0,061	0,166	0,363	0,567	0,745	0,624		
17	$P_{\rm ct} + P_{\rm mex}$	кВт	0,81	0,81	0,81	0,81	0,81	0,81	0,81		
18	$P_{\rm доб} = 0,005P_1$	кВт	0,037	0,054	0,087	0,127	0,157	0,179	0,164		
19	$\sum P = P_{\rm ct} + P_{\rm mex} +$	кВт	1,02	1,13	1,47	2,08	2,69	3,22	2,86		
	$+P_{_{\mathfrak{I}}1}+P_{_{\mathfrak{I}}2}+P_{_{\mathfrak{I}}05}$										
20	$P_2 = P_1 - \sum P$	_	6,43	9,70	15,98	23,31	28,71	32,49	30,0		
21	$\eta = 1 - \frac{\sum P}{P_1}$	_	0,863	0,895	0,916	0,918	0,914	0,910	0,913		
22	$cos\phi = \frac{I_{1a}}{I_1}$	_	0,606	0,731	0,842	0,887	0,899	0,902	0,901		

156. По рабочим характеристикам (рис. 12.1) уточняем номинальные параметры двигателя по известной из условия проектирования номинальной мощности $P_{2,\text{ном}} = 30 \text{ kBt}$:

• номинальный ток (рис. 12.1, б)

 $I_{1.\text{HOM}} = 54,9 \text{ A};$

• номинальный коэффициент мощности (рис. 12.1, в)

 $\textit{cos}\phi_{\text{hom}}=0{,}9\,;$

• номинальный КПД (рис. 12.1, г)

 $\eta_{\rm hom}=0{,}913\,;$

• номинальное скольжение (рис. 12.1, *д*)

 $s_{\rm HOM} = 0,02$.

157. Для уточнённого значения номинального скольжения $s_{\text{ном}} = 0,02$ рассчитываем параметров в табл. 12.1 и заносим результаты в последний столбец.

Пусковые характеристики асинхронного двигателя

158. Вначале выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока, но без учета влияния насыщения от полей рассеяния.

Расчёт проведём для ряда скольжений, который будет начинаться со значения чуть ниже критического и заканчиваться s = 1. Значение критического скольжения также необходимо включить в расчётный ряд (стр. 62).

Ниже покажем подробный расчёт для значения скольжения s = 1,0.

159. Расчётная высота стержня в пазу ротора по (8.2), т.к. паз закрытый:

 $h_{c2} = h_{n2} - (h_{m2} + h'_{m2}) = 34,1 - (0,7 + 0,3) = 33,1 \text{ mm} = 0,0331 \text{ m}.$

160. Так называемая "приведённая высота" стержня ротора (стр. 57-58 – обмотка ротора литая с алюминиевыми стержнями, расчётная температура $v_{\text{расч}} = 115 \text{ }^{\circ}C$):

 $\zeta = 63,61h_{c2}\sqrt{s} = 63,61 \cdot 0,0331 \cdot \sqrt{1} = 2,11.$

161. По рис. П.22 и П.23 соответственно находим значения величин ф и ф':

$$\varphi = f(\zeta) = 1,01;$$

 $\varphi' = f(\zeta) = 0,72.$

162. Глубина проникновения тока:

$$h_r = \frac{h_{c2}}{1+\phi} = \frac{33.1}{1+1.01} = 16.5 \text{ MM} = 0.0165 \text{ M}.$$

163. Проверяем условие (стр. 58):

$$rac{b_1}{2} \le h_r \le h_1 + rac{b_1}{2},$$
или $rac{8,7}{2} \le 16,5 \le 26,6 + rac{8,7}{2},$ или $4,35 \le 16,5 \le 30,95.$

Условие выполняется, поэтому площадь сечения верхней части стержня ротора q_r , по которому распространяется ток при пуске, определится по формуле (8.6):

$$q_r = \frac{\pi b_1^2}{8} + \frac{b_1 + b_r}{2} \left(h_r - \frac{b_1}{2} \right) = \frac{3.14 \cdot 8.7^2}{8} + \frac{8.7 + 6.69}{2} \cdot \left(16.5 - \frac{8.7}{2} \right) = 123.2 \text{ MM}^2.$$
где по (8.7)

$$b_r = b_1 - \frac{b_1 - b_2}{h_1} \left(h_r - \frac{b_1}{2} \right) = 8,7 - \frac{8,7 - 4,3}{26,6} \cdot \left(16,5 - \frac{8,7}{2} \right) = 6,69 \text{ MM} = 0,00669 \text{ M}.$$

164. Коэффициент k_r по (8.8), т.к. выполняется условие на стр. 58:

$$k_r = \frac{q_c}{q_r} = \frac{209.9}{123.2} = 1.7$$
.

165. Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока:

$$K_{R} = \frac{r_{2} + r_{c}'(k_{r} - 1)}{r_{2}} = \frac{56,69 \cdot 10^{-6} + 39,51 \cdot 10^{-6} \cdot (1,7 - 1)}{56,69 \cdot 10^{-6}} = 1,49,$$

где $r_{\rm c}' = r_{\rm c} = 39,51 \cdot 10^{-6}$ Ом (по (8.11)).

166. Приведенное активное сопротивление ротора с учетом влияния эффекта вытеснения тока:

$$r'_{2\zeta} = K_R r'_2 = 1,49 \cdot 0,08 = 0,119 \text{ Om}.$$

167. Коэффициент магнитной проводимости участка паза ротора, занятого проводником с обмоткой:

$$\lambda_{\text{II}2}' = \frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c} \right)^2 + 0.66 - \frac{b_{\text{III}2}}{2b_1} =$$
$$= \frac{24.88}{3 \cdot 8.7} \cdot \left(1 - \frac{3.14 \cdot 8.7^2}{8 \cdot 209.9} \right)^2 + 0.66 - \frac{1.5}{2 \cdot 8.7} = 1.28.$$

168. Коэффициент магнитной проводимости пазового рассеяния с учетом эффекта вытеснения тока:

$$\begin{split} \lambda_{n2\zeta} &= \lambda_{n2} - \Delta \lambda_{n2\zeta} = 2,36 - 0,36 = 2,0,\\ \text{где } \Delta \lambda_{n2\zeta} &= \lambda'_{n2} \big(1 - k_{\text{Д}} \big) = 1,28 \cdot \big(1 - 0,72 \big) = 0,36 \,;\\ k_{\text{Д}} &= \phi' = 0,72 \,. \end{split}$$

169. Коэффициент, показывающий изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока:

$$K_X = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}} = \frac{2,0 + 0,576 + 2,09}{2,36 + 0,576 + 2,09} = 0,93.$$

170. Приведенное индуктивное сопротивление ротора с учетом влияния эффекта вытеснения тока:

$$x'_{2\zeta} = K_X x'_2 = 0,93 \cdot 0,477 = 0,444 \text{ Om}.$$

171. В пусковом режиме активным сопротивлением r_{12} схемы замещения АД на рис. П.20, *б* пренебрегают, то есть $r_{12\pi} = 0$ (стр. 60).

Индуктивное сопротивление взаимоиндукции в схеме замещения АД (рис. П.20, б) в пусковом режиме:

 $x_{12\pi} = k_{\mu}x_{12} = 1,46 \cdot 14,94 = 21,81 \text{ Om}.$

172. Коэффициент c_1 в пусковом режиме АД :

$$c_{1\pi} = 1 + \frac{x_1}{x_{12\pi}} = 1 + \frac{0,345}{21,81} = 1,016.$$

173. Активное $R_{\rm n}$ и реактивное $X_{\rm n}$ сопротивления правой ветви Г-образной схемы замещения АД (рис. 7.1) в пусковом режиме с учётом вытеснения тока:

$$R_{\rm m} = r_1 + \frac{c_{1\rm m}r_{2\zeta}'}{s} = 0,138 + \frac{1,016\cdot0,119}{1,0} = 0,259 \text{ Om};$$

$$X_{\rm m} = x_1 + c_{1\rm m}x_{2\zeta}' = 0,345 + 1,016\cdot0,444 = 0,796 \text{ Om}.$$

174. Ток в обмотке ротора с учётом вытеснения тока в пусковом режиме при s = 1,0:

$$I'_{2\pi} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\pi}^{2} + X_{\pi}^{2}}} = \frac{220}{\sqrt{0,259^{2} + 0,796^{2}}} = 262,8 \text{ A}.$$

175. Пусковой ток статора с учётом вытеснения тока:

$$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + x_{12\pi})^{2}}}{c_{1\pi}x_{12\pi}} = 262.8 \cdot \frac{\sqrt{0.259^{2} + (0.796 + 21.81)^{2}}}{1.016 \cdot 21.81} = 268.1 \text{ A}.$$

176. Кратность пускового тока АД с учётом вытеснения тока при скольжении s = 1,0:

$$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}} = \frac{268,1}{53,1} = 5,05.$$

177. Кратность пускового момента АД с учётом вытеснения тока при скольжении s = 1,0:

$$M^* = \left(\frac{I'_{2\pi}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{s_{\text{HOM}}}{s} = \left(\frac{262.8}{51.01}\right)^2 \cdot 1.49 \cdot \frac{0.02}{1.0} = 0.79,$$

где $I'_{2\text{ном}} = 51,01 \text{ A}$ – значение приведённого тока ротора при номинальном скольжении $s_{\text{ном}} = 0,02$ (табл. 12.1).

178. Предварительно значение критического скольжения можно оценить по формуле:

$$s_{\rm kp} = \frac{r_2'}{\frac{x_1}{c_{\rm ln}} + x_2'} = \frac{0.08}{\frac{0.345}{1.016} + 0.477} 0.098$$

Соответственно, выберем расчётный ряд скольжений *s*: 0,05; 0,098; 0,2; 0,5; 0,8; 1,0.

Значение критического скольжения *s*_{кр} уточним после расчёта и построения пусковых характеристик.

При выполнении расчёта пусковых характеристик с помощью компьютерных программ количество точек можно увеличить для улучшения точности построения характеристик.

Выражения для расчёта в порядке вычисления и результаты расчёта для всех точек приведены в табл. 12.2.

Таблица 12.2. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока

N⁰	Расчётная	Ед.			Скольж	кение <i>s</i>		
Π/Π	формула	ИЗМ.	0,05	0,098	0,2	0,5	0,8	1,0
1	$\zeta = 63,61h_{\rm c2}\sqrt{s}$	-	0,47	0,66	0,94	1,49	1,88	2,11
2	$\varphi = f(\zeta)$	-	0,04	0,06	0,08	0,33	0,73	1,01
3	$h_r = \frac{h_{c2}}{1 + \varphi}$	ММ	31,8	31,2	30,6	24,9	19,1	16,5
4	$k_r = \frac{q_c}{q_r}$	_	1,0	1,0	1,04	1,21	1,50	1,7
5	$K_{R} = \frac{r_{2} + r_{c}'(k_{r} - 1)}{r_{2}}$	_	1,0	1,0	1,03	1,15	1,35	1,49
6	$r_{2\zeta}' = K_R r_2'$	Ом	0,08	0,08	0,082	0,092	0,108	0,119
7	$k_{\rm A} = \phi' = f(\zeta)$	—	0,99	0,98	0,96	0,89	0,78	0,72
8	$\lambda_{\pi 2 \zeta} = \lambda_{\pi 2} - \Delta \lambda_{\pi 2 \zeta}$	—	2,35	2,33	2,31	2,22	2,08	2,0
9	$K_{X} = \frac{\lambda_{\pi 2\zeta} + \lambda_{\pi 2} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2} + \lambda_{\pi 2}}$	_	0,997	0,995	0,990	0,972	0,944	0,93
10	$x_{2\zeta}' = K_X x_2'$	Ом	0,476	0,475	0,472	0,464	0,450	0,444
N⁰	Расчётная	Ед.			Скольх	кение s		
-----	---	------	-------	-------	--------	---------	-------	-------
п/п	формула	ИЗМ.	0,05	0,098	0,2	0,5	0,8	1,0
11	$R_{\rm m} = r_1 + \frac{c_{1\rm m} r'_{2\zeta}}{s}$	Ом	1,764	0,967	0,556	0,324	0,275	0,259
12	$X_{\pi} = x_1 + c_{1\pi} x_{2\zeta}'$	Ом	0,828	0,827	0,825	0,816	0,802	0,796
13	$I'_{2\pi} = \frac{U_{1\text{HOM}.\phi}}{\sqrt{R_{\pi}^{2} + X_{\pi}^{2}}}$	A	112,9	172,8	221,1	250,5	259,4	262,8
14	$I_{1\pi} = I'_{2\pi} \frac{\sqrt{R_{\pi}^{2} + (X_{\pi} + x_{12\pi})^{2}}}{c_{1\pi}x_{12\pi}}$	A	115,7	176,7	225,9	255,8	264,7	268,1
15	$I_{1\pi}^* = \frac{I_{1\pi}}{I_{1\text{HOM}}}$	_	2,18	3,33	4,26	4,82	4,98	5,05
16	$M^* = \left(\frac{I'_{2\Pi}}{I'_{2HOM}}\right)^2 K_R \frac{S_{HOM}}{s}$	_	1,96	2,34	1,94	1,11	0,87	0,79

Построенные пусковые характеристики (то есть графики зависимостей $M^* = f(s)$ и $I_{1\pi}^* = f(s)$) показаны на рис. 12.2.

По построенным пусковым характеристикам (рис. 12.2) уточняем, что $s_{\rm kp} = 0,1$.

Найдём максимальный момент АД, соответствующий критическому скольжению, с учётом вытеснения тока:

$$M_{\max}^{*} = \left(\frac{I_{2\pi(s_{\text{KP}})}'}{I_{2\text{HOM}}'}\right)^{2} K_{R(s_{\text{KP}})} \frac{s_{\text{HOM}}}{s_{\text{KP}}} = \left(\frac{172.8}{51.01}\right)^{2} \cdot 1.0 \cdot \frac{0.02}{0.1} = 2.34$$

179. Определим необходимость учёта влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД. Для этого найдём значение полного тока паза статора в начальный момент времени пуска двигателя, то есть при s = 1,0:

$$I_{1\text{паза}} = \frac{I_{1\pi}u_{\pi}}{a} = \frac{268, 1.18}{2} = 2413 \,\text{A}.$$

Полученное значение $I_{1 \text{паза}} > 400 \text{ A}$, поэтому учёт влияния насыщения от полей рассеяния при расчёте пусковых характеристик АД необходим (стр. 64).

180. Выполним расчёт пусковых характеристик с учётом эффекта вытеснения тока и влияния насыщения от полей рассеяния.

Расчётный ряд скольжений *s* примем таким же, что и при расчёте с учётом только вытеснения тока: 0,05; 0,098; 0,2; 0,5; 0,8; 1,0. При выполнении расчёта пусковых характеристик с помощью компьютерных программ количество точек можно увеличить для улучшения точности построения характеристик.

Выражения для расчёта в порядке вычисления и результаты расчёта приведены в табл. 12.3.

Ниже покажем подробный расчёт для значения скольжения s = 1,0.

181. Первоначально зададимся значением коэффициента увеличения тока от насыщения зубцовой зоны полями рассеяния (рекомендации на стр. 65):

 $k_{\rm Hac} = 1,45$.

182. Средняя МДС обмотки, отнесенная к одному пазу обмотки статора:

$$F_{\text{n.cp}} = 0.7 \frac{k_{\text{Hac}} I_{1\text{II}} u_{\text{II}}}{a} \left(k_{\beta}' + k_{y} k_{\text{обм1}} \frac{Z_{1}}{Z_{2}} \right) =$$

= 0.7 \cdot \frac{1.45 \cdot 268.1 \cdot 18}{2} \cdot \left(0.85 + 0.97 \cdot 0.929 \cdot \frac{48}{38} \right) = 4869.5 \text{ A.}

183. Фиктивная индукция потока рассеяния в воздушном зазоре:

$$B_{\phi\delta} = \frac{F_{\pi.cp}}{1,6\delta C_N} \cdot 10^{-3} = \frac{4869,5}{1,6\cdot0,6\cdot0,984} \cdot 10^{-3} = 5,15 \text{ T}\pi,$$

где коэффициент

$$C_N = 0.64 + 2.5\sqrt{\frac{\delta}{t_{z1} + t_{z2}}} = 0.64 + 2.5\sqrt{\frac{0.6}{14 + 17.6}} = 0.984.$$

184. Коэффициент K_{δ} , характеризующий отношение потока рассеяния при насыщении к потоку рассеяния ненасыщенной машины (рис. П.26):

$$K_{\delta} = f(B_{\phi\delta}) = 0,47$$
.
185. Дополнительное эквивалентное раскрытие пазов статора:
 $c_{\mathfrak{I}1} = (t_{z1} - b_{\mathfrak{II}1})(1 - K_{\delta}) = (14 - 3,7) \cdot (1 - 0,47) = 5,46$ мм.

186. Паз статора полузакрытый, поэтому вызванное насыщением от полей рассеяния уменьшение коэффициента магнитной проводимости рассеяния паза статора (стр. 66, формула (8.34)):

$$\Delta\lambda_{\rm II1.Hac} = \frac{h_{\rm III} + 0.58h_{\rm K}}{b_{\rm III}} \frac{c_{\rm SI}}{c_{\rm SI} + 1.5b_{\rm III}} = \frac{1.0 + 0.58 \cdot 2.35}{3.7} \cdot \frac{5.46}{5.46 + 1.5 \cdot 3.7} = 0.32.$$

187. Коэффициент магнитной проводимости пазового рассеяния статора при насыщении:

 $\lambda_{_{\Pi 1.\text{Hac}}} = \lambda_{_{\Pi 1}} - \Delta \lambda_{_{\Pi 1.\text{Hac}}} = 1,36 - 0,32 = 1,04 \,.$

188. Коэффициент проводимости дифференциального рассеяния при насыщении участков зубцов статора:

 $\lambda_{\pi 1.\text{Hac}} = \lambda_{\pi 1} K_{\delta} = 1,58 \cdot 0,47 = 0,74.$

189. Индуктивное сопротивление обмотки статора с учетом насыщения от полей рассеяния:

$$x_{1.\text{Hac}} = x_1 \frac{\lambda_{\pi 1.\text{Hac}} + \lambda_{\pi 1.\text{Hac}} + \lambda_{\pi 1}}{\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}} = 0,345 \cdot \frac{1,04 + 0,74 + 1,03}{1,36 + 1,58 + 1,03} = 0,244 \text{ Om}.$$

190. Дополнительное эквивалентное раскрытие пазов ротора: $c_{1} = (t_{1} - b_{2})(1 - K_{2}) = (17.6 - 1.5)(1 - 0.47) = 8.52$ мм

$$c_{32} = (t_{z2} - b_{m2})(1 - K_{\delta}) = (17, 6 - 1, 5) \cdot (1 - 0, 47) = 8,53 \text{ MM}.$$

191. Паз ротора закрытый, поэтому вызванное насыщением от полей рассеяния уменьшение коэффициента магнитной проводимости рассеяния паза ротора (стр. 66, формула (8.36)):

$$\Delta\lambda_{\text{II2.Hac}} = \frac{h_{\text{III2}} + h_{\text{III2}}'}{b_{\text{III2}}} \frac{c_{32}}{b_{\text{III2}} + c_{32}} = \frac{0.7 + 0.3}{1.5} \cdot \frac{8.53}{1.5 + 8.53} = 0.57$$

192. Коэффициент магнитной проводимости пазового рассеяния ротора при насыщении:

 $\lambda_{_{\Pi 2\zeta._{Hac}}} = \lambda_{_{\Pi 2\zeta}} - \Delta\lambda_{_{\Pi 2._{Hac}}} = 2,0-0,57 = 1,43.$

193. Коэффициент проводимости дифференциального рассеяния при насыщении участков зубцов ротора:

 $\lambda_{\rm g2. Hac} = \lambda_{\rm g2} K_{\delta} = 2,09 \cdot 0,47 = 0,98.$

194. Индуктивное сопротивление обмотки ротора с учетом насыщения от полей рассеяния:

$$x'_{2\zeta,\text{hac}} = x'_2 \frac{\lambda_{\pi 2\zeta,\text{hac}} + \lambda_{\pi 2,\text{hac}} + \lambda_{\pi 2}}{\lambda_{\pi 2} + \lambda_{\pi 2}} = 0,477 \cdot \frac{1,43 + 0,98 + 0,576}{2,36 + 2,09 + 0,576} = 0,283 \text{ Om}.$$

195. Коэффициент c₁ в пусковом режиме АД с учётом насыщения:

$$c_{1\Pi,\text{Hac}} = 1 + \frac{x_{1,\text{Hac}}}{x_{12\Pi}} = 1 + \frac{0,244}{21,81} = 1,011.$$

196. Активное $R_{\text{п.нас}}$ и реактивное $X_{\text{п.нас}}$ сопротивления правой ветви Г-образной схемы замещения АД (рис. 7.1) в пусковом режиме с учётом вытеснения тока и насыщения:

$$R_{\text{п.нас}} = r_1 + \frac{c_{1\text{п.наc}}r'_{2\zeta}}{s} = 0,138 + \frac{1,011 \cdot 0,119}{1,0} = 0,258 \text{ OM};$$

 $X_{\text{II.Hac}} = x_{1.\text{Hac}} + c_{1\text{II.Hac}} x'_{2\zeta,\text{Hac}} = 0,244 + 1,011 \cdot 0,283 = 0,53 \text{ Om}.$

197. Ток в обмотке ротора в пусковом режиме с учётом вытеснения тока и насыщения при s = 1,0:

$$I'_{2\Pi,\text{Hac}} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\Pi,\text{Hac}}^2 + X_{\Pi,\text{Hac}}^2}} = \frac{220}{\sqrt{0,258^2 + 0,53^2}} = 373,5 \text{ A}$$

198. Пусковой ток статора с учётом вытеснения тока и насыщения:

$$I_{1\Pi,\text{Hac}} = I'_{2\Pi,\text{Hac}} \frac{\sqrt{R_{\Pi,\text{Hac}}^2 + (X_{\Pi,\text{Hac}} + x_{12\Pi})^2}}{c_{1\Pi,\text{Hac}} x_{12\Pi}} =$$
$$= 373.5 \cdot \frac{\sqrt{0.258^2 + (0.53 + 21.81)^2}}{1.011 \cdot 21.81} = 378.4 \text{ A}.$$

199. Кратность пускового тока АД с учётом вытеснения тока и насыщения при скольжении s = 1,0:

$$I_{1\Pi}^* = \frac{I_{1\Pi,\text{Hac}}}{I_{1\text{HOM}}} = \frac{378,4}{53,1} = 7,12.$$

200. Кратность пускового момента АД с учётом вытеснения тока и насыщения при скольжении s = 1,0:

$$M^* = \left(\frac{I'_{2\Pi,\text{Hac}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{s_{\text{HOM}}}{s} = \left(\frac{373,5}{51,01}\right)^2 \cdot 1,49 \cdot \frac{0,02}{1,0} = 1,6.$$

201. Полученный в результате расчёта коэффициент насыщения: $k'_{\text{Hac}} = \frac{I_{1 \text{п. Hac}}}{I_{1 \text{п}}} = \frac{378,4}{268,1} = 1,41.$

Данное значение отличается от принятого изначально $k_{\text{нас}} = 1,45$ на 2,8%, что допустимо и означает, что уточняющий пересчёт пусковых параметров АД не требуется (стр. 68).

202. При скольжениях меньше 0,1-0,15 влияние насыщения практически отсутствует, поэтому можно принять, что $k_{\text{нас}} = 1,0$ при s = 0,05 и $s = s_{\text{кр}} = 0,098$. Начальными значениями $k_{\text{нас}}$ для других скольжения из принятого расчётного ряда зададимся исходя из примерной линейной зависимости $k_{\text{нас}} = f(s)$, то есть:

$$k_{_{\rm Hac}} = 1,0$$
для $s = 0,05;$
 $k_{_{\rm Hac}} = 1,0$ для $s = 0,098;$
 $k_{_{\rm Hac}} = 1,15$ для $s = 0,2;$

 $k_{_{\rm Hac}} = 1,25$ для s = 0,5; $k_{_{\rm Hac}} = 1,35$ для s = 0,8; $k_{_{\rm Hac}} = 1,45$ для s = 1,0 (расчёт показан выше).

Выражения для расчёта в порядке вычисления и результаты расчёта для всех точек приведены в табл. 12.3.

Построенные пусковые характеристики $M^* = f(s)$ и $I_{1\pi}^* = f(s)$ с учётом вытеснения тока и насыщения показаны на рис. 12.2.

Таблица 12.3. Расчётные выражения и результаты расчёта пусковых характеристик асинхронного двигателя с учётом эффекта вытеснения тока и насыщения

N⁰	Расчётная	Ед.			Скольх	кение s		
Π/Π	формула	ИЗМ.	0,05	0,098	0,2	0,5	0,8	1,0
1	k _{Hac}	_	1,0	1,0	1,05	1,15	1,3	1,45
2	$F_{\text{n.cp}} = 0.7 \frac{k_{\text{Hac}} I_{1\text{III}} u_{\text{III}}}{a} \times$	A	1449 3	2213.8	3254 7	4005.8	4476 1	4869 5
	$\times \left(k'_{\beta} + k_{y} k_{\text{обм1}} \frac{Z_{1}}{Z_{2}} \right)$		1119,5	2213,0	5251,7	1000,0	1170,1	1009,5
3	$B_{\phi\delta} = \frac{F_{\pi.cp}}{1,6\delta C_N} \cdot 10^{-3}$	Тл	1,53	2,34	3,45	4,24	4,74	5,15
4	$K_{\delta} = f(B_{\phi\delta})$	-	0,94	0,8	0,66	0,57	0,5	0,47
5	$c_{31} = (t_{z1} - b_{III1})(1 - K_{\delta})$	MM	0,62	2,06	3,50	4,43	5,15	5,46
6	$\Delta \lambda_{\rm m1. Hac} = \frac{h_{\rm m1} + 0.58 h_{\rm K}}{b_{\rm m1}} \times$	_	0,06	0,17	0,25	0,28	0,31	0,32
	$\times \frac{c_{31}}{c_{31} + 1,5b_{m1}}$							
7	$\lambda_{\pi 1.\text{Hac}} = \lambda_{\pi 1} - \Delta \lambda_{\pi 1.\text{Hac}}$	—	1,30	1,19	1,11	1,08	1,05	1,04
8	$\lambda_{\rm d1. hac} = \lambda_{\rm d1} K_{\delta}$	_	1,49	1,26	1,04	0,90	0,79	0,74
9	$x_{1.\text{Hac}} = x_1 \times \lambda_{\text{H}1,\text{Hac}} + \lambda_{\text{H}1,\text{Hac}} + \lambda_{\text{H}1}$	Ом	0,331	0,303	0,277	0,261	0,250	0,244
10	$\times \frac{11.4ac}{\lambda_{n1} + \lambda_{d1} + \lambda_{n1}}$							
10	$c_{32} = (t_{z2} - b_{III2})(1 - K_{\delta})$	MM	0,97	3,22	5,47	6,92	8,05	8,53

No	Расчётная	Ед.			Скольж	кение s		
п/п	формула	ИЗМ.	0,05	0,098	0,2	0,5	0,8	1,0
11	$\Delta \lambda_{\text{п2.нас}} = \frac{h_{\text{III2}} + h'_{\text{III2}}}{b_{\text{III2}}} \times \frac{c_{32}}{b_{\text{III2}}}$	_	0,26	0,45	0,52	0,55	0,56	0,57
	$b_{\rm III2} + c_{32}$							
12	$\lambda_{\pi 2\zeta.\text{Hac}} = \lambda_{\pi 2\zeta} - \Delta \lambda_{\pi 2.\text{Hac}}$	—	2,09	1,88	1,79	1,67	1,52	1,43
13	$\lambda_{\rm d2. Hac} = \lambda_{\rm d2} K_{\delta}$	—	1,96	1,67	1,38	1,19	1,05	0,98
14	$\begin{aligned} x'_{2\zeta,\text{Hac}} &= x'_{2} \times \\ \times \frac{\lambda_{\Pi 2\zeta,\text{Hac}} + \lambda_{\Pi 2,\text{Hac}} + \lambda_{\Pi 2}}{\lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2}} \end{aligned}$	Ом	0,439	0,391	0,355	0,326	0,298	0,283
15	$c_{1\pi.\text{Hac}} = 1 + \frac{x_{1.\text{Hac}}}{x_{12\pi}}$	_	1,015	1,014	1,013	1,012	1,011	1,011
16	$R_{\text{п.hac}} = r_1 + \frac{c_{1\text{п.hac}}r_{2\zeta}'}{s}$	Ом	1,762	0,966	0,555	0,324	0,274	0,258
17	$X_{\text{п.Hac}} = x_{1.\text{Hac}} + c_{1\text{п.Hac}} x'_{2\zeta.\text{Hac}}$	Ом	0,777	0,699	0,637	0,592	0,551	0,530
18	$I'_{2\pi,\text{Hac}} = \frac{U_{1\text{HOM},\phi}}{\sqrt{R_{\pi,\text{Hac}}^{2} + X_{\pi,\text{Hac}}^{2}}}$	A	114,2	184,5	260,4	326,2	357,4	373,5
19	$I_{1\Pi,\text{Hac}} = I'_{2\Pi,\text{Hac}} \times \frac{\sqrt{R_{\Pi,\text{Hac}}^2 + (X_{\Pi,\text{Hac}} + x_{12\Pi})^2}}{c_{1\Pi,\text{Hac}} x_{12\Pi}}$	A	116,9	188,0	264,8	331,1	362,4	378,4
20	$k'_{\text{нас}} = \frac{I_{1 \text{п.нас}}}{I_{1 \text{п}}}$ (сравнить с 1-й строкой данной таб- лицы)	_	1,01	1,06	1,17	1,29	1,37	1,41
21	$I_{1\pi}^* = \frac{I_{1\pi.\text{Hac}}}{I_{1\text{HOM}}}$	_	2,20	3,54	4,99	6,24	6,82	7,12
22	$M^* = \left(\frac{I'_{2\Pi,\text{Hac}}}{I'_{2\text{HOM}}}\right)^2 K_R \frac{S_{\text{HOM}}}{S}$	_	2,01	2,67	2,69	1,88	1,65	1,6
		115						

Рис. 12.2. Пусковые характеристики АД с учётом эффекта вытеснения тока и насыщения: $(a) - M^* = f(s); (b) - I_{1\pi}^* = f(s)$

203. По построенным пусковым характеристикам (рис. 12.2) определяем критическое скольжение и максимальный момент, соответствующий критическому скольжению:

 $s_{\rm kp} = 0,14;$ $M_{\rm max}^* = 2,73.$

Тепловой расчёт

204. Электрические потери в пазовой части обмотки статора: $P'_{\mathfrak{III}} = k_{\rho} P_{\mathfrak{III}} \frac{2l_{1}}{l_{\mathfrak{CPIII}}} = 1,07 \cdot 1265 \cdot \frac{2 \cdot 0,17}{0,77} = 597,7 \text{ Br},$

где $P_{\rm 31} = 1265 \ {\rm Bt}$ – электрические потери мощности в обмотке статора в номинальном режиме (из табл. 12.1, столбец для $s_{\rm HOM} = 0,02$);

 $k_{0} = 1,07 -$ коэффициент увеличения потерь (стр. 71).

205. Превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя:

$$\Delta \vartheta_{\text{пов1}} = K \frac{P_{\text{эп1}}' + P_{\text{ст.осн}}}{\pi D l_1 \alpha_1} = 0, 2 \cdot \frac{597, 7 + 487, 4}{3, 14 \cdot 0, 214 \cdot 0, 17 \cdot 112} = 17, 0 \ ^{\circ}C,$$

где K = 0,2 – коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду (табл. П.29);

 $\alpha_1 = 112 \frac{B_T}{M^2 \cdot {}^\circ C} - коэффициент теплоотдачи с поверхности (рис. П.28).$

206. Расчетный периметр поперечного сечения паза статора

(стр. 71, полузакрытый трапецеидальный паз): $\Pi_{n1} = 2h_{n.\kappa} + b_1 + b_2 = 2 \cdot 22, 2 + 8, 4 + 11, 3 = 64, 1 \text{ мм} = 0,0641 \text{ м}.$

207. Перепад температуры в изоляции пазовой части обмотки статора:

$$\begin{split} \Delta \vartheta_{_{\rm H3,\Pi1}} &= \frac{P_{_{\rm 3\Pi1}}'}{Z_1\Pi_{_{\Pi1}}l_1'} \left(\frac{b_{_{\rm H3}}}{\lambda_{_{3\rm KB}}} + \frac{b_1 + b_2}{16\lambda_{_{3\rm KB}}'}\right) \cdot 10^{-3} = \\ &= \frac{597,7}{48 \cdot 0,0641 \cdot 0,17} \cdot \left(\frac{0,4}{0,16} + \frac{8,4 + 11,3}{16 \cdot 1,3}\right) \cdot 10^{-3} = 3,9 \,^{\circ}C \\ \text{где } \lambda_{_{3\rm KB}} &= 0,16 \,\frac{\mathrm{Br}}{\mathrm{M} \cdot {}^{\circ}C} \,\,(\text{стр. 72}); \\ \lambda_{_{3\rm KB}}' &= 1,3 \,\frac{\mathrm{Br}}{\mathrm{M} \cdot {}^{\circ}C} \,\,(\text{по рис. $\Pi.30 } \text{для } \frac{d}{d_{_{\rm H3}}} = \frac{1,25}{1,33} = 0,94 \,\,). \end{split}$$

208. Электрические потери в лобовых частях катушек обмотки статора:

$$P'_{\text{\tiny 3Л1}} = k_{\rho} P_{\text{\tiny 31}} \frac{2l_{\text{\tiny 31}}}{l_{\text{\tiny cp1}}} = 1,07 \cdot 1265 \cdot \frac{2 \cdot 0,215}{0,77} = 755,9 \text{ Bt}.$$

209. Периметр условной поверхности охлаждения лобовой части одной катушки обмотки статора:

 $\Pi_{\pi 1} \approx \Pi_{\pi 1} = 64,1$ мм = 0,0641 м (стр. 72).

210. Перепад температуры по толщине изоляции лобовых частей обмотки статора:

$$\Delta \vartheta_{_{\text{H3.Л1}}} = \frac{P_{_{\text{3Л1}}}'}{2Z_1 \Pi_{_{\Pi}1} l_{_{\Pi}1}} \left(\frac{b_{_{\text{H3.Л1}}}}{\lambda_{_{3KB}}} + \frac{h_{_{\Pi}1}}{16\lambda_{_{3KB}}'} \right) \cdot 10^{-3} =$$
$$= \frac{755.9}{2 \cdot 48 \cdot 0.0641 \cdot 0.215} \cdot \left(\frac{0}{0.16} + \frac{25.5}{16 \cdot 1.3} \right) \cdot 10^{-3} = 0.7 \,^{\circ}C,$$

где $b_{_{\text{из.л1}}} = 0$, т.к. лобовые части обмотки без изоляции (стр. 72).

211. Превышение температуры наружной поверхности изоляции лобовых частей обмотки статора над температурой воздуха внутри машины:

$$\Delta \vartheta_{\text{пов.л1}} = K \frac{P_{\text{эл1}}'}{2\pi D l_{\text{выл1}} \alpha_1} = 0, 2 \cdot \frac{755,9}{2 \cdot 3, 14 \cdot 0, 214 \cdot 0, 07 \cdot 112} = 14,3^{\circ}C.$$

212. Среднее превышение температуры обмотки статора над температурой воздуха внутри двигателя:

$$\Delta \vartheta_{1}^{\prime} = \frac{\left(\Delta \vartheta_{\text{пов1}} + \Delta \vartheta_{\text{из.п1}}\right) 2l_{1} + \left(\Delta \vartheta_{\text{из.л1}} + \Delta \vartheta_{\text{пов.л1}}\right) 2l_{\text{л1}}}{l_{\text{ср1}}} = \frac{l_{\text{ср1}}}{0,77} = 17,6 \text{ }^{\circ}C$$

213. Эквивалентная поверхность охлаждения корпуса АД (поскольку двигатель имеет степень защиты IP44, то с учётом поверхности рёбер станины – стр. 73, формула (9.9)):

 $S_{\text{кор}} = (\pi D_{\text{a}} + 8\Pi_{\text{p}})(l_1 + 2l_{\text{выл1}}) = (3,14 \cdot 0,32 + 8 \cdot 0,355) \cdot (0,17 + 2 \cdot 0,07) = 1,19 \text{ м}^2,$ где $\Pi_{\text{p}} = 0,355 \text{ м}$ – условный периметр поперечного сечения ребер корпуса двигателя (по рис. П.31).

214. Сумма потерь, отводимых в воздух внутри двигателя (стр. 73, формула (9.11), т.к. двигатель имеет внешний вентилятор):

$$\sum P'_{\rm B} = \sum P + (k_{\rm \rho} - 1)(P_{\rm 31} + P_{\rm 32}) - (1 - K)(P'_{\rm 311} + P_{\rm ct.och}) - 0.9P_{\rm Mex} =$$

= 2860 + (1,07 - 1) \cdot (1265 + 624) -
-(1 - 0,2) \cdot (597,7 + 487,4) - 0.9 \cdot 208,6 = 1936,4 BT,

где $\sum P = 2860$ Вт – суммарные потери активной мощности АД в номинальном режиме (из табл. 12.1, столбец для $s_{\text{ном}} = 0,02$);

 $P_{_{92}} = 624$ Вт – электрические потери мощности в обмотке ротора в номинальном режиме (из табл. 12.1, столбец для $s_{_{\rm HOM}} = 0,02$).

215. Превышение температуры воздуха внутри машины над температурой окружающей среды:

$$\Delta \vartheta_{\rm B} = \frac{\sum P_{\rm B}'}{S_{\rm kop} \alpha_{\rm B}} = \frac{1936.4}{1.19 \cdot 22} = 74.0 \ ^{\circ}C,$$

где $\alpha_{\rm B} = 22 \frac{{\rm Br}}{{\rm M}^2 \cdot {}^{\circ}C} -$ коэффициент подогрева воздуха (рис. П.28).

216. Среднее превышение температуры обмотки статора над температурой окружающей среды:

 $\Delta \vartheta_1 = \Delta \vartheta'_1 + \Delta \vartheta_B = 17, 6 + 74, 0 = 91, 6 \circ C$.

Значение величины $\Delta \vartheta_1$ не выше допустимого превышения температуры обмотки для изоляции класса F, равного 100 °C (табл. П.30), поэтому нагрев двигателя находится в допустимых пределах.

217. Коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором (стр. 75, формула (9.17)):

$$k_m = m' \sqrt{\frac{n_1}{100} D_a} = 2,5 \cdot \sqrt{\frac{1500}{100} \cdot 0,32} = 5,48$$

где коэффициент m' = 2,5 (стр. 75).

218. Требуемый для охлаждения расход воздуха по (9.18):

$$Q_{\rm B} = \frac{k_m \sum P_{\rm B}'}{1100 \Delta \Theta_{\rm B}} = \frac{5,48 \cdot 1936,4}{1100 \cdot 74,0} = 0,13 \ \frac{{\rm M}^3}{\rm c}.$$

219. Расход воздуха, обеспечиваемый наружным вентилятором по (9.19):

$$Q'_{\rm B} = 0.6D_{\rm a}^3 \frac{n_1}{100} = 0.6 \cdot 0.32^3 \cdot \frac{1500}{100} = 0.29 \frac{{\rm m}^3}{{\rm c}}.$$

Расход воздуха, обеспечиваемый наружным вентилятором, больше требуемого, значит условия охлаждения АД выполняются (стр. 76).

СПИСОК ЛИТЕРАТУРЫ

1. Проектирование электрических машин : учебник для вузов / И.П. Копылов [и др.] ; под ред. И.П. Копылова. – 4-е изд., перераб. и доп. – М. : Издательство Юрайт, 2011. – 767 с.

2. Асинхронные двигатели серии 4А : Справочник / А.Э. Кравчик [и др.]. – М. : Энергоиздат, 1982. – 504 с. : ил.

3. Обмотки электрических машин : метод. указания к практ. занятиям и курсовому проекту по дисциплине «Электрические машины» для студентов специальностей 1-53 01 05 «Автоматизированные электроприводы» и 1-43 01 03 «Электроснабжение» днев. и заоч. форм обучения / авт.-сост.: В. С. Захаренко, В. В. Тодарев. – Гомель : ГГТУ им. П. О. Сухого, 2007. – 49 с.

ПРИЛОЖЕНИЕ

Рис. П.1. Высота оси вращения *h* двигателей различных мощности и частоты вращения:
(а) – со степенью защиты IP44; (б) – со степенью защиты IP23

Таблица П.1. Внешние диаметры статоров асинхронных двигателей различных высот оси вращения

<i>h</i> , мм	56	63	71	80	9	0
<i>D</i> _a , мм	0,08- 0,096	0,1-1,08	0,116-0,122	0,131-0,139	0,149	-0,157
<i>h</i> , мм	100	112	132	160	18	80
<i>D</i> _a , мм	0,168-0,175	0,191-0,197	0,225-0,233	0,272-0,285	0,313	-0,322
<i>h</i> , мм	200	225	250	280	315	355
<i>D</i> _a , мм	0,349-0,359	0,392-0,406	0,437-0,452	0,52-0,53	0,59	0,66

Таблица П.2. Отношение $K_D = D/D_a$ в асинхронных двигателях в зависимости от числа полюсов

2p	2	4	6	8	10-12
K _D	0,52-0,6	0,62-0,68	0,7-0,72	0,72-0,75	0,75-0,77

Рис. П.2. Значения коэффициента k_E в зависимости от D_a

Рис. П.З. Примерные значения КПД и *cos* ф асинхронных двигателей: (а) – со степенью защиты IP44 и мощностью до 30 кВт; (б) – со степенью защиты IP44 и мощностью до 400 кВт

Рис. П.4. Примерные значения КПД и соs фасинхронных двигателей со степенью защиты IP23

Рис. П.5. Электромагнитные нагрузки асинхронных двигателей со степенью защиты IP44 при высоте оси вращения: (а) – *h* ≤ 132 мм; (б) – *h* = 150...250 мм

Рис. П.6. Электромагнитные нагрузки асинхронных двигателей со степенью защиты IP44 при высоте вращения $h \ge 280$ мм (с продуваемым ротором)

Рис. П.7. Электромагнитные нагрузки асинхронных двигателей со степенью защиты IP23 при высоте оси вращения: (а) – *h* = 160...250 мм; (б) – *h* ≥ 280 мм

Рис. П.8. Отношение $\lambda = l_{\delta} / \tau$ у двигателей исполнения по степени защиты: (а) – IP44; (б) – IP23

Рис. П.9. Зубцовые деления статоров асинхронных двигателей с обмоткой из круглого провода с высотами оси вращения: $1 - h \le 90$ мм; 2 - 90 мм < h < 250 мм; $3 - h \le 280$ мм

Таблица П.3. Расчетная ширина радиальных каналов $b'_{\rm k}$ при $b_{\rm k}=10~{\rm MM}$

δ, мм	1,5	1,6	1,7	1,8	1,9	2,0	2,5	3,0
$b'_{\rm k}$, мм	7,3	7,1	7,0	6,9	6,8	6,7	6,2	5,7

Рис. П.10. Изменение коэффициента укорочения для различных гармоник в зависимости от β

 $Tаблица \ П.4.$ Коэффициент распределения $k_{\rm p}$ трехфазных обмоток с фазной зоной 60°

Номер		Число	пазов на	полюс и (þазу q_1	
гармо-						
ники	2	3	4	5	6	∞
1	0,966	0,96	0,958	0,957	0,957	0,955
5	0,259	0,217	0,205	0,2	0,197	0,191
7	0,259	0,177	0,158	0,149	0,145	0,136
11	0.966	0,177	0,126	0,11	0,102	0,087
13	0,966	0,217	0,126	0,102	0,084	0,073
17	0,259	0,96	0,158	0,102	0,84	0,056
19	0,259	0,96	0,205	0,11	0,084	0,05
23	0,966	0,217	0,958	0,149	0,092	0,041
25	0,966	0,177	0,958	0,2	0,102	0,038
29	0,259	0,177	0,205	0,957	0,145	0,033
31	0,259	0,217	0,158	0,957	0.197	0,051
35	0,966	0,96	0,126	0,2	0.957	0,027
37	0,966	0,96	0,126	0,149	0,957	0,026
41	0,259	0,217	0,158	0,11	0,157	0,022
47	0,966	0,177	0,958	0,102	0,102	0,020

Таблица П.5. Зубцовое деление статора t_{z1} , м, при прямоугольных пазах

Полюсное	Напряжение, В								
деление τ, м	до 660	3000	6000						
Менее 0,15	0,016 - 0,02	0,022-0,025	0,024 - 0,03						
0,15-0,4	0,017-0,022	0,024 - 0,027	0,026 - 0,024						
Более 0,4	0,02 - 0,028	0,026 - 0,032	0,028-0,038						

Таблица П.6. Диаметр и площади поперечного сечения круглых медных эмалированных проводов марок ПЭТВ и ПЭТ-155

Номинальный диаметр	Среднее значение диа-	Площадь поперечного
неизолированного	метра изолированного	сечения неизолирован-
провода, мм ²	провода, мм	ного провода, мм ²
0,08	0,1	0,00502
0,09	0,11	0,00636
0,1	0,122	0,00785
0,112	0,134	0,00985
0,125	0,147	0,01227
(0,132)	0,154	0,01368
0,14	0,162	0,01539
0,15	0,18	0,01767
0,16	0,19	0,0201
0,17	0,2	0,0227
0,18	0,21	0,0255
(0,19)	0,22	0,0284
0,2	0,23	0,0314
(0,212)	0,242	0,0353
0,224	0,259	0,0394
(0,236)	0,271	0,0437
0,25	0,285	0,0491
(0,265)	0,3	0,0552
0,28	0,315	0,0616
(0,3)	0,335	0,0707
0,315	0,35	0,0779
0,335	0,37	0,0881
0,355	0,395	0,099
0,375	0,415	0,1104
0,4	0,44	0,1257

	Среднее значение диа-	Площадь поперечного
неизолированного	метра изолированного	сечения неизолирован
провода, мм ²	провода, мм	ного провода, мм ²
0,425	0,565	0,1419
0,45	0,49	0,159
(0,475)	0,515	0,1772
0,5	0,545	0,1963
(0,53)	0,585	0,221
0,56	0,615	0,246
0,6	0,655	0,283
0,63	0,69	0,312
(0,67)	0,73	0,353
0,71	0,77	0,396
0,75	0,815	0,442
0,8	0,865	0,503
0,85	0,915	0,567
0,9	0,965	0,636
0,95	1,015	0,709
1,0	1,08	0,785
1,06	1,14	0,883
1,12	1,2	0,985
1,18	1,26	1,094
1,25	1,33	1,227
1,32	1,405	1,368
1,40	1,485	1,539
1,5	1,585	1,767
1,6	1,685	2,011
1,7	1,785	2,27
1,8	1,895	2,54
1,9	1,995	2,83
2	2,095	3,14
2,12	2,22	3,53
2,24	2,34	3,94
2,36	2,46	4,36
2,5	2,6	4,91

Рис. П.12. К расчету размеров прямоугольных пазов статора: (а) – открытых; (б) – закрытых

Рис. П.13. К расчету размеров зубцовой зоны статоров с обмоткой из круглого провода:

(а) – (в) – различные конфигурации пазов

Участок магнитной цепи	Обозначе-	Испо	лнение I	Р44 при	числе полю	сов 2р	ŀ	Ісполнен	ие IP23 пр	ои числе і	юлюсов 2	'.p
	ние	2	4	6	8	10 и 12	2	4	6	8	10	12
Ярмо статора	B_{a}		1,4-1,6		1,15-1,35	1,1-1,2	1,45-1,6			1,2-1,4 1,1-1		1,1-1,3
Зубцы статора при постоян- ном сечении (обмотка из круглого провода)	B_{ZI}		1,6-1,9			1,6-1,8	1,8-2,05 1,7		1,7-	1,95 1,6-		-1,9
Зубцы статора при наиболее узком сечении: • при полуоткрытых пазах • при открытых пазах	B _{Z1max} B _{Z1max}		1,75-1,95 1,6-1,9				1,9-2,1 1,7-2,0	1,9-2,1 1,7-2,0	1,9-2,1 1,7-2,0	1,8-2,0 1,7-2,0	1,8-2,0 1,7-2,0	1,8-2,0 1,7-2,0
Ярмо ротора: • короткозамкнутого • фазного	$B_j \ B_j$	≤1,45 ≤1,3	≤1,4 ≤1,3	≤1,2 ≤1,15	$\leq 1,0$ $\leq 0,9$	$\leq 1,0$ $\leq 0,9$	≤1,55 ≤1,4	≤1,5 ≤1,4	≤1,3 ≤1,2	≤1,1 ≤1,0	$\leq 1,1$ $\leq 1,0$	$\leq 1,1$ $\leq 1,0$
Зубцы ротора при постоянном сечении (трапецеидальные пазы)	B_{Z2}		1,7-1,95				1,75-2,0					
Зубцы ротора в наиболее уз- ком сечении: • короткозамкнутого • фазного	B _{Z2max} B _{Z2max}	1,5 1,75	1,5-1,7 1,75-2,15 1,7-1,95			1,75-2,0 1,9-2,2			1,7- 1,8:	-1,95 5-2,1		

Таблица П.7. Допустимые значения индукции на различных участках магнитной цепи, Тл

Примечание. Индукции на участках магнитной цепи в большинстве асинхронных двигателей не отличаются от указанных в таблице более чем на 5 %.

Таблица П.8. Способы изолирования листов электротехнической стали и коэффициенты заполнения сталью магнитопроводов статора и ротора с номинальным напряжением до 660 В

Высота	Статор		Короткозамкнутый р	оотор	Фазный ротор		
оси вра- щения	Способ изоли- рования листов	kc	Способ изолирова- ния листов	<i>k</i> c	Способ изолирова- ния листов	<i>k</i> c	
50-250	Оксидирование	0,97	Оксидирование	0,97		_	
280-355	Лакировка	0,95	Оксидирование	0,97	Лакировка	0,95	

Таблица П.9. Припуски по ширине и высоте паза

Высота оси	Припус	ки, мм
вращения <i>h</i> , мм	по ширине паза Δb_{π}	по высоте паза Δh_{Π}
50 - 132	0,1	0,1
160 - 250	0,2	0,2
280 - 355	0,3	0,3
400 - 500	0,4	0,4

Таблица П.10. Средние значения ширины шлица $b_{\rm m}$ полузакрытых пазов статоров асинхронных двигателей с обмоткой из круглого провода, мм

<i>h</i> , мм	ų,	исло пол	юсов дв	игателя	2 <i>p</i>
	2	4	6-8	10	12
50-63	1,8	1,8	1,8	_	_
71	2	2	2	_	
80-90	3	3	2,7	_	
100,112	3,5	3,5	3	_	_
132	4	3,5	3,5	_	
160-250	4	3,7	3,7	_	
280-315	_	_	_	4	4

Таблица П.11. Изоляция обмотки статоров асинхронных двигателей с высотой оси вращения до 250 мм на напряжение до 660 В

		Высота		Наименование мат	гериала изоляции	Толщина	Число	Односто-
Рисунок	Тип	оси вра-	Позиция	(пленкосте	жлопласт)	материа-	слоёв	ронняя
	обмотки	щения,		Класс нагрев	зостойкости	ла, мм		толщина,
		MM		В	F, H			MM
Zat		5080	1			0,2	1	0,2
-2			2			0,3		0,3
	Однослой-	90132	1	Изофлекс	Имидофлекс	0,25	1	0,25
	ная		2			0,35		0,35
			1			0,4		0,4
/		160					1	
			2			0,5		0,5
			1			0.4		0.4
-3			1			0,4		0,4
	Пруходой	180 250		Upothuero	Имилофлекс		- 1	
(двухслои-	180230	2	Изофлекс	тмидофлеке	0,4	1	0,4
	пал							
			3	.6.		0.5		0.5
			5			0,5		0,5
		1				1		
				133				

Рис. П.14. К выбору воздушного зазора асинхронных двигателей

Таблица П.12. Рекомендуемые числа пазов роторов асинхронных двигателей с короткозамкнутым ротором

	Число		Число пазов ротора
2p	пазов		
	статора	без скоса пазов	со скосом пазов
	1		
	10	04.4.54	
2	12	9*, 15*	-
	18	11*, 12*, 15*, 21*, 22	14*, (18), 19*, 22*, 26, 28*, (30), 31, 33, 34, 35
	24	15*, (16)*, 17*, 19, 32	18, 20, 26, 31, 33, 34, 35
	30	22, 38	(18), 20, 21, 23, 24, 37, 39, 40, 25, 27, 29, 43,
	36	26, 28, 44, 46	25, 27, 29, 43, 45, 47
	42	32, 33, 34, 50, 52	_
	48	38, 40, 56, 58	37, 39, 41, 55, 57, 59
4	12	9*	15*
	18	10*, 14*	18*, 22*
	24	15*, 16*, 17, (32)	16, 18, (20), 30, 33, 34, 35, 36
	36	26, 44, 46	(24), 27, 28, 30, (32), 34, 45, 48
	42	(34), (50), 52, 54	(33), 34, (38), (51), 53
	48	34, 38, 56, 58, 62, 64	(36), (38), (39), 40, (44), 57, 59
	60	50, 52, 68, 70, 74	48, 49, 51, 56, 64, 69, 71
	72	62, 64, 80, 82, 86	61, 63, 68, 76, 81, 83
6	36	26, 46, (48)	28*, 33, 47, 49, 50
	54	44, 50, 64, 66, 68	42, 43, 51, 65, 67
	72	56, 58, 62, 82, 84, 86, 88	57, 59, 60, 61, 83, 85, 87, 90
	90	74, 76, 78, 80, 100, 102,	75, 77, 79, 101, 103, 105

	Число		Число пазов ротора
2p	пазов		
	статора	без скоса пазов	со скосом пазов
	1		
		104	
8	48	(34), 36, 44, 62, 64	35, 44, 61, 63, 65
	72	56, 58, 86, 88, 90	56, 57, 59, 85, 87, 89
	84	66, (68), 70, 98, 100,	(68), (69), (71), (97), (99), (101)
		102, 104	
	96	78, 82, 110, 112, 114	79, 80, 81, 83, 109, 111, 113
10	60	44, 46, 74, 76	57, 69, 77, 78, 79
	90	68, 72, 74, 76,104, 106,	70, 71, 73, 87, 93, 107, 109
		108, 110, 112, 114	
		86, 88, 92, 94, 96, 98,	99, 101, 103, 117, 123, 137, 139
		102, 104, 106,	
	120	134, 136, 138, 140, 142,	
		146	
12	72	56, 64, 80, 88	69, 75, 80, 89, 91, 92
	90	68,70, 74, 88, 98, 106,	(71), (73), 86, 87, 93, 94, (107), (109)
		108,110	84, 89, 91, 104, 105, 111, 112, 125, 127
	108	86, 88, 92, 100, 116, 124,	
		128, 130, 132	125, 127, 141, 147, 161, 163
	144	124, 128, 136, 152, 160.	
		164, 166, 168, 170, 172	

Примечания

1) В скобках указаны числа пазов, при которых возможно повышение вибрации двигателей.

2) Звездочкой отмечены числа пазов, применяемые, в основном, в машинах малой мощности.

Таблица П.13. Значения коэффициента $k_{\rm B}$

<i>h</i> , мм	5063	71250	280	355	400500			
2p	26	28	2	412	4	6	812	
k _B	0,19	0,23	0,22	0,23	0,2	0,23	0,25	

Таблица П.14. Рекомендуемые марки стали

Марка стали	2013	2212	2214	2312	2412
Высота оси вращения	45250	160250	71250	280355	280560

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н,	A/m				
0,4	56	56	57	58	59	60	60	61	61	62
0,5	63	63	64	65	66	67	67	68	68	69
0,6	70	70	71	72	73	74	74	75	76	77
0,7	78	79	80	81	82	83	84	85	86	87
0,8	88	89	90	91	92	93	94	95	96	97
0,9	99	100	101	102	103	104	105	106	107	108
1	ПО	111	113	114	115	117	118	120	121	123
1,1	125	126	127	128	129	132	133	134	136	138
1,2	141	146	152	158	164	170	176	182	188	194
1,3	200	210	220	230	240	250	260	270	280	290
1,4	300	320	350	380	410	430	460	500	540	580
1,5	620	670	780	890	1000	1130	1240	1350	1460	1580
1,6	1700	1860	2020	2180	2340	2500	2700	2800	3000	3200
1,7	3400	3700	4000	4300	4700	5000	5400	5800	6200	6600
1,8	7000	7500	8000	8500	9200	10000	10600	11 200	11 800	12400
1,9	13000	13600	14200	14 800	15600	16500	17300	18100	18900	19800
2	20700	22600	24400	26300	28100	30000	36000	42000	48000	54000
2,1	60000	67000	74000	81000	88000	95000	102000	109000	116000	123000
2.2	130000	138000	146000	154000	162000	170000	178000	186000	194000	202000
2,3	210000	218000	226000	234000	242000	250000	258000	266000	274000	282000
2,4	290000	298000	306000	314000	322000	330000	338000	346000	354000	362000

Таблица П.15. Основная кривая намагничивания (сталь 2013)

Таблица П.16. Кривая намагничивания для ярма асинхронных двигателей (сталь 2013)

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н,	A/m		-	-	-
0,4	52	53	54	55	56	58	59	60	61	62
0,5	64	65	66	67	69	71	72	74	76	78
0,6	80	81	83	85	87	89	91	93	95	97
0,7	100	102	104	106	108	111	113	115	118	121
0.8	124	126	129	132	135	138	140	143	146	149
0,9	152	155	158	161	164	168	171	174	177	181
1	185	188	191	195	199	203	206	209	213	217
1.1	221	225	229	233	237	241	245	249	253	257
1,2	262	267	272	277	283	289	295	301	307	313
1,3	320	327	334	341	349	357	365	373	382	391
1,4	400	410	420	430	440	450	464	478	492	506
1,5	520	542	564	586	608	630	654	678	702	726
1,6	750	788	826	864	902	940	982	1020	1070	111
1.1	1150	1220	1290	1360	1430	1500	1600	1700	1800	190
1.8	2000	2160	2320	2490	2650	2810	2960	3110	3270	342
1.9	3570	3800	4030	4260	4490	4720	4930	5140	5350	556
2	5770	6000	6300	6600	7000	7400	7900	8400	9000	970
					136					
					130					

Таблица П.17. Кривая намагничивания для зубцов асинхронных двигателей (сталь 2013)

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н,	А/м				
0,4	124	127	130	133	136	138	141	144	147	!50
0,5	154	157	160	164	167	171	174	177	180	184
0,6	188	191	194	198	201	205	208	212	216	220
0,7	223	226	229	233	236	240	243	247	250	253
0,8	256	259	262	265	268	271	274	277	280	283
0,9	286	290	293	297	301	304	308	312	316	320
1	324	329	333	338	342	346	350	355	360	365
1,1	370	375	380	385	391	396	401	406	411	417
1.2	424	430	436	442	448	455	461	467	473	479
1.3	486	495	504	514	524	533	563	574	584	585
1,4	586	598	610	622	634	646	658	670	683	696
1,5	709	722	735	749	763	777	791	805	820	835
1,6	850	878	906	934	962	990	1020	1050	1080	1110
1,7	1150	1180	1220	1250	1290	1330	1360	1400	1440	1480
1,8	1520	1570	1620	1670	1720	1770	1830	1890	1950	2010
1,9	2070	2160	2250	2340	2430	2520	2640	2760	2890	3020
2	3150	3320	3500	3680	3860	4040	4260	4480	4700	4920
2,1	5140	5440	5740	6050	6360	6670	7120	7570	8020	8470
2,2	8920	9430	9940	10460	10980	11 500	12000	12600	13200	13800
2,3	14400	15 100	15800	16500	17200	18000	18800	19600	20500	21 400

Таблица П.18. Основная кривая намагничивания (стали 2212, 2214 и 2312)

	,	· ۱			(ч – г	1	·	
В, Тл	0	0,01	0,02	0,03	0.04	0,05	0,06	0,07	0,08	0,09
					Н,	A/m				
0,4	68	69	70	71	72	73	73	74	75	75
0,5	76	77	78	79	80	81	82	83	84	85
0,6	86	87	88	89	90	91	92	93	94	95
0,7	96	99	103	108	113	118	122	126	131	135
0,8	140	145	150	155	160	165	170	175	180	185
0,9	190	195	200	205	210	215	220	225	230	235
1	240	24«	252	258	264	270	276	282	288	294
1.1	300	310	320	330	340	350	360	370	380	390
1,2	400	410	420	430	440	460	470	480	500	520
1,3	550	580	610	650	690	730	780	830	880	940
1,4	1000	1060	1120	1180	1240	1300	1360	1420	1480	1540
1,5	1600	1750	1900	2050	2200	2350	2500	2700	2900	3100
1,6	3400	3600.	3800	4100	4400	4700	5300	5900	6500	7100
1,7	7700	8200	8900	9400	10000	10600	11 100	11 700	12200	12800
1,8	13400	14000	14600	15200	15800	16400	17000	17600	18200	18800

<i>В</i> , Тл	0	0,01	0,02	0,03	0.04	0,05	0,06	0,07	0,08	0,09				
		Н, А/м												
1,9	19400	20000	21800	23700	25700	27800	30000	32200	34400	36600				
2	38800	41000	43200	45400	47600	49800	52000	54500	57500	60500				
2.1	65500	72500	80000	88000	96000	104000	112000	120000	128000	136000				
2,2	144000	152000	160000	168000	176000	184000	192000	200000	208000	216000				
2,3	224000	232000	240000	248000	256000	264000	272000	280000	288000	296000				
2,4	304000	312000	320000	328000	336000	344000	352000	360000	368000	376000				

Таблица П.19. Кривая намагничивания для ярма асинхронных двигателей (стали 2212, 2214 и 2312)

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н, 1	A/m				
0,4	89	91	93	94	96	98	100	102	104	106
0,5	108	110	113	115	118	120	122	124	126	128
0,6	131	134	136	139	141	144	147	150	153	156
0,7	159	162	166	169	172	176	180	183	186	190
0,8	194	198	201	204	208	212	216	220	223	227
0,9	231	235	239	243	248	252	255	260	265	269
1	274	279	284	289	295	300	305	311	318	323
1,1	332	338	344	351	357	367	374	382	390	398
1,2	410	418	426	435	444	455	466	475	487	498
1,3	509	521	533	546	558	572	585	600	618	635
1,4	656	675	695	717	740	763	789	815	843	870
1,5	905	934	965	1000	1040	1090	1130	1190	1240	1290
1,6	1370	1440	1520	1590	1660	1720	1820	1910	2010	2100
1,7	2180	2310	2410	2550	2610	2720	2840	2980	3130	3290
1,8	3460	3630	3800	3970	4140	4301	4490	4670	4850	5040
1.9	5220	5600	6000	6400	6900	7400	7900	8500	9100	9700
2	10400	11 100	11 800	12500	13300	14100	14900	15800	16700	17600

Таблица П.20. Кривая намагничивания для зубцов асинхронных двигателей (стали 2212, 2214 и 2312)

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09		
	Н, А/м											
0,4	140	143	146	149	152	155	158	161	164	171		
0,5	174	177	180	184	186	190	192	196	198	202		
0,6	204	209	213	216	221	224	229	233	237	241		
0,7	245	249	253	257	262	267	272	277	282	287		
0.8	292	297	302	306	311	316	322	326	331	337		
0,9	342	347	353	360	366	372	379	384	390	396		
1	403	409	417	425	433	440	450	460	470	477		

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н,	А/м				
1,1	488	497	509	517	527	537	547	559	570	582
1,2	593	602	613	626	638	651	663	677	695	710
1.3	724	738	755	770	790	804	820	840	857	879
1.4	897	917	936	955	977	1000	1020	1040	1060	1090
1,5	1120	1150	1170	1210	1240	1270	1310	1330	1370	1410
1,6	1450	1490	1530	1560	1610	1650	1690	1750	1790	1840
1,7	1900	1940	2000	2070	2140	2220	2300	2380	2500	2600
1,8	2700	2800	2920	3050	3220	3330	3490	3610	3710	4000
1,9	4160	4350	4600	4800	5030	5330	5430	5790	6130	6420
2	6750	7170	7400	7790	8150	8520	9000	9400	9750	10200
2.1	10600	11000	11500	12100	12600	13000	13500	14100	14700	15400
2,2	15900	16500	17300	17800	18500	19100	19600	20300	21 100	22000
2,3	23100	24300	25500	26800	28 100	29500	30900	32400	33900	36400

Таблица П.21. Основная кривая намагничивания (сталь 2412)

	<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
						Н,	А/м				
Í	0,4	67	68	69	70	71	72	73	74	75	76
	0,5	77	78	79	80	81	83	84	86	87	89
	0,6	90	92	94	96	97	99	101	103	105	107
	0,7	109	111	113	115	117	119	122	124	127	130
	0,8	133	135	138	141	144	147	150	154	158	162
	0,9	166	170	174	179	184	187	194	199	205	211
	1	217	223	230	237	244	252	260	269	277	286
	1,1	295	305	314	324	334	344	355	366	377	388
	1,2	399	411	423	435	447	460	473	486	500	540
	1,3	585	630	680	735	795	860	930	1000	1070	1150
	1,4	1230	1320	1420	1520	1630	1750	1870	2010	2160	2320
	1,5	2500	2680	2870	3080	3300	3540	3800	4090	4380	4700
	1,6	5000	5380	5760	6200	6650	7120	7650	8200	8800	9400
	1,7	10000	10500	11000	11 500	12000	12500	13 100	13700	14300	14900
	1,8	15600	16200	16800	17500	18300	19100	20000	20900	21 900	22900
	1,9	23900	25000	26200	27400	28700	30000	32000	36000	42000	50000
	2	59000	68000	77000	86000	95000	104000	113000	122000	131 000	140000
	2,1	149000	158000	167000	176000	185000	194000	203000	212000	221 000	230000
	2,2	239000	248000	257000	266000	275000	284000	293000	302000	311 000	320000
	2,3	329000	333800	347000	356000	365000	374000	383000	392000	401 000	410000
	2,4	419000	428000	437000	446000	455000	464000	473000	482000	491000	500000
						139					

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
		_	_		Н,	А/м				
0,4	48	48	49	50	51	51	52	52	53	54
0,5	55	56	56	57	58	59	60	61	61	62
0,6	63	64	65	66	67	68	69	69	70	71
0,7	72	72	73	74	75	76	76	77	78	79
0,8	81	82	83	84	85	87	88	90	92	94
0,9	96	98	100	102	104	105	107	109	112	114
1	116	118	121	124	126	129	132	136	139	143
1,1	146	150	154	158	162	167	172	176	182	188
1,2	192	198	204	210	216	222	230	238	246	260
1,3	272	288	300	316	330	340	358	370	386	399
1,4	410	440	460	490	530	570	610	660	710	770
1,5	820	890	960	1030	1100	1170	1230	1310	1400	1480
1,6	1560	1640	1730	1820	1920	2000	2100	2260	2440	2600
1,7	2800	2960	3100	3260	3400	3580	3740	3900	4100	4300
1,8	4500	4700	5000	5300	5500	5800	6100	6400	6800	7200
1,9	7600	8000	8500	9100	9700	10300	11 100	11900	13 100	14200
2	16000	18000	20000	22000	23800	25500	27600	29600	31500	33800

Таблица П.22. Кривая намагничивания для ярма асинхронных двигателей (сталь 2412)

Таблица П.23. Кривая намагничивания для зубцов асинхронных двигателей (сталь 2412)

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
					Н,	А/м				
0,4	72	73	74	75	77	78	79	80	81	82
0,5	83	84	85	86	87	88	89	90	91	92
0,6	93	94	95	96	97	98	99	101	102	104
0,7	105	106	108	110	111	113	115	117	118	120
0,8	122	124	126	128	130	132	134	136	138	140
0,9	142	144	147	149	151	155	158	160	163	165
1	168	171	175	177	180	184	188	191	196	200
1,1	204	207	212	216	222	227	232	237	242	247
1,2	254	259	265	272	277	284	291	298	307	316
1,3	323	333	341	351	361	372	383	394	404	421
1,4	425	432	461	480	497	518	537	554	573	596
1,5	622	644	673	700	728	756	795	828	859	890
1,6	932	976	1020	1070	1130	1180	1260	1350	1440	1520
1,7	1630	1740	1870	2020	2130	2300	2450	2630	2830	3040
1,8	3190	3410	3590	3830	4100	4400	4600	4800	5100	5400
1,9	5700	5900	6300	6600	6900	7200	7700	8100	8300	8700
2	9200	9700	10000	10500	10900	11400	12000	12700	13 100	13700
2,1	14200	15000	15800	16500	17200	17900	18700	19800	20600	21 600
2,2	22600	23700	24600	26100	26900	28700	30000	31400	33200	35400

<i>В</i> , Тл	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	
	Н, А/м										
2,3	37600	39900	42200	44600	47000	49500	52000	54600	57200	59800	

Таблица П.24. К расчету размеров лобовых частей катушек всыпной обмотки

	Катушки статора							
Число								
полюсов 2р	лобовые ча	сти не изо-	лобовые ча	асти изоли-				
	лиро	ваны	рованы лентой					
	k_{π}	$k_{\scriptscriptstyle \mathrm{B}\mathrm{b}\mathrm{I}\mathrm{J}}$	k_{π}	$k_{\scriptscriptstyle m B b J J}$				
2	1,2	0,26	1,45	0,44				
4	1,3	0,4	1,55	0,5				
6	1,4	0,5	1,75	0,62				
≥ 8	1,5	0,5	1,9	0,72				

Таблица П.25. К расчету размеров лобовых частей катушек обмотки из прямоугольного провода

Напряжение	<i>S</i> , 10 ⁻³ , м	<i>В</i> , 10 ⁻³ , м	Напряжение	<i>S</i> , 10 ⁻³ м	<i>В</i> , 10 ⁻³ м
U,B			U, \mathbf{B}		
≤ 660	3,5	25	60006600	67	3550
30003300	56	3540	10000	78	6065

Примечание. Меньшие значения – для катушек с непрерывной изоляцией. *Таблица П.26*. Удельные электрические сопротивления материала проводников обмоток

Тип обмотки	Материал	Удельное ти при	электричес ивление, Ом температур	кое сопро- [·] м, е, ° <i>С</i>
		20	75	115
Обмотка из медных обмо- точных проводов или не- изолированной медной про- волоки или шины	медь	$\frac{1}{57} \cdot 10^{-6}$	$\frac{1}{47} \cdot 10^{-6}$	$\frac{1}{41} \cdot 10^{-6}$
Короткозамкнутые обмотки роторов асинхронных дви-	алюминиевые шины	$\frac{1}{35} \cdot 10^{-6}$	$\frac{1}{28} \cdot 10^{-6}$	$\frac{1}{26} \cdot 10^{-6}$
гателей	алюминий литой	$\frac{1}{30} \cdot 10^{-6}$	$\frac{1}{24} \cdot 10^{-6}$	$\frac{1}{22} \cdot 10^{-6}$

Рис. П.15. К расчету коэффициентов магнитной проводимости пазового рассеяния фазных обмоток:

(a) - (e) – обмотки статора; (ж) – (и) – обмотки фазного ротора

Рис. П.16. Определение коэффициента $k'_{c\kappa}$ к расчету проводимости дифференциального рассеяния

Рис. П.17. Определение величины Δ_Z в зависимости от $b_{\rm m2}/t_{z2}$ при различных значениях $b_{\rm m2}/\delta$

Рис. П.18. К расчету коэффициентов магнитной проводимости пазового рассеяния короткозамкнутых роторов:

(а) - (д) – полузакрытые пазы; (е), (ж) – закрытые пазы

Таблица $\Pi.27$ – Удельные потери в стали, Вт/кг, толщиной 0,5 мм при индукции B = 1 Тл и частоте перемагничивания f = 50 Гц

Марка стали	Удельные потери, Вт/кг	Марка стали	Удельные потери, Вт/кг
2013	2,5	2312	1,75
2212	2,2	2412	1,3
2214	2,0		

Таблица П.28. К расчету механических потерь двигателей большой мощности

2p	2	4	6	8	10	12
$K_{\rm T}$	3,65	1,5	0,7	0,35	0,2	0,2

Рис. П.19. К расчету поверхностных потерь в асинхронных машинах: (а) – пульсация индукции в воздушном зазоре; (б) – зависимость β_0 от $b_{\rm m}/\delta$

Рис. П.20. Схемы замещения фазы обмотки приведенной асинхронной машины

Рис. П.21. К расчету пульсационных потерь в асинхронных машинах

Рис. П.23. Зависимость ϕ' от "приведенной высоты" ζ

Рис. П.24. К расчету K_R в стержнях различной конфигурации: h_r – расчетная глубина проникновения тока

Рис. П.25. Насыщение участков коронок зубцов потоком рассеяния

Рис. П.26. Функция K_{δ} в зависимости от фиктивной индукции $B_{\phi\delta}$

Рис. П.27. К расчету влияния насыщения потоком рассеяния на коэффициент магнитной проводимости паза:

(а) - (ж) – различные конфигурации верхней части пазов

тиолици п.27. Средние значения коэффициента К

Исполнение	Число полюсов двигателя 2р									
двигателя										
по способу	2	4	6	8	10	12				
защиты										
IP44	0,22	0,20	0,19	0,18	0,17	0,16				
IP23	0,84	0,80	0,78	0,76	0,74	0,72				

Рис. П.28. Средние значения коэффициентов теплоотдачи с поверхности α₁ и подогрева воздуха α_в для асинхронных двигателей исполнения IP44 (в зависимости от D_a): (a) – при h < 160 мм;
(б) – при h = 160...250 мм; (в) – при h ≥ 280 мм (для двигателей с продуваемым ротором)

Рис. П.29. Средние значения коэффициентов теплоотдачи с поверхности α_1 и подогрева воздуха $\alpha_{_{\rm B}}$ для асинхронных двигателей исполнения IP23 (в зависимости от $D_{_{\rm a}}$): (а) – при h = 160...250 мм, $U_{_{\rm HOM}} = 660$ В; (б) – при $h \ge 280$ мм, $U_{_{\rm HOM}} \le 660$ В; (в) – при $U_{_{\rm HOM}} = 6000$ В

Рис. П.30. Средние значения коэффициентов теплопроводности λ'_{экв} внутренней изоляции в катушках обмотки из круглого эмалированного провода в зависимости от отношения *d* / *d*_{из}

Рис. П.31. Средние значения периметра поперечного сечения ребер корпуса асинхронных двигателей

Таблица П.30. Предельно допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды +40 °C и высоте над уровнем моря не более 1000 м (по ГОСТ 183-74)

		Изоляционный материал (по ГОСТ 8865—87)														
		А		Е		В		F		Н						
No	No															
п/п	Часть электрических машин	*	**	***	*	**	***	*	**	***	*	**	***	*	**	***
1	Обмотки переменного тока машин мощностью 5000 кВ·А и выше или с длиной сердечника 1 м и более		60	60	_	70	70	_	80	80	_	100	100	_	125	125
2	Обмотки: а) обмотки переменного тока машин мощностью 5000 кВ·А с дли- ной сердечника менее 1 м б) обмотки возбуждения машин постоянного и переменного тока с возбуждением постоянным током, кроме указанных в п.п. 3,4 и 5 настоящей таблицы в) якорные обмотки, соединенные с коллектором	50	60	-	65	75	_	70	80		85	100		105	125	_
3	Обмотки возбуждения неявнополюсных машин с возбуждением постоянным током	90 - 100 - 135							-							
4	Однорядные обмотки возбуждения с оголенными поверхностями	65	65		80	80		90	90	_	110	110	_	135	135	-
5	Обмотки возбуждения малого сопротивления, имеющие несколько слоев и компенсационные обмотки	60	60	-	75	75	_	80	80	_	100	100	_	125	125	-
6	Изолированные обмотки, непрерывно замкнутые на себя	60	Ì		75			80			100			125		
8	Неизолированные обмотки, непрерывно замкнутые на себя Сердечники и другие стальные части, не соприкасающиеся с изо- лированными обмотками	Превышение температуры этих частей не должно достигать значений, которые создавали бы опасность поврежде- ния изоляционных или других смежных материалов самих элементов и соседних частей														
9	Сердечники и другие стальные части, соприкасающиеся с изоли- рованными обмотками	60	_	60	75		75	80	_	80	100		100	125		125
10	Коллекторы и контактные кольца незащищенные и защищенные	60	_		70		_	80	_		90		_	100	_	_

Примечание. * – методом термометра; ** – методом сопротивления; *** – методом температурных индикаторов, уложенных в паз.

Рис. П.32. Асинхронный двигатель с короткозамкнутым ротором со степенью защиты IP44(54), *h* =160 мм (продольный и поперечный разрезы): 1 – вал; 2, 15 – подшипники; 3, 12 – подшипниковые шиты; 4 – замыкающие кольца ротора; 5 – лобовые части обмотки статора; 6 – коробка выводов; 7 – корпус; 8 – сердечник статора; 9 – сердечник ротора; 10 – балансировочные грузы;

11 – вентиляционные лопатки ротора; 13 — кожух вентилятора;
 14 – вентилятор; 16 – втулки вентилятора; 17 – стопорные винты;
 18 — скобы крепления сердечника статора; 19 – болты заземления

Рис. П.33. Двигатель серии 4А с короткозамкнутым ротором со степенью защиты IP23: 1, 13 – подшипники; 2, 11 – диффузоры; 3. 8 – подшипниковые щиты; 4 – коробка выводов; 5 – стопорный винт; 6 – сердечник статора; 7 – корпус; 9 – лобовые части обмотки статора; 10 – замыкающее кольцо обмотки ротора; 12 – вентиляционные лопатки; 14 – вал; 15 – скобы крепления сердечника статора; 16 – болт заземления; 17 – подшипниковая крышка

Рис. П.34. К определению установочных размеров асинхронных электродвигателей в соответствии с ГОСТ 31606-2012

Таблица П.31. Установочные размеры асинхронных электродвигателей исполнения IM1 в соответствии с ГОСТ 31606-2012 (в миллиметрах)

Габарит	Установочный	h	b_{10}	l_{10}	<i>l</i> ₃₁	d_{10}
	размер	(H)	(A)	(B)	(C)	(K)
56	-	56	90	71	36	5.8
63	-	63	100	80	40	5,0
71		71	112	90	45	7
80		80	125	100	50	
90	S	90	140	100	56	10
70	L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	140	125		
100	S	100	160	112	63	
100	L	100	100			
112	М	112	190	140	70	12
132	S	132	216		80	
152	М	132	210	178	07	
	S			1/0		
160	М	160	254	210	108	15
	L			254		

Габарит	Установочный	h	b_{10}	l_{10}	<i>l</i> ₃₁	d_{10}
	размер	(H)	(A)	(B)	(C)	(K)
	S			203		
180	М	180	279	241	121	15
	L			279		
200	М	200	318	267	133	
	L		010	305	100	19
225	S	225	356	286	149	
	М			311		
250	S	250	406		168	
	М			349		24
280	S	280	457	368	190	
	М		,	419		
315	S	315	508	406	216	
	М			457		28
355	S	355	610	500	254	
200	М	200	010	560		

СОДЕРЖАНИЕ

Введение	3
1. Определение главных размеров электродвигателя	4
2. Расчёт обмотки, паза и ярма статора	9
3. Расчёт обмотки, паза и ярма ротора	20
4. Расчёт магнитной цепи асинхронной машины	28
5. Определение параметров асинхронной машины для рабочего	
режима	36
6. Расчёт постоянных потерь мощности	44
7. Рабочие характеристики асинхронного двигателя	51
8. Пусковые характеристики асинхронного двигателя	57
8.1 Расчёт пусковых характеристик с учётом эффекта вытесне-	
ния тока	57
8.2 Расчёт пусковых характеристик с учётом насыщения маг-	
нитной системы асинхронной машины	64
9. Тепловой расчёт	70
10. Графическая часть проекта	77
11. Варианты задания к курсовому проекту	78
12. Пример расчёта	81
Список литературы	120
Приложение	121

ПРОЕКТИРОВАНИЕ ТРЕХФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Учебно-методическое пособие по курсовому проектированию по дисциплинам «Электрические машины» и «Электромеханика» для студентов специальностей 1-43 01 02 «Электроэнергетические системы и сети» и 1-43 01 03 «Электроснабжение (по отраслям)» дневной и заочной форм обучения

Составители: Медведев Константин Михайлович Козлов Андрей Владимирович

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 19.04.19.

> Per. № 52E. http://www.gstu.by