

### Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Высшая математика»

## В. И. Вальковская, В. И. Лашкевич

# ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по дисциплине «Математика» для студентов технических специальностей дневной и заочной форм обучения

УДК 517(075.8) ББК 22.16я73 В16

Рекомендовано научно-методическим советом факультета автоматизированных и информационных систем ГГТУ им. П. О. Сухого (протокол № 10 от 30.05.2011 г.)

Рецензент: зав. каф. «Физика» ГГТУ им. П. О. Сухого д-р физ.-мат. наук, проф. П. А. Хило

#### Вальковская, В. И.

В16 Интегральное исчисление функции одной переменной: учеб.-метод. пособие по дисциплине «Математика» для студентов техн. специальностей днев. и заоч. форм обучения / В. И. Вальковская, В. И. Лашкевич. – Гомель: ГГТУ им. П. О. Сухого, 2011. – 108 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: http://lib.gstu.local. – Загл. с титул. экрана.

Включает три раздела: «Неопределенный интеграл», «Определенный интеграл» и «Несобственные интегралы первого и второго рода». Содержит основные понятия, определения, формулы и доказательства наиболее важных теорем.

Для студентов технических специальностей дневной и заочной форм обучения.

УДК 517(075.8) ББК 22.16я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2011

### ГЛАВА 1

## НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

### § 1. Первообразная и неопределенный интеграл

Рассмотрим следующую задачу: дана функция f(x), требуется найти такую функцию F(x), производная которой равна f(x), т.е.

$$F'(x) = f(x).$$

**Определение 1.** Функция F(x) называется первообразной от функции f(x) на отрезке [a,b], если во всех точках этого отрезка выполняется равенство F'(x) = f(x).

<u>Пример</u>. Найти первообразную от функции  $f(x) = x^2$ .

Из определения первообразной следует, что функция  $F(x) = \frac{x^3}{3}$ 

является первообразной, т.к.  $\left(\frac{x^3}{3}\right)' = x^2$ .

Легко видеть, что если для данной функции f(x) существует первообразная, то эта первообразная не является единственной. Так, в предыдущем примере можно было взять в качестве первообразных следующие функции:  $F(x) = \frac{x^3}{3} - 1$ ,  $F(x) = \frac{x^3}{3} + 7$  или вообще

$$F(x) = \frac{x^3}{3} + C$$
 (где  $C$  – произвольная постоянная), т.к.  $\left(\frac{x^3}{3} + C\right)' = x^2$ .

С другой стороны, можно доказать, что функциями вида  $\frac{x^3}{3} + C$  исчерпываются все первообразные от функции  $x^2$ . Это следует из следующей теоремы.

**ТЕОРЕМА**. Если  $F_1(x)$  и  $F_2(x)$  – две первообразные от функции f(x) на отрезке [a,b], то разность между ними равна постоянному числу.

### Доказательство:

В силу определения первообразной имеем:

$$F'_1(x) = f(x)$$
  
 $F'_2(x) = f(x)$  (1.1)

для всех  $x \in [a,b]$ .

Обозначим:

$$F_1(x) - F_2(x) = \varphi(x)$$
 (1.2)

Тогда на основании равенств (1.1) будет:

$$F_1'(x) - F_2'(x) = f(x) - f(x) = 0$$

ИЛИ

$$\varphi'(x) = [F_1'(x) - F_2'(x)] = 0$$

для всех  $x \in [a,b]$ .

Но из равенства  $\varphi'(x) = 0$  следует, что  $\varphi(x)$  есть постоянная.

Действительно, применим теорему Лагранжа к функции  $\varphi(x)$ , которая, очевидно, непрерывна и дифференцируема на отрезке [a,b]. Какова бы ни была точка x на отрезке [a,b], в силу теоремы Лагранжа имеем

$$\varphi(x) - \varphi(a) = (x - a)\varphi'(\xi)$$
, где  $a < \xi < x$ .

Так как  $\varphi'(\xi) = 0$ , то

$$\varphi(x) - \varphi(a) = 0$$
 или  $\varphi(x) = \varphi(a)$  (1.3)

Таким образом, функция  $\varphi(x)$  в любой точке x отрезка [a,b] сохраняет значение  $\varphi(a)$ , а это и значит, что функция  $\varphi(x)$  является постоянной на отрезке [a,b]. Обозначая постоянную  $\varphi(a)$  через C, из равенств (1.2) и (1.3) получим:

$$F_1(x) - F_2(x) = C.$$

Из доказанной теоремы следует, что если для данной функции f(x) найдена какая-нибудь одна первообразная F(x), то любая другая первообразная для f(x) имеет вид F(x) + C, где C = const.

**Определение 2.** Если функция F(x) является первообразной для функции f(x), то выражение F(x) + C называется неопределенным интегралом от функции f(x) и обозначается  $\int f(x) dx$ .

Таким образом, по определению:

$$\int f(x)dx = F(x) + C,$$

если F'(x) = f(x).

При этом функцию f(x) называют подынтегральной функцией, f(x)dx — подынтегральным выражением, знак  $\int$  — знаком интеграла. Следовательно, неопределенный интеграл представляет собой семейство функций y = F(x) + C.

С геометрической точки зрения неопределенный интеграл представляет совокупность кривых, каждая из которых получается путем сдвига одной из прямых параллельно самой себе вверх или вниз, т.е. вдоль оси Oy.

Возникает вопрос: для всякой ли функции f(x) существуют первообразные. Оказывается, что не для всякой, но если функция f(x) непрерывна на отрезке [a,b], то для этой функции существует первообразная.

Нахождение первообразной для данной функции f(x) называется интегрированием функции f(x).

Из определения 2 следует:

1. Производная от неопределенного интеграла равна подынтегральной функции, т.е. если F'(x) = f(x), то и

$$\left(\int f(x)dx\right)' = \left(F(x) + C\right)' = f(x) \tag{1.4}$$

Последнее равенство нужно понимать в том смысле, что производная от любой первообразной равна подынтегральной функции.

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению:

$$d(\int f(x)dx) = f(x)dx \ (1.5)$$

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная:

$$\int dF(x) = F(x) + C.$$

### § 2. Некоторые свойства неопределенного интеграла

**ТЕОРЕМА 1**. Неопределенный интеграл от алгебраической сум мы двух функций равен сумме интегралов

$$\int [f_1(x) + f_2(x)] dx = \int f_1(x) dx + \int f_2(x) dx$$
 (2.1)

Для доказательства найдем производные от левой и правой частей этого равенства. На основании равенства (1.4) находим:

$$\left( \int [f_1(x) + f_2(x)] dx \right)' = f_1(x) + f_2(x)$$

$$\left( \int f_1(x) dx + \int f_2(x) dx \right)' = \left( \int f_1(x) dx \right)' + \left( \int f_2(x) dx \right)' = f_1(x) + f_2(x)$$

Таким образом, производные от левой и правой частей равенства (2.1) равны между собой, т.е. производная от любой первообразной, стоящая в левой части, равняется производной от любой функции, стоящей в правой части равенства. Следовательно, любая функция, стоящая в левой части равенства (2.1), отличается любой функции, стоящей в правой части равенства (2.1), на постоянное число.

В этом случае и понимается равенство (2.1).

**TEOPEMA 2**. Постоянный множитель можно выносится за знак интеграла

$$\int af(x)dx = a \int f(x)dx$$
 (2.2)

Для доказательства равенства (2.2) найдем производные от левой и правой его частей:

$$\left(\int af(x)dx\right)' = af(x),$$

$$(a \int f(x) dx)' = a (\int f(x) dx)' = af(x).$$

Производные от правой и левой частей равны, следовательно, как и в равенстве (2.1), разность двух любых функций, стоящих слева и справа, есть постоянная. В этом смысле и следует понимать равенство (2.2).

При вычислении неопределенных интегралов полезно иметь в виду следующие правила:

1. Если 
$$\int f(x)dx = F(x) + C$$
, то

$$\int f(ax)dx = \frac{1}{a}F(ax) + C. (2.3)$$

Действительно, дифференцируя левую и правую части равенства (2.3), получим:

$$\left(\int f(ax)dx\right)' = f(ax)$$

$$\left(\frac{1}{a}F(ax)\right)' = \frac{1}{a}\left(F(ax)\right)_{x}' = \frac{1}{a}F'(ax) \cdot a = F'(ax) = f(ax)$$

Производные от правой и левой частей равны, что и требовалось доказать.

2. Если 
$$\int f(x)dx = F(x) + C$$
, то

$$\int f(x+b)dx = F(x+b) + C.$$
 (2.4)

3. Если 
$$\int f(x)dx = F(x) + C$$
, то

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C. (2.5)$$

Равенства (2.4) и (2.5) доказываются дифференцированием правой и левой частей равенств.

## § 3. Таблица интегралов

Прежде чем приступить к изложению методов интегрирования, приведем таблицу интегралов от простейших функций.

1. 
$$\int Cdx = 0$$
,  $C - \text{const}$ 

2. 
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$3. \int \frac{dx}{x} = \ln|x| + C$$

$$4. \int \sin x dx = -\cos x + C$$

$$5. \int \cos x dx = \sin x + C$$

6. 
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

7. 
$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

8. 
$$\int \operatorname{tg} x dx = -\ln|\cos x| + C$$

$$9. \int \cot x dx = \ln|\sin x| + C$$

$$10. \int e^x dx = e^x + C$$

11. 
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

12. 
$$\int \frac{dx}{1+x^2} = \arctan x + C$$

13. 
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

14. 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

15. 
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$16. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

17. 
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

# *Пример 1*. Вычислить интеграл:

$$\int \left(3x^4 - 7\sin x + 5\sqrt{x} + \frac{10}{x}\right) dx = \int 3x^4 dx - \int 7\sin x dx + \int 5\sqrt{x} dx + \int \frac{10}{x} dx = 3\int x^4 dx - 7\int \sin x dx + 5\int x^{1/2} dx + 10\int \frac{dx}{x} = 3\frac{x^5}{5} + \int \cos x + 5\frac{x^{3/2}}{3/2} + 10\ln|x| + C = \frac{3}{5}x^5 + 7\cos x + \frac{10}{3}x^{3/2} + 10\ln|x| + C.$$

### Пример 2. Вычислить интеграл:

$$\int \left(\frac{3}{\sqrt[3]{x^5}} + \frac{1}{2\sqrt{x}} + x \cdot \sqrt[4]{x} + 5^x\right) dx = \int \left(3 \cdot x^{-5/3} + 2x^{-1/2} + x^{5/4} + 5^x\right) dx =$$

$$= 3 \int x^{-5/3} dx + 2 \int x^{-1/2} dx + \int x^{5/4} dx + \int 5^x dx =$$

$$= \frac{3x^{-2/3}}{-2/3} + \frac{2x^{1/2}}{1/2} + \frac{x^{9/4}}{9/4} + \frac{5^x}{\ln 5} + C = -\frac{9}{2}x^{-2/3} + 4x^{1/2} + \frac{4}{9}x^{9/4} + \frac{5^x}{\ln 5} + C =$$

$$= -\frac{9}{2 \cdot \sqrt[3]{x^2}} + 4\sqrt{x} + \frac{4}{9} \cdot \sqrt[4]{x^9} + \frac{5^x}{\ln 5} + C.$$

# *Пример 3*. Вычислить интеграл:

$$\int \frac{(x - \sqrt{x})(1 + \sqrt{x})}{\sqrt[3]{x}} dx = \int \frac{x\sqrt{x} - \sqrt{x}}{\sqrt[3]{x}} dx = \int x^{7/6} dx - \int x^{1/6} dx =$$

$$= \frac{6}{13} x^{13/6} - \frac{6}{7} x^{7/6} + C.$$

## *Пример 4*. Вычислить интеграл:

$$\int (1+\sqrt{x})^4 dx = \int (1+4\sqrt{x}+6x+4x\sqrt{x}+x^2) dx = \int dx+4\int x^{1/2} dx + 4\int x^{$$

$$= x + \frac{8}{3}x^{3/2} + 3x^2 + \frac{8}{5}x^{5/2} + \frac{x^3}{3} + C.$$

### Вычислить интегралы

1. 
$$\int (3x^2 - 5)^3 dx$$
, 2.  $\int (x^6 + 3x^5 + \sqrt{x}) dx$ , 3.  $\int x^{\frac{1}{n}} dx$ ,

- 4.  $\int (tgx)^2 dx$ , 5.  $\int \sin^2 \frac{x}{2} dx$ , 6.  $\int \frac{dx}{x^2 + 8}$ ,

7. 
$$\int \frac{dx}{\sqrt{7-x^2}}$$
, 8.  $\int \frac{dx}{x^2-5}$  , 9.  $\int 2^x e^x dx$  .

8. 
$$\int \frac{dx}{x^2 - 5}$$

$$9. \int 2^x e^x dx$$

### § 4. Интегрирование методом замены переменного или способом подстановки

В основе этого метода лежит следующее простое замечание: если известно, что

$$\int f(x)dx = F(x) + C,$$

то тогда

$$\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C.$$

Здесь функции f(x),  $\varphi(t)$ ,  $\varphi'(t)$  – непрерывные функции своих аргументов.

Это прямо вытекает из правила дифференцирования сложной функции

$$[F(\varphi(t))]' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t),$$

если учесть, что F'(x) = f(x).

Пусть требуется вычислить интеграл  $\int f(x)dx$ . Причем непосредственно подобрать первообразную для функции f(x) мы не можем, но нам известно, что она существует.

Сделаем замену переменного в подынтегральном выражении, положив

$$x = \varphi(t), (4.1)$$

где  $\varphi(t)$  — непрерывная функция с непрерывной производной, имеющая обратную функцию  $t = \psi(x)$ .

Тогда  $dx = \varphi'(t)dt$ . В этом случае имеет место равенство:

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt . (4.2)$$

После интегрирования в правой части равенства вместо t подставим его выражение через x.

Функцию  $x = \varphi(t)$  следует выбирать так, чтобы можно было вычислить неопределенный интеграл, стоящий в правой части равенства (4.2).

Иногда при интегрировании целесообразно подбирать замену переменного не в виде  $x = \varphi(t)$ , а  $t = \psi(x)$ .

Пусть нам необходимо вычислить интеграл, имеющий вид:

$$\int \frac{\psi'(x)dx}{\psi(x)}.$$

Положим  $\psi(x) = t$ , тогда  $\psi'(x)dx = dt$  и

$$\int \frac{\psi'(x)dx}{\psi(x)} = \int \frac{dt}{t} = \ln|t| + C = \ln|\psi(x)| + C.$$

*Пример 1*. Вычислить интеграл:

$$\int e^{x^{2}} x dx = \begin{vmatrix} t = x^{2} \\ dt = 2x dx \\ x dx = \frac{dt}{2} \end{vmatrix} = \frac{1}{2} \int e^{t} dt = \frac{1}{2} e^{t} + C = \frac{1}{2} e^{x^{2}} + C.$$

*Пример 2*. Вычислить интеграл:

$$\int \frac{xdx}{1+x^2} = \begin{vmatrix} 1+x^2 = t \\ 2xdx = dt \\ xdx = \frac{dt}{2} \end{vmatrix} = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \ln|t| + C = \frac{1}{2} \ln|1+x^2| + C.$$

*Пример 3*. Вычислить интеграл:

$$\int \frac{xdx}{1+x^4} = \begin{vmatrix} x^2 = t \\ 2xdx = dt \\ xdx = \frac{dt}{2} \end{vmatrix} = \frac{1}{2} \int \frac{dt}{1+t^2} = \frac{1}{2} \arctan t + C = \frac{1}{2} \arctan x^2 + C.$$

*Пример 4*. Вычислить интеграл:

$$\int \sqrt[3]{\sin x} \cdot \cos x dx = \int \sin^{1/3} x \cos x dx = \begin{vmatrix} \sin x = t \\ \cos x dx = dt \end{vmatrix} =$$
$$= \int t^{1/3} dt = \frac{3}{4} t^{4/3} + C = \frac{3}{4} \sin^{4/3} x + C.$$

*Пример 5*. Вычислить интеграл:

$$\int \frac{\ln x dx}{x} = \begin{vmatrix} \ln x = t \\ \frac{1}{x} dx = dt \end{vmatrix} = \int t dt = \frac{t^2}{2} + C = \frac{\ln^2 x}{2} + C.$$

*Пример 6*. Вычислить интеграл:

$$\int \frac{\cos x dx}{1 + \sin^2 x} = \begin{vmatrix} \sin x = t \\ \cos x dx = dt \end{vmatrix} = \int \frac{dt}{1 + t^2} = \operatorname{arctg} t + C = \operatorname{arctg} \sin x + C.$$

<u>Пример 7</u>. Вычислить интеграл:

$$\int \sqrt{a^2 - x^2} dx = \begin{vmatrix} x = a \sin t \\ dx = a \cos t dt \\ t = \arcsin \frac{x}{a} \end{vmatrix} = \int \sqrt{a^2 - a^2 \sin^2 t} \cdot a \cos t dt = t = \arcsin \frac{x}{a}$$

$$= a \int \sqrt{a^2 (1 - \sin^2 t)} \cos t dt = a^2 \int \sqrt{1 - \sin^2 t} \cdot \cos t dt = a^2 \int \cos^2 t dt = t = a^2 \int \frac{1 + \cos 2t}{2} dt = \frac{a^2}{2} \left[ \int dt + \int \cos 2t dt \right] = \frac{a^2}{2} \left[ t + \frac{1}{2} \sin 2t \right] + C = \frac{a^2}{2} t + \frac{a^2}{4} \sin 2t + C = t = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{1}{2} x \sqrt{a^2 - x^2} + C.$$

Здесь  $\frac{a^2}{4}\sin 2t = \frac{a}{2}\sin t\cos t \cdot a = \frac{1}{2}x\cdot\sqrt{a^2-x^2}$ , т.к.  $\sin 2t = 2\sin t\cos t$ ,  $a\sin t = x$ ,  $a\cos t = \sqrt{a^2-x^2}$ .

<u>Пример 8</u>. Вычислить интеграл:

$$\int \frac{dx}{\sqrt{1-x^2 \arcsin x}} = \int \frac{d(\arcsin x)}{\arcsin x} = |\arcsin x = t| = \int \frac{dt}{t} =$$
$$= \ln|t| + C = \ln \arcsin x + C.$$

<u>Пример 9</u>. Вычислить интеграл:

$$\int \frac{\arctan^7 x dx}{1+x^2} = \int \arctan^7 x d(\arctan x) = |\arctan 7x = t| =$$

$$= \int t^7 dt = \frac{t^8}{8} + C = \frac{\arctan 8}{8} + C.$$

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, часто приходится в

промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит от того, сумеем ли мы подобать такую удачную замену переменных, которая бы упростила данный интеграл.

### Вычислить интегралы

1. 
$$\int \frac{dx}{\cos^2 x \cdot tg^4 x} dx$$
, 2.  $\int \frac{\sin 5x}{5 + 7\cos 5x} dx$ , 3.  $\int \frac{5^{\sqrt{x}}}{\sqrt{x}} dx$ ,

4. 
$$\int \frac{e^{2x}}{\sqrt{5-3e^{4x}}} dx$$
, 5.  $\int \frac{dx}{x(1-\ln x)^3} dx$ , 6.  $\int \frac{x^2}{(4+3x^3)^5} dx$ ,

7. 
$$\int \frac{2^{tgx}}{\cos^2 x} dx, \qquad 8. \int \frac{e^{\frac{1}{x}}}{x^2} dx, \qquad 9. \int tgx dx.$$

# § 5. Интегралы от некоторых функций, содержащих квадратный трехчлен

### **I.** Рассмотрим интеграл

$$Y_1 = \int \frac{dx}{ax^2 + dx + c}.$$

Преобразуем предварительно трехчлен, стоящий в знаменателе, представив его в виде суммы или разности квадратов.

$$ax^{2} + bx + c = a \left[ x^{2} + \frac{b}{a}x + \frac{c}{a} \right] = a \left[ x^{2} + 2 \cdot \frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right] =$$

$$= a \left[ \left( x + \frac{b}{2a} \right)^{2} + \left( \frac{c}{a} - \frac{b^{2}}{4a^{2}} \right) \right] = a \left[ \left( x + \frac{b}{2a} \right)^{2} \pm k^{2} \right],$$

где 
$$k^2 = \frac{c}{a} - \frac{b^2}{4a^2}$$
.

Знак плюс или минус берется в зависимости от того, будет ли выражение, стоящее слева, положительным или отрицательным, т.е. будут ли корни трехчлена  $ax^2 + bx + c$  комплексными или действительными.

Таким образом, интеграл  $Y_1$  примет вид:

$$Y_1 = \int \frac{dx}{ax^2 + dx + c} = \frac{1}{a} \int \frac{dx}{\left(x + \frac{b}{2a}\right)^2 \pm k^2}.$$

Сделаем в последнем интеграле замену переменного

$$x + \frac{b}{2a} = t$$
,  $dx = dt$ .

Тогда получим:

$$Y_{1} = \frac{1}{a} \int \frac{dt}{t^{2} \pm k^{2}} = \frac{1}{a} \cdot \left[ \int \frac{dt}{t^{2} + k^{2}} = \frac{1}{k} \operatorname{arctg} \frac{t}{k} + C \right]$$
$$\int \frac{dt}{t^{2} - k^{2}} = \frac{1}{2k} \ln \left| \frac{k - t}{k + t} \right| + C$$

*Пример 1*. Вычислить интеграл:

$$\int \frac{dx}{2x^2 + 8x + 20}.$$

Решение.

$$\int \frac{dx}{2x^2 + 8x + 20} = \begin{vmatrix} 2x^2 + 8x + 20 &= 2(x^2 + 4x + 10) &= \\ &= 2[x^2 + 2 \cdot 2x + 4 + 6] &= 2[(x + 2)^2 + 6] \end{vmatrix} =$$

$$= \frac{1}{2} \int \frac{dx}{(x + 2)^2 + (\sqrt{6})^2} = \begin{vmatrix} x + 2 &= t \\ dx &= dt \end{vmatrix} = \frac{1}{2} \int \frac{dt}{t^2 + (\sqrt{6})^2} =$$

$$= \frac{1}{2\sqrt{6}} \operatorname{arctg} \frac{t}{\sqrt{6}} + C = \frac{1}{2\sqrt{6}} \operatorname{arctg} \frac{x + 2}{\sqrt{6}} + C.$$

### **II.** Рассмотрим интеграл

$$Y_2 = \int \frac{Ax + B}{ax^2 + dx + c} dx.$$

Проведем тождественное преобразование подынтегральной функции:

$$Y_{2} = \int \frac{Ax + B}{ax^{2} + dx + c} dx = \begin{vmatrix} ax^{2} + bx + c = a \left[ \left( x + \frac{b}{2a} \right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} \right], \\ \left( ax^{2} + bx + c \right)' = 2ax + b \end{vmatrix} = \int \frac{\frac{A}{2a} (2ax + b) + \left( B - \frac{Ab}{2a} \right)}{ax^{2} + bx + c} dx.$$

Последний интеграл представим в виде суммы двух интегралов. Вынося постоянные множители за знак интегралов, получим:

$$Y_2 = \frac{A}{2a} \int \frac{2ax+b}{ax^2+bx+c} dx + \left(B - \frac{Ab}{2a}\right) \int \frac{dx}{ax^2+bx+c}.$$

Второй интеграл есть интеграл  $Y_1$ , вычислять который мы умеем.

В первом интеграле сделаем замену переменного:

$$ax^2 + bx + c = t$$
,  $(2ax + b)dx = dt$ .

Следовательно,

$$\int \frac{(2ax+b)}{ax^2+bx+c} dx = \int \frac{dt}{t} = \ln|t| + C = \ln|ax^2+bx+c| + C.$$

Таким образом, окончательно получаем:

$$Y_2 = \frac{A}{2a} \ln|ax^2 + bc + c| + \left(B - \frac{Ab}{2a}\right) Y_1.$$

<u>Пример 2</u>. Вычислить интеграл:

$$\int \frac{x+3}{x^2-2x-5} dx.$$

Решение.

$$\int \frac{x+3}{x^2 - 2x - 5} dx = \begin{vmatrix} x^2 - 2x - 5 &= x^2 - 2x + 1 - 1 - 5 &= \\ &= (x-1)^2 - 6 \\ &(x^2 - 2x - 5)' &= 2x - 2 \end{vmatrix} =$$

$$= \int \frac{\frac{1}{2}(2x-2)+1+3}{x^2-2x-5} dx = \frac{1}{2} \int \frac{2x-2}{x^2-2x-5} dx + 4 \int \frac{dx}{x^2-2x-5} =$$

$$= \frac{1}{2} \int \frac{d(x^2-2x-5)}{x^2-2x-5} + 4 \int \frac{dx}{(x-1)^2-6} =$$

$$= \frac{1}{2} \ln |x^2-2x-5| + \frac{4}{2\sqrt{6}} \ln \left| \frac{\sqrt{6}-(x-1)}{\sqrt{6}+(x-1)} \right| + C.$$

### **III.** Рассмотрим интеграл:

$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} \, .$$

С помощью преобразований, рассмотренных в п.І, этот интеграл сводится, в зависимости от знака a, к табличным интегралам вида: при a > 0

$$\int \frac{dt}{\sqrt{t^2 + k^2}}, \quad \int \frac{dt}{\sqrt{t^2 + k^2}} = \ln \left| t + \sqrt{t^2 \pm k^2} \right| + C;$$

при *a* < 0

$$\int \frac{dt}{\sqrt{k^2 - t^2}}, \quad \int \frac{dt}{\sqrt{k^2 - t^2}} = \arcsin \frac{t}{k} + C.$$

Пример 3. Вычислить 
$$\int \frac{dx}{\sqrt{2x^2 + 3x + 7}}$$
.

Решение.

$$\int \frac{dx}{\sqrt{2x^2 + 3x + 7}} = \begin{vmatrix} 2x^2 + 3x + 7 & 2\left(x^2 + \frac{3}{2}x + \frac{7}{2}\right) & = \\ & = 2\left(x^2 + \frac{6}{4}x + \frac{9}{16} - \frac{9}{16} + \frac{7}{2}\right) & = \\ & = 2\left[\left(x + \frac{3}{4}\right)^2 + \frac{47}{16}\right] \end{vmatrix} = \\ & = \int \frac{dx}{\sqrt{2}\left[\left(x + \frac{3}{4}\right)^2 + \left(\frac{\sqrt{47}}{4}\right)^2\right]} & = \frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{\left(x + \frac{3}{4}\right)^2 + \left(\frac{\sqrt{47}}{4}\right)^2}} & = \\ & = \frac{1}{\sqrt{2}}\ln\left|x + \frac{3}{4} + \sqrt{\left(x + \frac{3}{4}\right)^2 + \frac{47}{16}}\right| + C = \\ & = \frac{1}{\sqrt{2}}\left\{\ln\left|4x + 3 + 2\sqrt{4\left(x^2 + \frac{3}{2}x + \frac{7}{2}\right)}\right| - \ln 4\right\} + C.$$

**IV.** Интеграл вида  $\int \frac{Ax+B}{\sqrt{ax^2+bx+c}} dx$  вычисляется с помощью следующих преобразований, аналогичных тем, которые были рассмотрены в п.II.

$$\int \frac{Ax+B}{\sqrt{ax^2+bx+c}} \, dx = \begin{vmatrix} ax^2+bx+c = a \left[ \left( x + \frac{b}{2a} \right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} \right] \\ \left( ax^2+bx+c \right)' = 2ax+b \end{vmatrix} =$$

$$\int \frac{\frac{A}{2a}(2ax+b) + \left(B - \frac{Ab}{2a}\right)}{\sqrt{ax^2 + bx + c}} dx = \frac{A}{2a} \int \frac{2ax+b}{\sqrt{ax^2 + bx + c}} dx + \left(B - \frac{Ab}{2a}\right) \int \frac{dx}{\sqrt{ax^2 + bx + c}}.$$

Применив к первому из полученных интервалов подстановку:  $ax^2 + bx + c = t$ , (2ax + b)dx = dt, получим:

$$\int \frac{(2ax+b)dx}{\sqrt{ax^2+bx+c}} = \int \frac{dt}{\sqrt{t}} = \int t^{-1/2}dt = 2t^{1/2} + C = 2\sqrt{ax^2+bx+c} + C.$$

Второй же интеграл был рассмотрен в п.ІІІ настоящего параграфа.

Пример 4. Вычислить 
$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$$
.

Решение

$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx = \begin{vmatrix} x^2+4x+10=x^2+4x+4+6=\\ (x+2)^2+6\\ (x^2+4x+10)'=2x+4 \end{vmatrix} =$$

$$= \int \frac{\frac{5}{2}(2x+4) + (3-10)}{\sqrt{x^2 + 4x + 10}} dx = \frac{5}{2} \int \frac{2x+4}{\sqrt{x^2 + 4x + 10}} dx - 7 \int \frac{dx}{\sqrt{x^2 + 4x + 10}} =$$

$$= \frac{5}{2} \int \frac{d(x^2 + 4x + 10)}{\sqrt{x^2 + 4x + 10}} - 7 \int \frac{dx}{\sqrt{(x+2)^2 + 6}} =$$

$$= \frac{5}{2} \int (x^2 + 4x + 10)^{-1/2} d(x^2 + 4x + 10) - 7 \int \frac{d(x+2)}{\sqrt{(x+2)^2 + 6}} =$$

$$= \frac{5}{2} \cdot 2(x^2 + 4x + 10)^{1/2} - 7 \ln|x + 2 + \sqrt{(x+2)^2 + 6}| + C =$$

$$= 5\sqrt{x^2 + 4x + 10} - 7\ln\left|x + 2 + \sqrt{x^2 + 4x + 10}\right| + C.$$

### Вычислить интегралы

1. 
$$\int \frac{dx}{x^2 + 4x + 14}$$
, 2.  $\int \frac{dx}{5x^2 + 7x + 11}$ , 3.  $\int \frac{3x + 4}{x^2 + 7x + 13} dx$ ,

4. 
$$\int \frac{3x-11}{2x^2+3x+8} dx$$
, 5.  $\int \frac{dx}{\sqrt{x^2+3x+7}} dx$ , 6.  $\int \frac{xdx}{\sqrt{3x^2-4x+8}}$ 

### § 6. Интегрирование по частям

Пусть u и v две функции от x, имеющие непрерывные производные u'(x), v'(x).

Тогда по правилу дифференцирования произведения и имеем:

$$d(uv) = udv + vdu$$
 или  $udv = d(uv) - vdu$ .

Отсюда, интегрируя, получаем:

$$\int u dv = \int d(uv) - \int v du \quad \text{или} \quad \int u dv = uv - \int v du . (6.1)$$

Последняя формула называется формулой интегрирования по частям. Эта формула чаще всего применяется к интегрированию выражений, которые можно так представить в виде произведения двух сомножителей u и dv, чтобы нахождение функции v по ее дифференциалу dv и вычисление интеграла  $\int v du$  составляли в совокупности задачу более простую, чем непосредственное вычисление интеграла  $\int u dv$ .

Есть целые классы интегралов, например, интегралы вида:

$$\int x^k \cdot \sin bx dx, \qquad \int x^k e^{bx} dx,$$
$$\int x^k \cdot \cos bx dx, \qquad \int x^k \ln x dx$$

и некоторые интегралы, содержащие обратные тригонометрические функции, которые вычисляются именно с помощью интегрирования по частям.

# <u>Пример 1.</u> Вычислить интеграл $\int x \cos x dx$ .

Решение.  

$$\int x \cos x dx = \begin{vmatrix} u = x, & du = dx \\ dv = \cos x dx, & \int dv = \int \cos x dx \\ v = \sin x \end{vmatrix} = x \sin x - \int \sin x dx = x \sin x + \cos x + C.$$

## <u>Пример 2.</u> Найти $\int \arctan x dx$ .

Решение. 
$$\int \arctan x dx = \begin{vmatrix} u = \arctan x, & du = \frac{1}{1+x^2} dx \\ dv = dx, & \int dv = \int dx \end{vmatrix} =$$
$$v = x$$
$$= x \cdot \arctan x - \int \frac{x}{1+x^2} dx = x \cdot \arctan x - \frac{1}{2} \ln |1+x^2| + C.$$

# <u>Пример 3.</u> Вычислить $\int x^2 e^x dx$ .

Решение.
$$\int x^{2}e^{x}dx = \begin{vmatrix} u = x^{2}, & du = 2xdx \\ e^{x}dx = dv \\ \int e^{x}dx = \int dv, & e^{x} = v \end{vmatrix} = e^{x} \cdot x^{2} - 2\int xe^{x}dx =$$

$$= x^{2}e^{x} - 2\begin{vmatrix} u = x & du = dx \\ e^{x}dx = dv, & e^{x} = v \end{vmatrix} = x^{2}e^{x} - 2(e^{x} \cdot x - \int e^{x}dx) =$$

$$=x^2e^x-2e^xx+2e^x+C$$
.

В данном примере правило интегрирования по частям пришлось применить двукратно.

Так же, повторным применением этого правила, вычисляются интегралы:

$$\int P(x)e^{ax}dx$$
,  $\int P(x)\sin bxdx$ ,  $\int P(x)\cos bxdx$ ,

где P(x) – целый относительно x многочлен.

<u>Пример 4.</u> Вычислить  $\int (x^2 + 7x - 5)\cos 2x dx$ .

Решение.

$$\int (x^{2} + 7x - 5)\cos 2x dx = \begin{vmatrix} u = x^{2} + 7x - 5, & du = (2x + 7)dx \\ dv = \cos 2x dx, & \int dv = \int \cos 2x dx \end{vmatrix} = v = \frac{\sin 2x}{2}$$

$$= (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} - \frac{1}{2} \int (2x + 7) \cdot \sin 2x dx = (x^2 + 7x - 5) \cdot \frac{\sin 2x}{2} +$$

$$-\frac{1}{2} \begin{vmatrix} 2x + 7 = u, & du = 2dx \\ dv = \sin 2x dx, & \int dv = \int \sin 2x dx \end{vmatrix} = (x^2 + 7x - 5) \frac{\sin 2x}{2} - v = -\frac{\cos 2x}{2}$$

$$-\frac{1}{2}\left(-(2x+7)\cdot\frac{\cos 2x}{2}+\frac{2}{2}\int\cos 2xdx\right)=$$

$$= (x^2 + 7x - 5)\frac{\sin 2x}{2} + (2x + 7)\frac{\cos 2x}{4} - \frac{\sin 2x}{4} + C =$$

$$= (2x^2 + 14x - 11)\frac{\sin 2x}{4} + (2x + 7)\frac{\cos 2x}{4} + C.$$

<u>Пример 5.</u> Вычислить  $\int e^{ax} \cos bx dx$ .

Решение.

$$\int e^{ax} \cos bx dx = \begin{vmatrix} u = e^{ax}, & du = ae^{ax} dx \\ dv = \cos bx dx, & \int dv = \int \cos bx dx \end{vmatrix} = e^{ax} \cdot \frac{\sin bx}{b} - v = \frac{\sin bx}{b}$$

$$-\frac{a}{b} \int e^{ax} \sin bx dx = e^{ax} \frac{\sin bx}{b} - \frac{a}{b} \begin{vmatrix} u = e^{ax}, & du = ae^{ax} dx \\ dv = \sin bx dx, & \int dv = \int \sin bx dx \end{vmatrix} = v = -\frac{\cos bx}{b}$$

$$= e^{ax} \frac{\sin bx}{b} - \frac{a}{b} \left( -e^{ax} \frac{\cos bx}{b} + \frac{a}{b} \int e^{ax} \cos bx dx \right) =$$

$$= e^{ax} \frac{\sin bx}{b} + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx dx.$$

Таким образом, имеем:

$$\int e^{ax} \cos bx dx = e^{ax} \frac{\sin bx}{b} + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx dx.$$

Из последнего равенства имеем:

$$\int e^{ax} \cos bx dx + \frac{a^2}{b^2} \int e^{ax} \cos bx dx = e^{ax} \left( \frac{\sin bx}{b} + \frac{a}{b^2} \cos bx \right)$$
$$\left( 1 + \frac{a^2}{b^2} \right) \int e^{ax} \cos bx dx = e^{ax} \left( \frac{b \sin bx + a \cos bx}{b^2} \right)$$
$$\left( \frac{b^2 + a^2}{b^2} \right) \int e^{ax} \cos bx dx = e^{ax} \left( \frac{b \sin bx + a \cos bx}{b^2} \right)$$

откуда

$$\int e^{ax} \cos bx dx = \frac{e^{ax} \left( \frac{b \sin bx + a \cos bx}{b^2} \right)}{\frac{b^2 + a^2}{b^2}} = \frac{e^{ax} \left( b \sin bx + a \cos bx \right)}{a^2 + b^2}$$

Аналогично можно найти

$$\int e^{ax} \sin bx dx = \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 + b^2} + C$$

### Вычислить интегралы

1. 
$$\int x^2 \ln x dx$$
, 2.  $\int \frac{x \cdot \arcsin x}{\sqrt{1-x^2}} dx$ , 3.  $\int \cos x \cdot \ln \sin x dx$ ,

4. 
$$\int \frac{\ln tgx}{\cos^2 x} dx$$
, 5.  $\int \sin \ln x dx$ , 6.  $\int x \cdot e^{3x} dx$ .

# § 7. Рациональные дроби. Простейшие рациональные дроби и их интегрирование

Всякую рациональную функцию можно представить в виде рациональной дроби, т.е. в виде отношения двух многочленов:

$$\frac{Q(x)}{f(x)} = \frac{b_0 x^m + b_1 x^{m-1} + b_2 x^{m-2} + \dots + b_m}{a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n}.$$

Не ограничивая общность рассуждения, будем предполагать, что эти многочлены не имеют общих корней.

<u>Определение</u>. Если степень числителя ниже степени знаменателя, то дробь называется правильной, в противном случае дробь называется неправильной.

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), можно представить данную дробь в виде суммы многочлена и некоторой правильной дроби.

$$\frac{Q(x)}{f(x)} = M(x) + \frac{F(x)}{f(x)},$$

здесь M(x) – многочлен, а  $\frac{F(x)}{f(x)}$  – правильная дробь.

*Пример 1*. Дана неправильная рациональная дробь:

$$\frac{x^4 - 3x^3 + 2x^2 - 3x + 7}{x^2 + 3x + 1}.$$

Представить данную дробь в виде суммы многочлена и правильной рациональной дроби.

Решение.

Разделим числитель на знаменатель:

$$-\frac{x^{4} - 3x^{3} + 2x^{2} - 3x + 7}{x^{4} + 3x^{3} + x^{2}} \begin{vmatrix} x^{2} + 3x + 1 \\ x^{2} - 6x + 19 \end{vmatrix}$$

$$-\frac{6x^{3} + x^{2} - 3x + 7}{-6x^{3} - 18x^{2} - 6x}$$

$$-\frac{19x^{2} + 3x + 7}{19x^{2} + 57x + 19}$$

$$-\frac{54x - 12}{-54x - 12}$$

получим:

$$\frac{x^4 - 3x^3 + 2x^2 - 3x + 7}{x^2 + 3x + 1} = x^2 - 6x + 19 - \frac{54x + 12}{x^2 + 3x + 1}.$$

Так как интегрирование многочленов не представляет затруднений, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

Определение. Правильные рациональные дроби вида:

I. 
$$\frac{A}{x-a}$$
;
II.  $\frac{A}{(x-a)^k}$ ,  $k$  – целое число  $\geq 2$ ;

III. 
$$\frac{Ax + B}{x^2 + px + q}$$
 (корни знаменателя комплексные числа,

T.e. 
$$\frac{p^2}{4} - q < 0$$
);

IV. 
$$\frac{Ax+B}{\left(x^2+px+q\right)^k}$$
  $(k$  – целое положительное число  $\geq 2$ ,

корни знаменателя комплексные числа)

называются простейшими дробями I, II, III и IV типов.

Интегрирование простейших дробей типа I, II, III не составляет трудностей:

I. 
$$\int \frac{A}{x-a} dx = A \int \frac{dx}{x-a} = A \ln|x-a| + C$$

II. 
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = \frac{A(x-a)^{-k+1}}{1-k} + C = \frac{A}{(1-k)(x-a)^{k-1}} + C$$

III. 
$$\int \frac{Ax+B}{x^2 + px + q} dx = \int \frac{\frac{A}{2}(2x+p) + \left(B - \frac{Ap}{2}\right)}{x^2 + px + q} dx = \frac{A}{2} \int \frac{2x+p}{x^2 + px + q} dx + \left(B - \frac{Ap}{2}\right) \int \frac{dx}{x^2 + px + q} = \frac{A}{2} \int \frac{d(x^2 + px + q)}{x^2 + px + q} + \left(B - \frac{Ap}{2}\right) \cdot \int \frac{dx}{\left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right)} = \frac{A}{2} \ln |x^2 + px + q| + \frac{2B - Ap}{\sqrt{4q - p^2}} \operatorname{arctg} \frac{2x+p}{\sqrt{4q - p^2}} + C.$$

Более сложных вычислений требует интегрирование простейших дробей IV типа.

Пусть нам дан интеграл такого типа.

IV. 
$$\int \frac{Ax+B}{\left(x^2+px+q\right)^k} dx = \int \frac{\frac{A}{2}(2x+p)+\left(B-\frac{Ap}{2}\right)}{\left(x^2+px+q\right)^k} =$$

$$= \frac{A}{2} \int \frac{2x+p}{\left(x^2+px+q\right)^k} dx + \left(B-\frac{Ap}{2}\right) \int \frac{dx}{\left(x^2+px+q\right)^k} =$$

$$= \frac{A}{2} \int \left(x^2+px+q\right)^{-k} d\left(x^2+px+q\right) + \left(B-\frac{Ap}{2}\right) \cdot Y_k =$$

$$= \frac{A}{2} \frac{\left(x^2+px+q\right)^{-k+1}}{1-k} + \left(B-\frac{Ap}{2}\right) Y_k =$$

$$= \frac{A}{2} \frac{1}{(1-k)\left(x^2+px+q\right)^{k-1}} + \left(B-\frac{Ap}{2}\right) Y_k,$$

$$3 \text{ десь } Y_k = \int \frac{dx}{\left(x^2+px+q\right)^k}.$$

Рассмотрим  $Y_k$ , для этого запишем его в виде:

$$Y_k = \int \frac{dx}{\left[\left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right)\right]^k} = \int \frac{dt}{\left(t^2 + m^2\right)^k},$$

полагая:  $x + \frac{p}{2} = t$ , dx = dt,  $q - \frac{p^2}{4} = m^2$ , (по предположению корни знаменателя комплексные, т.е.  $q - \frac{p^2}{4} > 0$ .

$$Y_{k} = \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k}} = \frac{1}{m^{2}} \int \frac{\left(t^{2} + m^{2}\right) - t^{2}}{\left(t^{2} + m^{2}\right)^{k}} dt = \frac{1}{m^{2}} \int \frac{t^{2} + m^{2}}{\left(t^{2} + m^{2}\right)^{k}} dt - \frac{1}{m^{2}} \int \frac{t^{2} dt}{\left(t^{2} + m^{2}\right)^{k}} = \frac{1}{m^{2}} \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k-1}} - \frac{1}{m^{2}} \int \frac{t^{2} dt}{\left(t^{2} + m^{2}\right)^{k}};$$

$$(7.1)$$

Преобразуем последний интеграл:

$$\int \frac{t^2 dt}{\left(t^2 + m^2\right)^k} = \frac{1}{m^2} \int \frac{t \cdot t dt}{\left(t^2 + m^2\right)^k} = \frac{1}{2} \int \frac{t d\left(t^2 + m^2\right)}{\left(t^2 + m^2\right)^k} =$$
$$= -\frac{1}{2} \frac{1}{(k-1)} \int t d\left(\frac{1}{\left(t^2 + m^2\right)^{k-1}}\right)$$

Интегрируя по частям, будем иметь:

$$\int \frac{t^2 dt}{\left(t^2 + m^2\right)^k} = -\frac{1}{2(k-1)} \left[ t \cdot \frac{1}{\left(t^2 + m^2\right)^{k-1}} - \int \frac{dt}{\left(t^2 + m^2\right)^{k-1}} \right].$$

Подставляя это выражение в равенство (7.1), получим:

$$Y_{k} = \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k}} = \frac{1}{m^{2}} \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k-1}} + \frac{1}{2m^{2}(k-1)} \left[ \frac{t}{\left(t^{2} + m^{2}\right)^{k-1}} - \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k-1}} \right] = \frac{t}{2m^{2}(k-1)\left(t^{2} + m^{2}\right)^{k-1}} + \frac{2k-3}{2m^{2}(k-1)} \int \frac{dt}{\left(t^{2} + m^{2}\right)^{k-1}}.$$

В правой части содержится интеграл того же типа, что  $Y_k$ , но показатель степени знаменателя подынтегральной функции на единицу ниже (k-1), т.е. мы выразили  $Y_k$  через  $Y_{k-1}$ . Продолжая идти тем же путем, дойдем до известного интеграла:

$$Y_1 = \int \frac{dt}{t^2 + m^2} = \frac{1}{m} \operatorname{arctg} \frac{t}{m} + C.$$

Подставляя вместо t и m их значения, получим выражение интеграла IV через x, A, B, p, q.

Пример 2. Вычислить 
$$\int \frac{x-1}{\left(x^2+2x+3\right)^2} dx.$$

Решение.

$$\int \frac{x-1}{(x^2+2x+3)^2} dx = \int \frac{\frac{1}{2}(2x+2)+(-1-1)}{(x^2+2x+3)^2} dx = \frac{1}{2} \int \frac{2x+2}{(x^2+2x+3)^2} dx - \frac{1}{2} \int \frac{dx}{(x^2+2x+3)^2} = \frac{1}{2} \int \frac{d(x^2+2x+3)}{(x^2+2x+3)^2} - 2 \int \frac{dx}{(x^2+2x+3)^2} = \frac{1}{2} \int (x^2+2x+3)^{-2} d(x^2+2x+3) - 2 \int \frac{dx}{((x+1)^2+2)^2} = \frac{1}{2} \int \frac{dx}{((x+1)^2+2)^2} dt = \frac{1}{2} \int \frac{dt}{(t^2+2)^2} dt - \frac{1}{2} \int \frac{dt}{(t^2+2)^2} dt = \frac{1}{2} \int \frac{dt}{t^2+2} - \frac{1}{2} \int \frac{dt}{(t^2+2)^2} dt = \frac{1}{2} \int \frac{dt}{t^2+2} - \frac{1}{2} \int \frac{dt}{(t^2+2)^2} dt = \frac{1}{2} \int \frac{dt}{t^2+2} + \frac{1}{4} \int \frac{td(t^2+2)}{(t^2+2)^2} dt = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{1}{4} \int \frac{td}{t^2+2} - \frac{1}{4} \int \frac{dt}{t^2+2} = \frac{1}{2\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4} \int \frac{t}{t^2+2} - \frac{1}{4} \int \frac{dt}{t^2+2} = \frac{1}{2\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4} \int \frac{t}{t^2+2} - \frac{1}{4} \int \frac{dt}{t^2+2} = \frac{1}{2\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4} \int \frac{t}{t^2+2} - \frac{1}{4\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4} \int \frac{t}{t^2+2} - \frac{1}{4\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4} \int \frac{t}{t^2+2} - \frac{t}{4\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{t}{4\sqrt{2}} \arctan \frac{t}{2\sqrt{2}} + \frac{t}{4\sqrt{2}} \arctan \frac{t}{2\sqrt{2}} + \frac{t}{4\sqrt{2}} - \frac{t}{2\sqrt{2}} \arctan \frac{t}{2\sqrt{2}} + \frac{t}{4\sqrt{2}} - \frac{t}{2\sqrt{2}} \arctan \frac{t}{2\sqrt{2}} + \frac{t}{4\sqrt{2}} - \frac{t}{2\sqrt{2}} - \frac{t}{2\sqrt{2$$

$$= -\frac{x+2}{2(x^2+2x+3)} - \frac{\sqrt{2}}{4} \arctan \frac{x+1}{\sqrt{2}} + C$$

Представить дробь в виде суммы многочлена и правильной рациональной дроби

1. 
$$\frac{3x^3 - 10x^2 - 11x + 21}{x^2 - 5x + 4}, \quad 2. \quad \frac{x^4 - x^3 - 9x^2 - 10x - 14}{x^2 - 2x - 8},$$
3. 
$$\frac{x^5 - x^3 + 3x^2 - 10x}{x^3 - 2x + 3}, \quad 4. \quad \frac{2x^4 + 3x^3 - x + 11}{2x^2 - 3x + 1}.$$

Вычислить интегралы

1. 
$$\int \frac{7dx}{4x-3}$$
, 2.  $\int \frac{10dx}{7-15x}$ , 3.  $\int \frac{dx}{(x-3)^5}$ , 4.  $\int \frac{dx}{(7-2x)^4}$ ,

5. 
$$\int \frac{4x+5}{x^2-3x+7} dx$$
, 6.  $\int \frac{x+1}{(x^2-2x+3)^2} dx$ , 7.  $\int \frac{2x-3}{(x^2-4x+5)^3} dx$ .

## § 8. Разложение рациональной дроби на простейшие

Пусть нам дана правильная рациональная дробь  $\frac{F(x)}{f(x)}$ , предполагаем, что коэффициенты входящих в нее многочленов - действительные числа и что данная дробь несократимая. Тогда справедлива следующая теорема:

**ТЕОРЕМА 1**. Пусть x = a — корень знаменателя кратности k ,т.е.  $f(x) = (x-a)^k f_1(x)$ , где  $f_1(x) \neq 0$ , тогда данную правильную дробь  $\frac{F(x)}{f(x)}$  можно представить в виде суммы двух правильных дробей

$$\frac{F(x)}{f(x)} = \frac{A}{(x-a)^k} + \frac{F_1(x)}{(x-a)^{k-1} \cdot f_1(x)}$$
(8.1)

где A — не равная нулю постоянная, а  $F_1(x)$  — многочлен, степень которого ниже степени знаменателя  $(x-a)^{k-1}f_1(x)$ .

<u>Следствие.</u> К правильной рациональной дроби  $\frac{F_1(x)}{(x-a)^{k-1} \cdot f_1(x)}$ ,

входящей в равенство (8.1) можно применить аналогичные рассуждения.

Таким образом, если знаменатель имеет корень x = a кратности k , то можно написать

$$\frac{F(x)}{f(x)} = \frac{A}{(x-a)^k} + \frac{A_1}{(x-a)^{k-1}} + \dots + \frac{A_{k-1}}{x-a} + \frac{F_k(x)}{f_1(x)},$$

здесь  $\frac{F_k(x)}{f_1(x)}$  — правильная несократимая дробь. К ней также можно применить данную теорему, если  $f_1(x)$  имеет другие действительные корни.

Рассмотрим случай комплексных корней знаменателя. Следует отметить, что комплексные корни многочлена с действительными коэффициентами всегда попарно сопряжены.

В разложении многочлена на действительные множители каждой паре комплексных корней многочлена соответствует выражение вида  $x^2 + px + q$ . Если же комплексные корни имеют кратность n, то им соответствует выражение  $(x^2 + px + q)^n$ .

**ТЕОРЕМА 2**. Если  $f(x) = (x^2 + px + q)^n \varphi_1(x)$ , где многочлен  $\varphi_1(x)$ , не делится на  $x^2 + px + q$ , то правильную рациональную дробь  $\frac{F(x)}{f(x)}$  можно представить в виде суммы двух других правильных дробей следующим образом:

$$\frac{F(x)}{f(x)} = \frac{Mx + N}{(x^2 + px + q)^n} + \frac{\Phi_1(x)}{(x^2 + px + q)^{n-1}\phi_1(x)}, (8.2)$$

где  $\Phi_1(x)$  – многочлен, степень которого ниже степени многочлена  $(x^2 + px + q)^{n-1} \phi_1(x)$ .

Применяя к правильной дроби  $\frac{F(x)}{f(x)}$  результаты теорем 1 и 2 можно выделить последовательно все простейшие дроби соответствующие всем корням знаменателя f(x).

Таким образом, если

$$f(x) = (x-a)^{\alpha}$$
 .....  $(x-b)^{\beta}(x^2+px+q)^n$  .....  $(x^2+px+q)^m$ ,

то дробь  $\frac{F(x)}{f(x)}$  может быть представлена в виде:

$$+\frac{Cx+D}{\left(x^{2}+px+q\right)^{m}}+\frac{C_{1}x+D_{1}}{\left(x^{2}+px+q\right)^{m-1}}+\frac{C_{2}x+D_{2}}{\left(x^{2}+px+q\right)^{m-2}}+\ldots+\frac{C_{m-1}x+D_{m-1}}{x^{2}+px+q}$$

Коэффициенты  $A, A_1, ..., B, B_1, ...$  можно определить из следующих соображений. Написанное равенство (8.3) есть тождество, поэтому приведя дроби к общему знаменателю, получаем тождественные многочлены в числителях справа и слева. Приравнивая коэффициенты при одинаковых степенях x, получаем систему уравнений для определения неизвестных коэффициентов  $A, A_1, ..., B, B_1, ...$  Этот метод нахождения коэффициентов называется методом неизвестных коэффициентов.

Наряду с этим для определения коэффициентов можно воспользоваться следующим замечанием: так как многочлены, получившиеся в правой и левой частях равенства, после приведения к общему знаменателю должны быть тождественно равны, то их значения равны при любых частных значениях x. Придавая x частные значения, получим уравнения для определения неизвестных коэффициентов, входящих в равенство (8.3).

Исходя из сказанного, можно сделать вывод, что всякая правильная рациональная дробь представляется в виде суммы простейших рациональных дробей.

<u>Пример 1.</u> Пусть требуется разложить дробь  $\frac{x^2+2}{(x+1)^3(x-2)}$  на простейшие.

Решение.

На основании формулы (8.3) имеем:

$$\frac{x^2+2}{(x+1)^3(x-2)} = \frac{A}{(x+1)^3} + \frac{B}{(x+1)^2} + \frac{C}{x+1} + \frac{D}{x-2},$$

Приводим к общему знаменателю:

$$\frac{x^2+2}{(x+1)^3(x-2)} = \frac{A(x-2)+B(x+1)(x-2)+C(x+1)^2(x-2)+D(x+1)^3}{(x+1)^3(x-2)}$$

и приравняем числители:

$$x^{2} + 2 = A(x-2) + B(x^{2} - x - 2) + C(x^{3} - 3x - 2) + D(x^{3} + 3x^{2} + 3x + 1)$$

или

$$x^{2} + 2 = (C+D)x^{3} + (B+3D)x^{2} + (A-B-3C+3D)x + (-2A-2B-2C+D).$$

Приравнивая коэффициенты при  $x^3$ ,  $x^2$ , x,  $x^0$ , получаем систему уравнений для определения коэффициентов:

$$x^{3} | C + D = 0$$

$$x^{2} | B + 3D = 1$$

$$x | A - B - 3C + 3D = 0$$

$$x^{0} | -2A - 2B - 2C + D = 2$$

Решая эту систему, найдем: A = -1, B = 1/3, C = -2/9, D = 2/9.

В результате получаем разложение:

$$\frac{x^2+2}{(x+1)^3(x-2)} = -\frac{1}{(x+1)^3} + \frac{1}{3(x+1)^2} - \frac{2}{9(x+1)} + \frac{2}{9(x-2)}.$$

Разложитьна простейшие дроби следующие рациональные дроби

1. 
$$\frac{x^2+4x+3}{(x-1)(x+3)(x-4)}$$
, 2.  $\frac{x^2-x+14}{(x-4)^3(x-2)}$ , 3.  $\frac{x^2+1}{x^3+1}$ ,

4. 
$$\frac{x^3 - 2x^2 - 3x + 4}{x^2(x^2 + 1)}$$
, 5.  $\frac{1}{x^4 + 1}$ , 6.  $\frac{x}{(x^2 + 1)(x^2 + 4)}$ 

## § 9. Интегрирование рациональных дробей

Пусть требуется вычислить интеграл от рациональной дроби, т.е. интеграл  $\int \frac{Q(x)}{f(x)} dx$  .

Если данная дробь неправильная, то мы представляем ее в виде суммы некоторого многочлена M(x) и правильной рациональной дроби  $\frac{F(x)}{f(x)}$ , которую представляем в виде суммы простейших дробей.

Таким, образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Вид простейших дробей определяется корнями знаменателя f(x). Здесь возможны случаи:

<u>1 случай</u>. Корни знаменателя действительные и различные, т.е. f(x) = (x-a)(x-b)...(x-d).

В этом случае дробь  $\frac{F(x)}{f(x)}$  разлагается на простейшие дроби I типа:

$$\frac{F(x)}{f(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \dots + \frac{D}{x-d}.$$

Тогда

$$\int \frac{Q(x)}{f(x)} dx = \int \frac{A}{x - a} dx + \int \frac{B}{x - b} dx + \dots + \int \frac{D}{x - d} dx =$$

$$= A \ln|x - a| + B \ln|x - b| + \dots + D \ln|x - d| + C.$$

Пример 1. Вычислить 
$$\int \frac{x+1}{x(x-1)(x+2)} dx$$
.

### Решение.

Разложим подынтегральную дробь на простейшие:

$$\frac{x+1}{x(x-1)(x+2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+2} =$$

$$= \frac{A(x-1)(x+2) + Bx(x+2) + Cx(x-1)}{x(x-1)(x+2)} =$$

$$= \frac{A(x^2 + x - 2) + B(x^2 + 2x) + C(x^2 - x)}{x(x-1)(x+2)}$$

$$x^2 \begin{vmatrix} A + B + C = 0 \\ x & A + 2B - C = 1 \\ x^0 & -2A = 1 \end{vmatrix}$$

Найдем A, B, C. A = -1/2; B = 2/3; C = -1/6. Тогда:

$$\int \frac{x+1}{x(x-1)(x+2)} dx = -\frac{1}{2} \int \frac{dx}{x} + \frac{2}{3} \int \frac{dx}{x-1} - \frac{1}{6} \int \frac{dx}{x+2} =$$

$$= -\frac{1}{2} \ln|x| + \frac{2}{3} \ln|x-1| - \frac{1}{6} \ln|x+2| + C.$$

<u>2 случай</u>. Корни знаменателя действительные, причем некоторые из них кратные:

$$f(x) = (x-a)^{\alpha} (x-b)^{\beta} \dots (x-d)^{S}$$

В этом случае дробь  $\frac{F(x)}{f(x)}$  разлагается на простейшие дроби I и II типов.

Пример 2. Найти 
$$\int \frac{x^2+1}{(x+1)^2(x+2)} dx$$
.

Решение.

Разложим подынтегральную дробь на простейшие:

$$\frac{x^2 + 1}{(x+1)^2(x+2)} = \frac{A}{(x+1)^2} + \frac{B}{x+1} + \frac{C}{x+2} =$$

$$= \frac{A(x+2) + B(x+1)(x+2) + C(x+1)^2}{(x+1)^2(x+2)} =$$

$$= \frac{A(x+2) + B(x^2 + 3x + 2) + C(x^2 + 2x + 1)}{(x+1)^2(x+2)} =$$

$$= \frac{x^2(B+C) + x(A+3B+2C) + 2A+2B+C}{(x+1)^2(x+2)}.$$

$$x^2 \begin{vmatrix} B+C=1\\ x & A+3B+2C=0\\ x^0 & 2A+2B+C=1 \end{vmatrix}$$

Найдем A, B, C.

$$A = -\frac{14}{5}$$
;  $B = \frac{4}{5}$ ;  $C = \frac{1}{5}$ .

Следовательно,

$$\int \frac{x^2 + 1}{(x+1)^2 (x+2)} dx = -\frac{14}{5} \int \frac{dx}{(x+1)^2} + \frac{4}{5} \int \frac{dx}{x+1} + \frac{1}{5} \int \frac{dx}{x+2} =$$

$$= \frac{14}{5(x+1)} + \frac{4}{5} \ln|x+1| + \frac{1}{5} \ln|x+2| + C.$$

<u>3 случай</u>. Среди корней знаменателя есть комплексные неповторяющиеся (т.е. различные):

$$f(x) = (x^2 + px + q)....(x^2 + lx + s)(x - a)^{\alpha}...(x - d)^{S}$$

В этом случае дробь  $\frac{F(x)}{f(x)}$  разлагается на простейшие дроби I, II, III типов.

Пример 3. Требуется вычислить интеграл 
$$\int \frac{xdx}{(x^2+1)(x-1)}$$
.

#### Решение.

Разложим подынтегральную дробь на простейшие:

$$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1} = \frac{(Ax+B)(x-1)+C(x^2+1)}{(x^2+1)(x-1)} =$$

$$= \frac{Ax^2+Bx-Ax-B+Cx^2+C}{(x^2+1)(x-1)} = \frac{x^2(A+C)+x(B-A)-B+C}{(x^2+1)(x-1)}.$$

Следовательно

$$x = x^{2}(A+C) + x(B-A) - B + C$$

$$x^{2} \begin{vmatrix} A+C=0 \\ B-A=1 \\ x^{0} \end{vmatrix} - B + C = 0$$

Отсюда:  $A = -\frac{1}{2}$ ;  $B = \frac{1}{2}$ ;  $C = \frac{1}{2}$ .

Тогда

$$\int \frac{x}{(x^2+1)(x-1)} dx = -\frac{1}{2} \int \frac{x-1}{x^2+1} dx + \frac{1}{2} \int \frac{dx}{x-1} = -\frac{1}{2} \int \frac{xdx}{x^2+1} + \frac{1}{2} \int \frac{dx}{x^2+1} = -\frac{1}{4} \ln|x^2+1| + \frac{1}{2} \arctan x + \frac{1}{2} \ln|x-1| + C.$$

<u>4 случай.</u> Среди корней знаменателя есть комплексные кратные, т.е.

$$f(x) = (x^2 + px + q)^n \dots (x^2 + lx + s)^m (x - a)^\alpha \dots (x - d)^\beta.$$

В этом случае разложение дроби  $\frac{F(x)}{f(x)}$  будет содержать простейшие дроби I, II, III, IV типов.

*Пример 4.* Требуется вычислить интеграл

$$\int \frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 3)^2(x + 1)} dx.$$

Решение.

Разложим подынтегральную дробь на простейшие:

$$\frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 3)^2(x + 1)} = \frac{Ax + B}{(x^2 + 2x + 3)^2} + \frac{Cx + D}{x^2 + 2x + 3} + \frac{E}{x + 1} =$$

$$= \frac{(Ax + B)(x + 1) + (Cx + D)(x^2 + 2x + 3)(x + 1) + E(x^2 + 2x + 3)^2}{(x^2 + 2x + 3)^2(x + 1)};$$

откуда

$$x^{4} + 4x^{3} + 11x^{2} + 12x + 8 = (Ax + B)(x + 1) + (Cx + D)(x^{2} + 2x + 3)(x + 1) +$$

$$+ E(x^{2} + 2x + 3)^{2} = Ax^{2} + x(A + B) + B + Cx^{4} + x^{3}(D + 3C) +$$

$$+ x^{2}(5C + 3D) + x(5D + 3C) + 3D + E(x^{4} + 4x^{3} + 10x^{2} + 12x + 9)$$

$$x^{4} \begin{vmatrix} C + E = 1 \\ x^{3} \end{vmatrix} D + 3C + 4E = 4$$

$$x^{2} \begin{vmatrix} A + 5C + 3D + 10E = 11 \\ x \end{vmatrix} B + A + 5D + 3C + 12E = 12$$

$$x^{0} \begin{vmatrix} B + 3D + 9E = 8 \end{vmatrix}$$

Находим коэффициенты A, B, C, D, E.

$$A=1$$
;  $B=-1$ ;  $C=0$ ;  $D=0$ ;  $E=1$ .

Таким образом, получаем:

$$\int \frac{x^4 + 4x^3 + 11x^2 + 12x + 8}{(x^2 + 2x + 3)^2 (x + 1)} dx = \int \frac{x - 1}{(x^2 + 2x + 3)^2} dx + \int \frac{dx}{x + 1} =$$

$$= -\frac{x + 2}{2(x^2 + 2x + 3)} - \frac{\sqrt{2}}{4} \arctan \frac{x + 1}{\sqrt{2}} + \ln|x + 1| + C.$$

Первый интеграл, стоящий справа был рассмотрен в примере § 7.

Из всего изложенного следует, что интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

- 1. через логарифмы в случае простейших дробей І типа;
- 2. через рациональные функции в случае простейших дробей II типа;
- 3. через логарифмы и арктангенсы в случае простейших дробей III типа;
- 4. через рациональные функции и арктангенсы в случае простейших дробей IV типа.

## Вычислить интегралы

1. 
$$\int \frac{x^2 + 4x + 3}{(x - 1)(x + 3)(x - 4)} dx$$
, 2.  $\int \frac{x^2 - x + 14}{(x - 4)^3 (x - 2)} dx$ , 3.  $\int \frac{x^2 + 1}{x^3 + 1} dx$ ,

4. 
$$\int \frac{x^3 - 2x^2 - 3x + 4}{x^2(x^2 + 1)} dx$$
, 5.  $\int \frac{1}{x^4 + 1} dx$ , 6.  $\int \frac{x dx}{(x^2 + 1)(x^2 + 4)}$ .

# § 10. Интегралы от иррациональных выражений

Рассмотрим иррациональные функции, интегралы от которых с помощью подстановок приводятся к интегралам от рациональных функций.

**I.** Рассмотрим интеграл  $\int R(x, x^{m/n}, ..., x^{r/s}) dx$ , где R — рациональная функция своих аргументов.

Пусть k — общий знаменатель дробей m/n,...,r/s. Сделаем подстановку:  $x = t^k$ ,  $dx = kt^{k-1}dt$ . Тогда каждая дробная степень x выразится через целую степень t и, следовательно, подынтегральная функция преобразуется в рациональную функцию от t.

Пример 1. Найти 
$$\int \frac{\sqrt[3]{x}}{\sqrt[3]{x^2} - \sqrt{x}} dx$$
.

Решение.

Представим интеграл в виде  $\int \frac{x^{1/3}}{x^{2/3}-x^{1/2}} dx$ . Наименьшим кратным знаменателей дробей 1/3, 2/3, 1/2 является 6. Сделаем подстановку:  $x=t^6$ ,  $dx=6x^5dt$ ,  $t=\sqrt[6]{x}$ .

$$\int \frac{\sqrt[3]{x}}{\sqrt[3]{x^2} - \sqrt{x}} dx = \int \frac{(t^6)^{1/3}}{(t^6)^{2/3} - (t^6)^{1/2}} 6t^5 dt = 6 \int \frac{t^2}{t^4 - t^3} t^5 dt =$$

$$= 6 \int \frac{t^7}{t^3 (t - 1)} dt = 6 \int \frac{t^4}{t - 1} dt.$$

Выделим целую часть  $\frac{t^4}{(t-1)}$ , для этого

$$-\frac{t^{4}}{t^{4}-t^{3}} \qquad \frac{t-1}{t^{3}+t^{2}+t+1}$$

$$-\frac{t^{3}}{t^{3}-t^{2}}$$

$$-\frac{t^{2}}{t^{2}-t}$$

$$-\frac{t}{t-1}$$
1

Тогда

$$6\int \frac{t^4}{t-1} dt = 6\int \left(t^3 + t^2 + t + 1 + \frac{1}{t-1}\right) dt =$$

$$= 6\left(\frac{t^4}{4} + \frac{t^3}{3} + \frac{t^2}{2} + t + \ln|t-1|\right) + C =$$

$$= 6\left(\frac{\sqrt[3]{x^2}}{4} + \frac{\sqrt{x}}{3} + \frac{\sqrt[3]{x}}{2} + \sqrt[6]{x} + \ln|\sqrt[6]{x} - 1|\right) + C.$$

## **II.** Рассмотрим теперь интеграл вида:

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{m/n}, \dots, \left(\frac{ax+b}{cx+d}\right)^{r/s}\right) dx.$$

Этот интеграл сводится к интегралу от рациональной функции с помощью подстановки:

$$\frac{ax+b}{cx+d} = t^k, (10.1)$$

где k – общий знаменатель дробей m/n,...,r/s.

Из (10.1) следует определить x, а по найденному значению x, определить его дифференциал dx.

Отметим, что частный случай рассматриваемого интеграла получается тогда, когда вместо дроби  $\frac{ax+b}{cx+d}$  подынтегральная функция содержит дробные степени линейной функции от x.

В этом случае рационализация достигается подстановкой  $ax + b = y^t$ , где t имеет указанное выше значение.

Пример 2. Найти 
$$\int \frac{x^4}{\sqrt{x-1}} dx$$
.

Решение.

Данный интеграл перепишем в виде:  $\int \frac{x^4}{(x-1)^{1/2}} dx$ .

Сделаем подстановку:  $x - 1 = t^2$ ,  $x = t^2 + 1$ , dx = 2tdt,  $t = \sqrt{x - 1}$ .

Тогда

$$\int \frac{x^4}{(x-1)^{1/2}} dx = \int \frac{(t^2+1)^4}{t} 2t dt = 2\int (t^2+1)^4 dt =$$

$$= 2\int (t^8+4t^6+6t^4+4t^2+1) dt = 2\left(\frac{t^9}{9} + \frac{4}{7}t^7 + \frac{6}{5}t^5 + \frac{4}{3}t^3 + t\right) + C =$$

$$= 2\left[\frac{1}{9}(x-1)^4\sqrt{x-1} + \frac{4}{7}(x-1)^3\sqrt{x-1} + \frac{6}{5}(x-1)^2\sqrt{x-1} + \frac{4}{7}(x-1)^3\sqrt{x-1} + \frac{6}{5}(x-1)^2\sqrt{x-1} + \frac{4}{7}(x-1)^3 + \frac{4}{3}(x-1)\sqrt{x-1} + \sqrt{x-1}\right] + C = 2\sqrt{x-1}\left[\frac{1}{9}(x-1)^4 + \frac{4}{7}(x-1)^3 + \frac{6}{5}(x-1)^2 + \frac{4}{3}(x-1) + 1\right] + C.$$

Пример 3. Найти 
$$\int \frac{x^2 dx}{(5x+2)\sqrt{5x+2}}$$
.

Решение.

$$\int \frac{x^2 dx}{(5x+2)^{3/2}} = \begin{vmatrix} 5x+2=t^2 \\ x = \frac{t^2-2}{5} & dx = \frac{2}{5}t dt \end{vmatrix} = \int \frac{\left(\frac{t^2-2}{5}\right)^2}{t^3} \cdot \frac{2}{5}t dt =$$

$$= \frac{2}{125} \int \frac{\left(t^2-2\right)^2}{t^2} dt = \frac{2}{125} \int \frac{\left(t^4-4t^2+4\right)}{t^2} dt = \frac{2}{125} \int \left(t^2-4+\frac{4}{t^2}\right) dt =$$

$$= \frac{2}{125} \left(\frac{t^3}{3}-4t-\frac{4}{t}\right) + C = \frac{2}{125} \left[\frac{(5x+2)\sqrt{5x+2}}{3} - 4 - \frac{4}{5x+2}\right] + C.$$

Пример 4. Найти 
$$\int \frac{\sqrt{x+2}+3}{\sqrt{x+2}-4} dx$$
.

Решение.

$$\int \frac{(x+2)^{1/2} + 3}{(x+2)^{1/2} - 4} dx = \begin{vmatrix} x+2 = t^2 \\ x = t^2 - 2 & dx = 2t dt \\ t = \sqrt{x+2} \end{vmatrix} = \int \frac{t+3}{t-4} 2t dt =$$

$$= 2\int \frac{t^2 + 3t}{t - 4} dt = 2\int \left(t + 7 + \frac{28}{t - 4}\right) dt = 2\left(\frac{t^2}{2} + 7t + 28\ln|t - 4|\right) + C =$$

$$= 2\left(\frac{x + 2}{2} + 7\sqrt{x + 2} + 28\ln|\sqrt{x + 2} - 4|\right) + C.$$

Пример 5. Найти 
$$\int \sqrt{\frac{5-3x}{4+7x}} dx$$
.

Решение.

Подстановка  $\frac{5-3x}{4+7x} = t^2$  приведет к интегрированию рациональной функции. Из указанной подстановки определим x, а потом dx:

$$5-3x = t^{2}(4+7x); \quad 5-3x = 4t^{2} + 7t^{2}x; \quad x = \frac{5-4t^{2}}{7t^{2}+3}$$
$$dx = \frac{-8t(7t^{2}+3)-14t(5-4t^{2})}{(7t^{2}+3)^{2}} = \frac{-94t}{(7t^{2}+3)^{2}}dt.$$

Поэтому

$$\int \sqrt{\frac{5-3x}{4+7x}} dx = -\int t \frac{94t}{(7t^2+3)^2} dt = -94\int \frac{t^2}{(7t^2+3)^2} = -94\int \frac{t \cdot t dt}{(7t^2+3)^2} =$$

$$= -94 \left( -\frac{t}{14(7t^2 + 3)} + \frac{1}{14} \int \frac{dt}{7t^2 + 3} \right) =$$

$$= -94 \left( -\frac{1}{14} \frac{t}{(7t^2 + 3)} + \frac{1}{14} \cdot \frac{1}{\sqrt{7} \cdot \sqrt{3}} \operatorname{arctg} \frac{\sqrt{7}}{\sqrt{3}} t \right) + C =$$

$$= \frac{47}{7} \cdot \frac{t}{7t^2 + 3} - \frac{47\sqrt{21}}{147} \operatorname{arctg} \sqrt{\frac{7}{3}} t + C =$$

$$= \frac{\sqrt{(5 - 3x)(4 + 7x)}}{7} - \frac{47\sqrt{21}}{147} \operatorname{arctg} \left( \sqrt{\frac{7}{3}} \sqrt{\frac{5 - 3x}{4 + 7x}} \right) + C.$$

## Вычислить интегралы

1. 
$$\int \frac{\sqrt[3]{x}}{x(\sqrt{x}+\sqrt[3]{x})} dx$$
, 2.  $\int \frac{\sqrt{x+4}}{x^2} dx$ , 3.  $\int \frac{dx}{\sqrt[3]{(x+1)}+\sqrt{x+1}}$ 

4. 
$$\int \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} dx$$
, 5.  $\int \frac{x+3}{x-3} \sqrt{\frac{x+3}{x-3}} dx$ , 6.  $\int \sqrt{\frac{x+2}{x-1}} dx$ .

§ 11. Интегралы вида 
$$\int R(x, \sqrt{ax^2 + bx + c}) dx$$
. Подстановки Эйлера

Рассмотрим интеграл

$$\int R(x, \sqrt{ax^2 + bx + c}) dx$$
 (11.1)

где  $a \neq 0$ .

Такой интеграл приводится к интегралу от рациональной функции нового переменного с помощью следующих подстановок Эйлера.

# 1. Первая подстановка Эйлера.

Если a > 0, то полагаем:

$$\sqrt{ax^2 + bx + c} = \pm \sqrt{ax} + t.$$

Перед корнем  $\sqrt{a}$  возьмем для определенности знак плюс. Тогда

$$ax^2 + bx + c = ax^2 + 2\sqrt{a}xt + t^2.$$

Найдем  $x = \frac{t^2 - c}{b - 2\sqrt{at}}$ , следовательно, dx тоже будет рационально выражаться через t. Тогда

$$\sqrt{ax^2 + bx + c} = \sqrt{a}x + t = \sqrt{a}\frac{t^2 - c}{b - 2\sqrt{a}t} + t$$

т.е.  $\sqrt{ax^2 + bx + c}$  — рациональная функция от t.

Так как  $\sqrt{ax^2 + bx + c}$ , x, dx выражаются рационально через t, то, следовательно, данный интеграл (11.1) преобразуется в интеграл от рациональной функции относительно переменной t.

Пример 1. Требуется вычислить интеграл 
$$\int \frac{dx}{\sqrt{x^2 + 10}}$$
.

### Решение.

Так как здесь a=1>0, то полагаем  $\sqrt{x^2+10}=-x+t$ , тогда  $x^2+10=x^2-2xt+t^2$ . Откуда  $x=\frac{t^2-10}{2t}$ , следовательно,

$$dx = \frac{2t \cdot 2t - 2(t^2 - 10)}{4t^2} dt = \frac{4t^2 - 2t^2 + 20}{4t^2} dt =$$

$$= \frac{2t^2 + 20}{4t^2} dt = \frac{t^2 + 10}{2t^2} dt;$$

$$\sqrt{x^2 + 10} = -x + t = -\frac{t^2 - 10}{2t} + t = \frac{-t^2 + 10 + 2t^2}{2t} = \frac{t^2 + 10}{2t}.$$

Возвращаясь к исходному интегралу, получаем

$$\int \frac{dx}{\sqrt{x^2 + 10}} = \int \frac{\frac{t^2 + 10}{2t^2}}{\frac{t^2 + 10}{2t}} dt = \int \frac{dt}{t} = \ln|t| + C = \ln|x + \sqrt{x^2 + 10}| + C.$$

# 2. Вторая подстановка Эйлера.

Если c > 0, то полагаем:

$$\sqrt{ax^2 + bx + c} = xt \pm \sqrt{c};$$

тогда (перед корнем  $\sqrt{c}$  для определенности возьмем знак плюс)

$$ax^2 + bx + c = x^2t^2 + 2xt\sqrt{c} + c$$
.

Отсюда x определяется как рациональная функция от t:

$$x = \frac{2\sqrt{ct - b}}{a - t^2} \,.$$

Так как dx и  $\sqrt{ax^2+bx+c}$  тоже выражаются рационально через t, то подставляя значения x,  $\sqrt{ax^2+bx+c}$  и dx в интеграл  $\int R(x,\sqrt{ax^2+bx+c})dx$ , мы сведем его интегралу от рациональной функции от t.

## Пример 2. Необходимо вычислить интеграл

$$\int \frac{\left(1 - \sqrt{1 + x + x^2}\right)^2}{x^2 \sqrt{1 + x + x^2}} dx.$$

#### Решение.

Полагаем 
$$\sqrt{1+x+x^2}=xt+1$$
. Тогда  $1+x+x^2=x^2t^2+2xt+1$ , от-  
куда  $x=\frac{2t-1}{1-t^2}$ ;  $dx=\frac{2t^2-2t+2}{(1-t^2)^2}dt$ ,  $\sqrt{1+x+x^2}=xt+1=\frac{t^2-t+1}{1-t^2}$ ;  $1-\sqrt{1+x+x^2}=\frac{-2t^2+t}{1-t^2}$ .

Подставляя полученные выражения в исходный интеграл, находим:

$$\int \frac{\left(1 - \sqrt{1 + x + x^2}\right)^2}{x^2 \sqrt{1 + x + x^2}} dx = \int \frac{\left(-2t^2 + t\right)^2 \left(1 - t^2\right)^2 \left(1 - t^2\right) \left(2t^2 - 2t + 2\right)}{\left(1 - t^2\right)^2 \left(2t - 1\right)^2 \left(t^2 - t + 1\right) \left(1 - t^2\right)^2} dt =$$

$$= 2\int \frac{t^2}{1 - t^2} dt = -2\int \frac{-t^2 + 1 - 1}{1 - t^2} dt = -2\left(\int \frac{1 - t^2}{1 - t^2} dt - \int \frac{dt}{1 - t^2}\right) =$$

$$= -2t + \ln\left|\frac{1 + t}{1 - t}\right| + C = -\frac{2\left(\sqrt{1 + x + x^2} - 1\right)}{x} + \ln\left|\frac{x + \sqrt{1 + x + x^2} - 1}{x - \sqrt{1 + x + x^2} + 1}\right| + C =$$

$$= -\frac{2\left(\sqrt{1 + x + x^2} - 1\right)}{x} + \ln\left|2x + 2\sqrt{1 + x + x^2} + 1\right| + C.$$

# 3. Третья подстановка Эйлера.

Пусть  $\alpha$  и  $\beta$  — действительные корни трехчлена  $ax^2 + bx + c$  . Полагаем:

$$\sqrt{ax^2 + bx + c} = (x - \alpha)t.$$

Так как  $ax^2 + bx + c = a(x - \alpha)(x - \beta)$ , то

$$\sqrt{a(x-\alpha)(x-\beta)} = (x-\alpha)t$$
$$a(x-\alpha)(x-\beta) = (x-\alpha)^2 t^2$$
$$a(x-\beta) = (x-\alpha)t^2.$$

Отсюда находим x как рациональную функцию от t:

$$x = \frac{a\beta - \alpha t^2}{a - t^2}.$$

Так как dx и  $\sqrt{ax^2 + bx + c}$  тоже рационально зависят от t, то данный интеграл преобразуется в интеграл от рациональной функции от t.

<u>Замечание.</u> Третья подстановка Эйлера применим не только при a < 0, но и при a > 0 — лишь бы многочлен  $ax^2 + bx + c$  имел два действительных корня.

Пример 3. Требуется вычислить интеграл 
$$\int \frac{dx}{\sqrt{x^2 + 3x - 4}}$$
.

Решение.

Так как  $x^2 + 3x - 4 = (x + 4)(x - 1)$ , то полагаем:

$$\sqrt{x^2 + 3x - 4} = \sqrt{(x+4)(x-1)} = (x+4)t$$

тогда

$$(x+4)(x-1) = (x+4)^{2}t^{2}$$

$$x-1 = (x+4)t^{2}, \quad x = \frac{1+4t^{2}}{1-t^{2}}; \quad dx = \frac{10t}{(1-t^{2})^{2}}dt$$

$$\sqrt{(x+4)(x-1)} = \left(\frac{1+4t^{2}}{1-t^{2}} + 4\right)t = \frac{5t}{1-t^{2}}.$$

Возвращаясь к исходному интегралу, получаем:

$$\int \frac{dx}{\sqrt{x^2 + 3x - 4}} = \int \frac{10t(1 - t^2)}{(1 - t^2)^2 5t} dt = 2\int \frac{dt}{1 - t^2} = \ln\left|\frac{1 + t}{1 - t}\right| + C =$$

$$= \ln\left|\frac{1 + \sqrt{\frac{x - 1}{x + 4}}}{1 - \sqrt{\frac{x - 1}{x + 4}}}\right| + C = \ln\left|\frac{\sqrt{x + 4} + \sqrt{x - 1}}{\sqrt{x + 4} - \sqrt{x - 1}}\right| + C.$$

## Вычислить интегралы

1. 
$$\int \sqrt{2+x^2} dx$$
, 2.  $\int \frac{x^2}{\sqrt{9+x^2}} dx$ , 3.  $\int \sqrt{x^2-4} dx$ ,

5. 
$$\int \sqrt{x^2 + x} dx$$
, 5.  $\int \frac{dx}{(1+x^2)\sqrt{1-x^2}} dx$ , 6.  $\int \sqrt{(x^2 + x + 1)^3} dx$ .

## § 12. Интегрирование биномиальных дифференциалов

Биномиальными называются дифференциалы вида

$$x^m \left(a + bx^n\right)^p dx,$$

где a, b – любые не равные нулю постоянные, а показатели m, n, p – рациональные числа.

П.Л.Чебышев доказал, что только в трех случаях  $\int x^m (a + bx^n)^p dx$  может быть выражен через алгебраические, логарифмические и обратные круговые функции:

1) p — целое число, которое может быть положительным, отрицательным или равным нулю. В этом случае применяется подстановка:

$$x = y^s$$
,

где s — общее наименьшее кратное дробей m и n.

В этом случае вычисление интеграла сводится к интегрированию суммы степенных функций.

- 2)  $\frac{m+1}{n}$  целое число. Здесь следует применить подстановку:  $a+bx^n=y^s$ , где s знаменатель дроби p.
- 3)  $\frac{m+1}{n} + p$  целое число. В этом случае применяют подстановку:  $ax^{-n} + b = y^s$ , где s – знаменатель дроби p.

Других случаев интегрируемости биномиальных дифференциалов нет. Интересно отметить, что они были известны еще Ньютону, а Эйлер указал приведенные выше подстановки. Однако только П.Л.Чебышев доказал, что эти случаи интегрируемости являются единственными и что в других случаях интеграл не может быть выражен при помощи элементарных функций.

Пример 1. Найти 
$$\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx$$
.

Решение.

Перепишем данный интеграл в виде:

$$\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx = \int \frac{\left(1+x^{1/4}\right)^{1/3}}{x^{1/2}} dx = \int x^{-1/2} \left(1+x^{1/4}\right)^{1/3} dx.$$

Здесь m = -1/2, n = 1/4, p = 1/3.

Составим выражение:  $\frac{m+1}{n} = \frac{-1/2+1}{1/4} = \frac{1/2}{1/4} = 2$  – целое число.

Следовательно, здесь мы имеем второй случай интегрируемости. Применим подстановку:  $1 + x^{1/4} = y^3$ .

$$(1+x^{1/4})^{1/3} = y; \quad x^{1/4} = y^3 - 1, \quad x = (y^3 - 1)^4,$$

$$x^{-1/2} = \left[ (y^3 - 1)^4 \right]^{-1/2} = \frac{1}{(y^3 - 1)^2}; \quad dx = 4(y^3 - 1)^3 \cdot 3y^2 dy.$$

Тогда

$$\int \frac{\sqrt[3]{1+x^{1/4}}}{\sqrt{x}} dx = \int x^{-1/2} \left(1 + x^{1/4}\right)^{1/3} dx = \int \frac{1}{\left(y^3 - 1\right)^2} \cdot y \cdot 12 \left(y^3 - 1\right)^3 y^2 dy =$$

$$= 12 \int y^3 \left(y^3 - 1\right) dy = 12 \int \left(y^6 - y^3\right) dy =$$

$$= 12 \left(\frac{y^7}{7} - \frac{y^4}{4}\right) + C = 12 y^4 \left(\frac{y^3}{7} - \frac{1}{4}\right) + C.$$

Возвращаясь к старой переменной, при помощи равенства  $y = \sqrt[3]{1 + \sqrt[4]{x}}$  получим:

$$\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx = 12\left(1+\sqrt[4]{x}\right) \cdot \sqrt[3]{1+\sqrt[4]{x}} \left(\frac{1+\sqrt[4]{x}}{7} - \frac{1}{4}\right) + C.$$

<u>Пример 2.</u> Найти  $\int \sqrt{x(3+4x^3)} dx$ .

Решение.

$$\int \sqrt{x(3+4x^3)} dx = \int x^{1/2} (3+4x^3)^{1/2} dx.$$

Здесь m = 1/2, n = 3, p = 1/2.

Составим выражение  $\frac{m+1}{n}+p=\frac{1/2+1}{3}+1/2=\frac{3/2}{3}+\frac{1}{2}=1$  — целое число. Имеем третий случай интегрируемости. Сделаем подстановку:

$$3x^{-3} + 4 = y^2$$
.

Подынтегральную функцию  $x^{1/2}(3+4x^3)^{1/2}$  можно представить в виде:

$$x^{1/2}(3+4x^3)^{1/2} = x^{1/2} \left( x^3 \left( \frac{3}{x^3} + 4 \right) \right)^{1/2} =$$

$$= x^{1/2} \cdot x^{3/2} \left( 3x^{-3} + 4 \right)^{1/2} = x^2 \left( 3x^{-3} + 4 \right)^{1/2}.$$

Из подстановки следует  $3x^{-3} = y^2 - 4$ ,  $x^{-3} = \frac{y^2 - 4}{3}$ ; а  $x^3 = \frac{3}{y^2 - 4}$ ;  $3x^2dx = -\frac{3 \cdot 2ydy}{(y^2 - 4)^2}$  или  $x^2dx = -\frac{2ydy}{(y^2 - 4)^2}$ . Тогда интеграл преобразуется к виду:

$$\int x^{1/2} (3+4x^3)^{1/2} dx = \int x^2 (3x^{-3}+4)^{1/2} dx = -\int \frac{(y^2)^{1/2} 2y dy}{(y^2-4)^2} =$$

$$= -2 \int \frac{y^2 dy}{(y^2-4)^2} = -2 \int \frac{y \cdot y dy}{(y^2-4)^2} = \begin{vmatrix} \int u dv = uv - \int v du \\ u = y \quad du = dy \\ dv = \frac{y}{(y^2-4)^2} dy \quad v = -\frac{1}{2(y^2-4)} \end{vmatrix} =$$

$$= -2 \left[ -\frac{y}{2(y^2-4)} + \frac{1}{2} \int \frac{dy}{y^2-4} \right] = \frac{y}{y^2-4} - \frac{1}{4} \ln \left| \frac{y-2}{y+2} \right| + C.$$

Возвращаемся к старой переменной x.

$$y = \sqrt{\frac{3}{x^3} + 4} = \sqrt{\frac{3 + 4x^3}{x^3}} = \frac{1}{x} \sqrt{\frac{3 + 4x^3}{x}}$$
, тогда

$$\int \sqrt{x(3+4x^3)} dx = \frac{x^{3/2}\sqrt{3+4x^3}}{3} - \frac{1}{4} \ln \left| \frac{\frac{1}{x}\sqrt{\frac{3+4x^3}{x}} - 2}{\frac{1}{x}\sqrt{\frac{3+4x^3}{x}} + 2} \right| + C =$$

$$= \frac{1}{3}x^{3/2}\sqrt{3+4x^3} - \frac{1}{4} \ln \left| \frac{\sqrt{3+4x^3} - 2x^{3/2}}{\sqrt{3+4x^3} + 2x^{3/2}} \right| + C.$$

## Вычислить интегралы

1. 
$$\int \frac{\sqrt[3]{1+\sqrt[6]{x}}}{\sqrt{x}} dx$$
, 2.  $\int \frac{dx}{\sqrt{(3+4x^2)^3}}$ , 3.  $\int \frac{x^4}{\sqrt{(1-x^2)^3}} dx$ ,

4. 
$$\int x^3 \cdot \sqrt[3]{5 + x^2} dx$$
, 5.  $\int \frac{\sqrt{1 - x^2}}{x} dx$ , 6.  $\int \frac{dx}{\sqrt{(1 + x^2)^3}} dx$ .

# § 13. Интегрирование некоторых классов тригонометрических функций

1. Рассмотрим интеграл вида

$$\int R(\sin x, \cos x) dx \cdot (13.1)$$

Покажем, что этот интеграл с помощью подстановки

$$tg\frac{x}{2} = t$$

всегда сводится к интегралу от рациональной функции. Выразим  $\sin x$  и  $\cos x$  через  $tg\frac{x}{2}$ , а следовательно, и через t:

$$\sin x = \frac{2\sin x/2\cos x/2}{1} = \frac{2\sin x/2\cos x/2}{\sin^2 x/2 + \cos^2 x/2} = \frac{2\frac{\sin x/2}{\cos x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\frac{\sin x/2}{\cos x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\tan x/2}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\tan^2 x/2}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\tan x/2}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\tan^2 x/2}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{2\tan^2 x/2}{1 + \frac{\sin^2 x/2}{1 + \frac$$

$$\cos x = \frac{\cos^2 x/2 - \sin^2 x/2}{1} = \frac{\cos^2 x/2 - \sin^2 x/2}{\cos^2 x/2 + \sin^2 x/2} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}} = \frac{1 - \frac{\sin^2 x/2}{\cos^2 x/2}}{1 + \frac{\sin^2 x/2}{\cos^2 x/2}}$$

Далее 
$$x = 2 \operatorname{arctg} t$$
;  $dx = \frac{2dt}{1+t^2}$ .

Таким образом,  $\sin x$ ,  $\cos x$  и dx выражаются рационально через t. Так как рациональная функция от рациональных функций есть функция рациональная, то, подставляя полученные выражения в интеграл (13.1), получим интеграл от рациональной функции:

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

Данная подстановка называется универсальной тригонометрической подстановкой.

Пример 1. Найти 
$$\int \frac{dx}{\sin^3 x}$$
.

Решение.

Применим универсальную подстановку:  $tg \frac{x}{2} = t$ .

$$\sin x = \frac{2t}{1+t^2}; \quad dx = \frac{2dt}{1+t^2}.$$

Поэтому

$$\int \frac{dx}{\sin^3 x} = \int \frac{\frac{2dt}{1+t^2}}{\left(\frac{2t}{1+t^2}\right)^3} = \frac{1}{4} \int \frac{(1+t^2)^3}{(1+t^2) \cdot t^3} dt = \frac{1}{4} \int \frac{(1+t^2)dt}{t^3} =$$

$$= \frac{1}{4} \int \frac{1+2t^2+t^4}{t^3} dt = \frac{1}{4} \int \left(\frac{1}{t^3} + \frac{2}{t} + t\right) dt =$$

$$= \frac{1}{4} \left(-\frac{1}{2t^2} + 2\ln|t| + \frac{t^2}{2}\right) + C = -\frac{1}{8 \operatorname{tg}^2 x/2} + \frac{1}{2} \ln|\operatorname{tg} x/2| + \frac{1}{8} \operatorname{tg}^2 x/2 + C.$$

2. Если интеграл имеет вид  $\int R(\sin x)\cos x dx$ , то подстановка  $\sin x = t$ ,  $\cos x dx = dt$  приводит к интегралу вида  $\int R(t) dt$ .

<u>Пример 2.</u> Вычислить интеграл:  $\int \sin x \cos x dx$ .

Решение.

$$\int \sin x \cos x dx = \int t dt = \frac{t^2}{2} + C = \frac{\sin^2 x}{2} + C.$$

3. Если интеграл имеет вид  $\int R(\cos x) \sin x dx$ , то он приводится к интегралу от рациональной функции заменой  $\cos x = t$ ,  $\sin x dx = -dt$ .

<u>Пример 3.</u> Вычислить:  $\int \cos^2 x \sin x dx$ .

Решение

Сделаем замену 
$$\cos x = t$$
, тогда  $\sin x dx = -dt$ , тогда 
$$\int \cos^2 x \sin x dx = -\int t^2 dt = -\frac{t^3}{3} + C = -\frac{\cos^3 x}{3} + C.$$

4. Рассмотрим интеграл вида

$$\int \sin^m x \cos^n x dx \cdot (13.2)$$

Интегралы этого вида вычисляются особенно просто в четырех случаях.

<u>Первый случай</u>. Показатель степени синуса m — нечетное положительное число: m = 2k + 1. В этом случае подынтегральное выражение преобразовываем так: из  $\sin^m x = \sin^{2k+1} x$ , выделим первую степень синуса и получаем:

$$\sin^{2k+1} x = \sin^{2k} x \sin x = (\sin^2 x)^k \sin x = (1 - \cos^2 x)^k \sin x.$$

Подынтегральное выражение в этом случае имеет вид:

$$\sin^m x \cos^n x dx = (1 - \cos^2 x)^k \cos^n x \sin x dx.$$

Теперь применяем подстановку:

$$\cos x = z$$
,

тогда

$$-\sin x dx = dz$$

И

$$\int \sin^m x \cos^n x dx = \int (1 - \cos^2 x)^k \cos^n x \sin x dx = -\int (1 - z^2)^k z^n dz$$

и вопрос сводится к интегрированию суммы степенных функций.

<u>Пример 4.</u> Найти  $\int \sin^3 x \cos^2 x dx$ .

Решение.

$$\int \sin^3 x \cos^2 x dx = \int \sin^2 x \sin x \cos^2 x dx = \int (1 - \cos^2 x) \cos^2 x \sin x dx =$$

$$= -\int (1-z^2)z^2 dz = -\int (z^2 - z^4) dz = -\left(\frac{z^3}{3} - \frac{z^5}{5}\right) + C =$$
$$= -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C.$$

Второй случай. Показатель степени косинуса n — нечетное положительное число: n = 2k + 1.

Тогда

$$\cos^n x = \cos^{2k+1} x = \cos^{2k} x \cos x = (\cos^2 x)^k \cos x = (1 - \sin^2 x)^k \cos x$$
.

Подынтегральное выражение в этом случае запишется так:

$$\sin^m x \cos^n x dx = \sin^m x (1 - \sin^2 x)^k \cos x dx.$$

Применим подстановку:  $\sin x = z$ ,  $\cos x dx = dz$ , тогда

$$\sin^m x \cos^n x dx = z^m (1 - z^2)^k dz$$

и вопрос опять-таки сведется к интегрированию суммы степенных функций.

<u>Пример 5.</u> Найти  $\int \cos^9 x dx$ .

#### Решение.

$$\int \cos^9 x dx = \int \cos^8 x \cos x dx = \int (\cos^2 x)^4 \cos x dx = \int (1 - \sin^2 x)^4 \cos x dx =$$

$$= \int (1 - z^2)^4 dz = \int (1 - 4z^2 + 6z^4 - 4z^6 + z^8) dz =$$

$$= z - \frac{4z^3}{3} + \frac{6z^5}{5} - \frac{4z^7}{7} + \frac{z^9}{9} + C = \sin x - \frac{4}{3}\sin^3 x + \frac{6}{5}\sin^5 x -$$

$$- \frac{4}{7}\sin^7 x + \frac{1}{9}\sin^9 x + C.$$

В указанных случаях вычисление  $\int \cos^n x \sin^m x dx$  сводится к интегрированию многочленов.

<u>Пример 6.</u> Найти  $\int \sin^4 x \cos^3 x dx$ .

#### Решение.

$$\int \sin^4 x \cos^2 x \cos x dx = \int \sin^4 x (1 - \sin^2 x) \cos x dx = \int z^4 (1 - z^2) dz =$$

$$= \int (z^4 - z^6) dz = \frac{z^5}{5} - \frac{z^7}{7} + C = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C.$$

<u>Пример 7.</u> Найти  $\int \frac{\sin^3 x}{\cos^4 x} dx$ .

#### Решение.

$$\int \frac{\sin^3 x}{\cos^4 x} dx = \int \frac{\sin^2 x \sin x dx}{\cos^4 x} = \int \frac{(1 - \cos^2 x) \sin x dx}{\cos^4 x} =$$

$$= \int \left(\frac{1}{\cos^4 x} - \frac{1}{\cos^2 x}\right) \sin x dx = -\int \left(\frac{1}{z^4} - \frac{1}{z^2}\right) dz =$$

$$= -\int \left(z^{-4} - z^{-2}\right) dz = -\left(\frac{z^{-3}}{-3} + z^{-1}\right) + C = \frac{1}{3z^3} - \frac{1}{z} + C = \frac{1}{3\cos^3 x} - \frac{1}{\cos x} + C.$$

<u>Третий случай.</u> Сумма m+n показателей степени синуса и косинуса в интеграле (13.2) четное отрицательное число: m+n=-2k (k>0 и целое).

В этом случае подынтегральная функция может иметь два вида.

- 1) Подынтегральная функция дробь, в числителе которой находится степень синуса, а в знаменателе степень косинуса (или наоборот), причем показатели степени или оба четные, или оба нечетные, т.е. они одинаковой четности. Так как m+n = отрицательное число, то отсюда следует, что степень знаменателя больше степени числителя.
- 2) Подынтегральная функция дробь, числитель которой постоянная величина, а знаменатель произведение степеней синуса и косинуса одинаковой четности.

В рассматриваемом случае любая из подстановок  $\lg x = z$  или  $\cot x = z$  преобразует подынтегральную функцию в многочлен или в многочлен, сложенный с целыми отрицательными степенями новой переменной. Если подынтегральная функция имеет первый из разобранных видов, а в числителе находится степень  $\sin x$ , более удобной подстановкой является  $\lg x = z$ , если же в числителе находится степень  $\cos x$ , рациональнее применить подстановку  $\cot x = z$ . Дроби второго типа с помощью подстановок  $\tan x = z$  или  $\cot x = z$  приводятся к интегрированию степенных функций.

Применяя подстановку tg x = z, следует учесть, что

$$dx = \frac{dz}{1+z^2}$$
;  $\sin x = \frac{z}{\sqrt{1+z^2}}$ ;  $\cos x = \frac{1}{\sqrt{1+z^2}}$ .

Если же применяется подстановка  $\operatorname{ctg} x = z$ , то  $dx = -\frac{dz}{1+z^2}$ ;

$$\sin x = \frac{1}{\sqrt{1+z^2}}, \cos x = \frac{z}{\sqrt{1+z^2}}.$$

Пример 8. Найти 
$$\int \frac{\sin^4 x}{\cos^8 x} dx$$
.

#### Решение.

Здесь m = 4, n = -8, m + n = -4 — четное отрицательное число. Так как в числителе находится степень синуса, то удобнее применить подстановку  $tg \, x = z$ . В этом случае имеем:

$$\int \frac{\sin^4 x}{\cos^8 x} dx = \int \frac{\sqrt{(\sqrt{1+z^2})^4}}{\left(\frac{1}{\sqrt{1+z^2}}\right)^8} \frac{dz}{1+z^2} = \int \frac{z^4 (1+z^2)^4}{(1+z^2)^2 (1+z^2)} dz =$$

$$= \int z^4 (1+z^2) dz = \int (z^4+z^6) dz = \frac{z^5}{5} + \frac{z^7}{7} + C = \frac{\operatorname{tg}^5 x}{5} + \frac{\operatorname{tg}^7 x}{7} + C.$$

$$\underline{\Pi pumep \ 9.} \quad \text{Найти } \int \frac{\cos^3 x}{\sin^9 x} dx.$$

#### Решение.

Здесь n=3, m=-9, m+n=-6 — четное отрицательное число. В числителе степень косинуса, удобно применить подстановку ctg x=z.

$$\int \frac{\cos^3 x}{\sin^9 x} dx = \int \frac{\sqrt{(1+z^2)^3}}{\left(\frac{1}{\sqrt{1+z^2}}\right)^9} \frac{dz}{1+z^2} = -\int \frac{z^3 (1+z^2)^{9/2}}{(1+z^2)^{3/2} (1+z^2)} dz =$$

$$= -\int z^3 (1+z^2)^2 dz = -\int z^3 (1+2z^2+z^4) dz = -\int (z^3+2z^5+z^7) dz =$$

$$= -\left(\frac{z^4}{4} + \frac{2z^6}{6} + \frac{z^8}{8}\right) + C = \left(\frac{\cot^4 x}{4} + \frac{\cot^6 x}{3} + \frac{\cot^8 x}{8}\right) + C.$$

$$\underline{IIpumep\ 10.} \text{ Найти } \int \frac{dx}{\sin^3 x \cos^5 x} dx.$$

#### Решение.

Здесь m=-3, n=-5, m+n=-8 — четное отрицательное число. Для вычисления этого интеграла можно применять любую из подстановок:  $tg \ x=z$  или  $ctg \ x=z$ . Остановимся на подстановке  $tg \ x=z$ .

$$\int \frac{dx}{\sin^3 x \cos^5 x} dx = \int \frac{1}{z^3} \frac{dz}{\left(\sqrt{1+z^2}\right)^3} \cdot \left(\frac{1}{\sqrt{1+z^2}}\right)^5 \frac{dz}{1+z^2} =$$

$$= \int \frac{(1+z^2)^{3/2} (1+z^2)^{5/2}}{z^3 (1+z^2)} dz = \int \frac{(1+z^2)^3}{z^3} dz = \int \frac{1+3z^2+3z^4+z^6}{z^3} dz =$$

$$= \int \left(\frac{1}{z^3} + \frac{3}{z} + 3z + z^3\right) dz = -\frac{1}{2z^2} + 3\ln|z| + \frac{3}{2}z^2 + \frac{z^4}{4} + C =$$

$$= -\frac{1}{2 t g^2 x} + 3\ln|tgx| + \frac{3}{2} t g^2 x + \frac{tg^4 x}{4} + C.$$

<u>Четвертый случай.</u> Сумма показателей степени синуса и косинуса равна нулю: m + n = 0, причем предполагается, что m и n целые числа. Таким образом, показатели степени синуса и косинуса равны по абсолютной величине, но противоположны по знаку, а подынтегральное выражение имеет один из видов:

$$1) \frac{\sin^m x}{\cos^m x} = \operatorname{tg}^m x \quad m > 0$$

$$2) \frac{\cos^n x}{\sin^n x} = \operatorname{ctg}^n x \quad n > 0,$$

т.е. рассматриваются следующие интегралы:

$$\int \operatorname{tg}^m x dx$$
 или  $\int \operatorname{ctg}^n x dx$ .

К интегралу  $\int tg^m x dx$  применим подстановку: tg x = z,  $dx = \frac{dz}{1+z^2}$ ,

которая приведет к интегралу вида:  $\int \frac{z^m dz}{1+z^2}$ ; а к интегралу  $\int ctg^n x dx$ 

применяем подстановку: ctg x=z ,  $dx=-\frac{dz}{1+z^2}$  , которая приведет его к интегралу вида:  $-\int \frac{z^n}{1+z^2} dz$  .

<u>Пример 11.</u> Найти  $\int tg^5 x dx$ .

Решение.

$$\int tg^{5} x dx = \int \frac{z^{5}}{1+z^{2}} dz = \begin{bmatrix} -\frac{z^{5}}{z^{5}+z^{3}} & \frac{z^{2}+1}{z^{3}-z} \\ -\frac{z^{3}}{-z^{3}-z} & z \end{bmatrix} =$$

$$= \int \left(z^3 - z + \frac{z}{1+z^2}\right) dz = \frac{z^4}{4} - \frac{z^2}{2} + \frac{1}{2}\ln\left|1 + z^2\right| + C =$$

$$= \frac{\operatorname{tg}^4 x}{4} - \frac{\operatorname{tg}^2 x}{2} + \frac{1}{2}\ln\left|1 + \operatorname{tg}^2 x\right| + C.$$

<u>Пример 12.</u> Найти  $\int ctg^4 x dx$ .

Решение.

$$\int \operatorname{ctg}^{4} x dx = -\int \frac{z^{4}}{1+z^{2}} dz = \begin{vmatrix} -\frac{z^{4}}{z^{4}+z^{2}} & \frac{|z^{2}+1|}{|z^{2}-1|} \\ -\frac{z^{4}}{2} & -z^{2} \\ -\frac{z^{2}-1}{1} \end{vmatrix} =$$

$$= -\int \left(z^{2}-1+\frac{1}{1+z^{2}}\right) dz = -\left(\frac{z^{3}}{3}-z+\operatorname{arctg} z\right) + C =$$

$$= -\frac{\operatorname{ctg}^{3} x}{2} + \operatorname{ctg} x - \operatorname{arctg} \operatorname{ctg} x + C.$$

5. Рассмотрим  $\int \sin^m x \cos^n x dx$ , где m и n — числа неотрицательные и четные. Положим m=2p, n=2q. Используем формулы, известные из тригонометрии:

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}.$$
 (13.3)

Подставим в интеграл, получим

$$\int \sin^m x \cos^n x dx = \int \sin^{2p} x \cos^{2q} x dx = \int \left(\sin^2 x\right)^p \left(\cos^2 x\right)^q dx =$$

$$= \int \left(\frac{1 - \cos 2x}{2}\right)^p \left(\frac{1 + \cos 2x}{2}\right)^q dx.$$

Возводя в степень и раскрывая скобки, получим члены, содержащие  $\cos 2x$  в нечетных и четных степенях. Члены с нечетными степенями интегрируются как указано в случае 3 (второй случай). Четные показатели степеней снова понижаем по формулам (13.3). Продолжая так, дойдем до членов вида  $\int \cos kx dx$ , которые легко интегрируются.

Пример 13. 
$$\int \sin^4 x \cos^4 x dx$$
.

Решение.

$$\int \sin^4 x \cos^4 x dx = \int \frac{(2\sin x \cos x)^4}{16} dx = \frac{1}{16} \int \sin^4 \cdot 2x dx =$$

$$= \frac{1}{16} \int \left(\sin^2 2x\right)^2 dx = \frac{1}{16} \int \left(\frac{1 - \cos 4x}{2}\right)^2 dx =$$

$$= \frac{1}{64} \int \left(1 - 2\cos 4x + \cos^2 4x\right) dx = \frac{1}{64} \int \left(1 - 2\cos 4x + \frac{1 + \cos 8x}{2}\right) dx =$$

$$= \frac{1}{64} \left(x - \frac{2\sin 4x}{4} + \frac{x}{2} + \frac{\sin 8x}{2 \cdot 8}\right) + C = \frac{1}{64} \left(\frac{3}{2}x - \frac{\sin 4x}{2} + \frac{\sin 8x}{16}\right) + C =$$

$$= \frac{1}{128} \left(3x - \sin 4x + \frac{\sin 8x}{8}\right) + C.$$

# 6. Рассмотрим интегралы вида:

 $\int \cos mx \cos nx dx \,, \quad \int \sin mx \cos nx dx \,, \quad \int \sin mx \sin nx dx \,.$ 

Они берутся при помощи следующих формул  $(m \neq n)$ :

$$\cos mx \cos nx = \frac{\cos(m+n)x + \cos(m-n)x}{2};$$

$$\sin mx \cos nx = \frac{\sin(m+n)x + \sin(m-n)x}{2};$$

$$\sin mx \sin nx = \frac{-\cos(m+n)x + \cos(m-n)x}{2}.$$

# <u>Пример 14.</u> Вычислить $\int \sin 5x \cdot \sin 3x dx$ .

### Решение.

$$\int \sin 5x \cdot \sin 3x dx = \frac{1}{2} \int (\cos 2x - \cos 8x) dx =$$

$$= \frac{1}{2} \left( \frac{\sin 2x}{2} - \frac{\sin 8x}{8} \right) + C = \frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x + C.$$

# Вычислить интегралы

- 1.  $\int \sin 6x \cdot \cos 7x dx, \quad 2. \quad \int \sin 2x \cdot \cos 5x \cdot \sin 9x dx,$
- 3.  $\int \sin^5 x \cdot \cos^2 x dx$ , 4.  $\int \frac{\cos^3 x}{\sin^6 x} dx$ , 5.  $\int \frac{\cos^4 x}{\sin^6 x} dx$ ,
- 6.  $\int \frac{\sin^7 x}{\cos^3 x} dx, \qquad 7. \int tg^4 x dx, \qquad 8. \int ctg^3 x dx,$
- 9.  $\int \cos^6 x dx, \qquad 10. \int \sin^4 x \cdot \cos^2 x dx,$

11. 
$$\int \frac{5+9\sin x}{\cos x(2+3\sin x)} dx$$
, 12.  $\int \frac{x+\sin x}{1+\cos x} dx$ ,

13. 
$$\int \frac{dx}{\cos x(1-\sin x)}$$
, 14.  $\int \frac{5+6\sin x}{\sin x(4+3\cos x)} dx$ .

# § 14. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок

Рассмотрим интеграл вида

$$\int R(x, \sqrt{ax^2 + bx + c}) dx, (14.1)$$

где  $a \neq 0$ ,  $c - \frac{b^2}{4a} \neq 0$  (в случае a = 0 интеграл имеет вид 2 § 10, при  $c - \frac{b^2}{4a} \neq 0$  выражение  $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$ , и мы имеем дело с рациональной функцией, если a > 0, при a < 0 функция  $\sqrt{ax^2 + bx + c}$  не определена ни при каком значении x).

Преобразуем интеграл (14.1) к интегралу вида:

$$\int \overline{R}(\sin z, \cos z) dz \cdot (14.2)$$

Произведем преобразование трехчлена, стоящего под корнем:

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right).$$

Сделаем замену переменного, положив  $x + \frac{b}{2a} = t$ , dx = dt. Тогда

$$\sqrt{ax^2 + bx + c} = \sqrt{at^2 + (c - b^2/4a)}.$$

Рассмотрим все возможные случаи.

1) Пусть a > 0,  $c - b^2 / 4a > 0$ . Введем обозначение  $a = m^2$ ,  $c - b^2 / 4a = n^2$ .

В этом случае будем иметь:

$$\sqrt{ax^2 + bx + c} = \sqrt{m^2t^2 + n^2}.$$

2) Пусть a>0,  $c-b^2/4a<0$ . Тогда  $a=m^2$ ,  $c-b^2/4a=-n^2$ . Следовательно,

$$\sqrt{ax^2 + bx + c} = \sqrt{m^2t^2 - n^2} .$$

3) Пусть a<0,  $c-b^2/4a>0$ . Тогда  $a=-m^2$ ,  $c-b^2/4a=n^2$ . Следовательно,

$$\sqrt{ax^2 + bx + c} = \sqrt{n^2 - m^2 t^2} .$$

4) Пусть a < 0,  $c - b^2/4a < 0$ . В этом случае  $\sqrt{ax^2 + bx + c}$  есть комплексное число при любом значении x.

Таким образом, интеграл (14.1) преобразуется к одному из следующих типов интегралов

I. 
$$\int R(t, \sqrt{m^2t^2 + n^2}) dt$$
 (14.3)

II. 
$$\int R(t, \sqrt{m^2t^2 - n^2}) dt$$
 (14.4)

III. 
$$\int R(t, \sqrt{n^2 - m^2 t^2}) dt$$
 (14.5)

Очевидно, что интеграл (14.3) приводится к интегралу вида (14.2) с помощью подстановки

$$t = \frac{n}{m} \operatorname{tg} z \ (14.6)$$

Интеграл (14.4) приводится к виду (14.2) с помощью подстановки

$$t = \frac{n}{m}\sec z = \frac{n}{m\cos z}$$
 (14.7)

Интеграл (14.5) приводится к виду (14.2) с помощью подстановки

$$t = \frac{n}{m}\sin t \ (14.8)$$

Пример 1. Найти интеграл 
$$\int \frac{dx}{(x^2+9)\sqrt{x^2+9}}$$
.

#### Решение.

Выражение, стоящее под корнем имеет вид (14.3). Применим подстановку (14.6):

$$x = 3 \operatorname{tg} y, \quad dx = \frac{3}{\cos^2 y} dy$$
$$x^2 + 9 = 9 \operatorname{tg}^2 y + 9 = 9 (\operatorname{tg}^2 y + 1) = \frac{9}{\cos^2 y}.$$

Поэтому 
$$\sqrt{x^2 + 9} = \frac{3}{\cos y}$$
.

Возвращаясь к интегралу, имеем:

$$\int \frac{dx}{(x^2+9)\sqrt{x^2+9}} = \int \frac{\frac{3}{\cos^2 y} dy}{\frac{9}{\cos^2 y} \cdot \frac{3}{\cos y}} = \frac{1}{9} \int \cos y dy = \frac{1}{9} \sin y + C.$$

Для того, чтобы возвратиться к первоначальной переменной x, найдем  $\sin y$  через x. Из подстановки

$$x = 3 \operatorname{tg} y$$
;  $\operatorname{tg} y = \frac{x}{3}$ ;  $\sin y = \operatorname{tg} y \cdot \cos y = \frac{\operatorname{tg} y}{\sqrt{1 + \operatorname{tg}^2 y}} = \frac{\frac{x}{3}}{\sqrt{1 + \frac{x^2}{9}}} = \frac{x}{\sqrt{9 + x^2}}$ .

Поэтому окончательно

$$\int \frac{dx}{(x^2+9)\sqrt{x^2+9}} = \frac{1}{9} \frac{x}{\sqrt{9+x^2}} + C.$$

Пример 2. Найти 
$$\int \frac{dx}{(x^5-5)\sqrt{x^2-5}}$$
.

#### Решение.

Подкоренное выражение имеет вид (14.4). Подстановка (14.7) должна уничтожить иррациональность подынтегрального выражения. Полагаем

$$x = \frac{\sqrt{5}}{\cos t}; \quad dx = \frac{\sqrt{5}}{\cos t} \cdot \operatorname{tg} t dt;$$

$$x^{2} - 5 = \frac{5}{\cos^{2} t} - 5 = 5 \left( \frac{1}{\cos^{2} t} - 1 \right) - 5 \left( \frac{1 - \cos^{2} t}{\cos^{2} t} \right) = 5 \frac{\sin^{2} t}{\cos^{2} t} = 5 \operatorname{tg}^{2} t;$$

$$\sqrt{x^{2} - 5} = \sqrt{5} \operatorname{tg} t.$$

Тогда

$$\int \frac{dx}{(x^5 - 5)\sqrt{x^2 - 5}} = \int \frac{\frac{\sqrt{5}}{\cos t} \cdot \lg t dt}{5 \lg^2 t \cdot \sqrt{5} \lg t} =$$

$$= \frac{1}{5} \int \frac{\frac{1}{\cos t}}{\frac{\sin^2 t}{\sin^2 t}} dt = \frac{1}{5} \int \frac{\cos t}{\sin^2 t} dt = -\frac{1}{5} \frac{1}{\sin t} + C.$$

Из подстановки  $x = \frac{\sqrt{5}}{\cos t}$  следует, что

$$\cos t = \frac{\sqrt{5}}{x}$$
;  $\cos^2 t = \frac{5}{x^2}$ ;  $\sin^2 t = 1 - \frac{5}{x^2} = \frac{x^2 - 5}{x^2}$ ;  $\sin t = \frac{\sqrt{x^2 - 5}}{x}$ ;

а потому окончательно

$$\int \frac{dx}{(x^5 - 5)\sqrt{x^2 - 5}} = -\frac{1}{5} \frac{x}{\sqrt{x^2 - 5}} + C.$$

Пример 3. Найти 
$$\int \frac{dx}{(2-x^2)\sqrt{2-x^2}}$$
.

Решение.

Подкоренное выражение имеет вид (14.5) ( $n^2 = 2$ ,  $n = \sqrt{2}$ ). Применяем подстановку (14.8):

$$x = \sqrt{2} \sin t, \quad dx = \sqrt{2} \cos t dt,$$
$$2 - x^2 = 2 - 2\sin^2 t - 2(1 - \sin^2 t) = 2\cos^2 t; \quad \sqrt{2 - x^2} = \sqrt{2} \cos t.$$

Тогда

$$\int \frac{dx}{(2-x^2)\sqrt{2-x^2}} = \int \frac{\sqrt{2}\cos t dt}{2\cos^2 t \sqrt{2}\cos t} = \frac{1}{2} \int \frac{dt}{\cos^2 t} = \frac{1}{2} tgt + C.$$

Возвращаемся к прежней переменной x. Из подстановки  $x = \sqrt{2} \sin t$ :

$$\sin t = \frac{x}{\sqrt{2}}; \quad \cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - \frac{x^2}{2}} = \sqrt{\frac{2 - x^2}{2}} = \frac{\sqrt{2 - x^2}}{\sqrt{2}};$$

$$tg t = \frac{\sin t}{\cos t} = \frac{\frac{x}{\sqrt{2}}}{\frac{\sqrt{2 - x^2}}{\sqrt{2}}} = \frac{x}{\sqrt{2 - x^2}}.$$

Окончательно имеем:

$$\int \frac{dx}{(2-x^2)\sqrt{2-x^2}} = \frac{1}{2} \frac{x}{\sqrt{2-x^2}} + C.$$

Вычислить итегралы

1. 
$$\int \frac{dx}{\sqrt{(4+x^2)^3}}$$
, 2.  $\int \frac{dx}{\sqrt{(x^2-1)^3}}$ , 3.  $\int \frac{\sqrt{1-x^2}}{x} dx$ ,

4. 
$$\int \sqrt{1+x^2} dx$$
, 5.  $\int \frac{\sqrt{1+x^2}}{x^2} dx$ , 6.  $\int \frac{x^2}{\sqrt{1-x^2}} dx$ .

#### ГЛАВА 2

## ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

# § 1. Интегральные суммы и интегрируемость

К понятию определенного интеграла приводят различные физические задачи. В качестве примера рассмотрим задачу о вычислении пути, пройденного материальной точкой, движущейся вдоль оси OX, если известна ее скорость как функция времени v = f(t).

Для решения задачи разобьем промежуток времени [a,b] с помощью точек  $a=t_0 < t_1 < t_2 < ... < t_n = b$  на n малых промежутков, так что на каждом промежутке  $[t_{k-1},t_k]$  скорость мало меняется, поэтому скорость на этом промежутке можно приближенно считать постоянной равной, например,  $f(t_k)$ . Тогда путь, пройденный материальной точкой за время  $\Delta t_k = t_k - t_{k-1}$  будет приближенно равен  $f(t_k)\Delta t_k$ . А весь путь, пройденный точкой за время  $\Delta t = b - a$ , приближенно равен

$$S \approx \sum_{k=1}^{n} f(t_k) \Delta t_k . (1.1)$$

При уменьшении всех промежутков  $\Delta t_k$  мы будем получать все более точное значение пути. Точное значение пути получится, если перейти в сумме (1.1) к пределу при стремлении всех  $\Delta t_k$  к нулю

$$S = \lim_{\Delta t_k \to 0} \sum_{k=1}^{n} f(t_k) \Delta t_k . (1.2)$$

Предел (1.2) называют определенным интегралом от функции f(t) в пределах от a до b и обозначают символом

$$S = \int_{a}^{b} f(t)dt .$$

Дадим теперь формальное определение определенного интеграла. Пусть на сегменте [a,b] задана функция f(x). Разобьем сегмент произвольно с помощью точек  $a=x_0 < x_1 < x_2 < ... < x_n = b$  на n час-

тичных сегментов. Обозначим через  $\Delta x_i = x_i - x_{i-1}$  длины этих сегментов. Возьмем произвольно на каждом сегменте по точке  $\xi_i$  и составим сумму

$$I(x_i, \xi_i) = \sum_{i=1}^n f(\xi_i) \Delta x_i$$
. (1.3)

Выражение (1.3) называется интегральной суммой функции f(x), соответствующей данному разбиению сегмента на части и данному выбору промежуточных точек  $\xi_i$ . Обозначим через  $\Delta$  максимальную длину частичных сегментов для данного разбиения.

## Определение определенного интеграла

Если существует предел интегральных сумм (1.3) при  $\Delta \to 0$ , и этот предел не зависит от способа разбиения сегмента на части и от выбора промежуточных точек  $\xi_i$ , то этот предел называется определенным интегралом функции f(x) по сегменту [a,b] и обозначается символом

$$\lim_{\Delta \to 0} I(x_i, \xi_i) = \int_{a}^{b} f(x) dx . (1.4)$$

Сама функция f(x) в этом случае называется интегрируемой (по Риману) или собственно интегрируемой на сегменте [a,b].

**Пример интегрируемой функции**. Докажем, что функция f(x) = c интегрируема на любом сегменте. Действительно,  $f(\xi_i) = c$  при любом выборе промежуточных точек, то для любого разбиения сегмента [a,b]

$$I(x_i, \xi_i) = c \sum_{i=1}^n \Delta x_i = c(b-a), \qquad \lim_{\Delta \to 0} I(x_i, \xi_i) = c(b-a).$$

Таким образом, функция f(x) = c интегрируема и

$$\int_{a}^{b} c dx = c(b - a). (1.5)$$

Очевидно, что интегрируемыми являются лишь функции, ограниченные на сегменте [a,b]. Если функция f(x) не ограничена на сегменте [a,b], то она не ограничена по крайней мере на одном частичном сегменте любого разбиения, например, на сегменте  $[x_{k-1}x_k]$ . Слагаемое

 $f(\xi_k) \cdot \Delta x_k$  в интегральной сумме за счет выбора промежуточной точки  $\xi_k$  может быть сделано сколь угодно большим. А это означает, что интегральные суммы не ограничены, а следовательно, не имеют конечного предела. Не любая ограниченная функция интегрируема.

Пример ограниченной, но неинтегрируемой функции. Рассмотрим функцию f(x) = 1, если x рациональное число и f(x) = 0, если x- иррациональное число. Покажем, что эта функция не интегрируема на любом сегменте [a,b]. Действительно, для любого разбиения сегмента, если промежуточные точки  $\xi_i$  выбрать рациональными, то все интегральные суммы будут иметь вид:  $I(x_i, \xi_i) = b - a$ , если же промежуточные точки  $\xi_i$  выбрать иррациональными, то интегральные суммы будут равны нулю. Поэтому не существует предела интегральных сумм и эта функция не интегрируема.

Возьмем произвольное разбиение сегмента [a,b]. Обозначим через  $M_i$  и  $m_i$ , точную верхнюю и точную нижнюю грани функции f(x) на сегменте [a,b] и составим следующие суммы

$$S = \sum_{i=1}^{n} M_i \cdot \Delta x_i \quad s = \sum_{i=1}^{n} m_i \cdot \Delta x_i \quad (1.6)$$

Суммы (1.6) называют соответственно верхней и нижней интегральными суммами функции f(x) для данного разбиения сегмента [a,b]. Имеет место следующая теорема , которую мы приведем без доказательства.

## Теорема (необходимое и достаточное условие интегрируемости)

Для того чтобы ограниченная на сегменте [a,b] функция f(x) была интегрируемой на этом сегменте необходимо и достаточно, чтобы для любого  $\varepsilon > 0$  нашлось такое разбиение сегмента [a,b], для которого

$$S - s < \varepsilon$$
 (1.7)

Если ввести число  $\varpi_i = M_i - m_i$ , которое называется колебанием функции на сегменте  $[x_{i-1}, x_i]$ ,то условие интегрируемости запишется так

$$\sum_{i=1}^{n} \boldsymbol{\varpi}_{i} \cdot \Delta x_{i} < \varepsilon.$$

Для дальнейшего рассмотрения классов интегрируемых функций введем одно важное понятие.

## § 2. Равномерная непрерывность функции на множестве

**Определение.** Функция f(x) называется равномерно непрерывной на множестве  $\{x\}$ , если для любого положительного числа  $\varepsilon$  можно указать такое положительное число  $\delta$ , зависящее только от  $\varepsilon$ , что для любых двух точек x' u x'' множества  $\{x\}$ , удовлетворяющих условию

$$|x'' - x'| < \delta$$
, (2.1)

будет выполняться неравенство

$$|f(x'') - f(x')| < \varepsilon.$$
 (2.2)

<u>Пример.</u> Докажем, что функция  $f(x) = \sqrt{x}$  равномерно непрерывна на полупрямой  $x \ge 1$ . Пусть x' и x'' две любые точки, принадлежащие полупрямой. Применим к сегменту [x', x''] формулу Лагранжа, получим

$$|f(x'') - f(x')| = \frac{1}{2\sqrt{\xi}}|x'' - x'| < \frac{1}{2}|x'' - x'|, \text{ так как } \xi > 1.$$

Следовательно, если по заданному  $\varepsilon > 0$  выбрать  $\delta$ , удовлетворяющее условию  $0 < \delta \le 2\varepsilon$ , то при выполнении (2.1) ,будет выполняться (2.2). Следовательно функция  $f(x) = \sqrt{x}$  равномерно непрерывна на полупрямой  $x \ge 1$ . Из равномерной непрерывности функции на множестве  $\{x\}$  следует непрерывность функции на этом множестве. Из непрерывности не следует равномерная непрерывность на произвольном множестве. Имеет место следующая теорема

## Теорема (Теорема о равномерной непрерывности).

Непрерывная на сегменте [a,b] функция f(x) равномерно непрерывна на этом сегменте.

Следствие. Пусть функция f(x) непрерывна на сегменте [a,b] тогда для любого  $\varepsilon > 0$  можно указать такое  $\delta > 0$ , что на каждом

принадлежащем сегменту [a,b] частичном сегменте [c,d], длина которого меньше  $\delta$ , колебание функции  $\varpi$  на этом сегменте будет меньше чем  $\varepsilon$ .

# § 3. Классы интегрируемых функций

# Теорема (Интегрируемость непрерывной функции)

Непрерывная на сегменте [a,b] функция интегрируема на этом сегменте.

**Доказательство**. Согласно следствию из предыдущей теоремы для положительного числа  $\frac{\mathcal{E}}{b-a}$  найдется такое  $\delta>0$ , что при разбиении сегмента на части, длины которых  $\Delta x_i < \delta$ , колебания  $\varpi_i$  функции на всех частичных сегментах будут меньше чем  $\frac{\mathcal{E}}{b-a}$ . Следовательно

$$S - s = \sum_{i=1}^{n} \boldsymbol{\varpi} \cdot \Delta x_{i} < \frac{\varepsilon}{b - a} \sum_{i=1}^{n} \Delta x_{i} = \varepsilon.$$

Последнее неравенство означает, что функция f(x) интегрируема на сегменте [a,b].

Интегрируемыми могут быть и разрывные функции.

# Теорема ( Интегрирование некоторых разрывных функций)

Пусть функция f(x) определена и ограничена на сегменте [a,b], тогда, если для любого положительного  $\varepsilon$  можно указать конечное число интервалов, покрывающих все точки разрыва этой функции и имеющих общую сумму длин меньше чем  $\varepsilon$ , то функция f(x) интегрируема на сегменте.

**Следствие.** Кусочно-непрерывная на сегменте [a,b] функция интегрируема на этом сегменте.

Функция f(x), монотонная на сегменте [a,b], интегрируема на этом сегменте.

**Доказательство.** Докажем теорему для невозрастающей функции. Пусть  $\varepsilon$  любое положительное число. Разобьем сегмент [a,b] на n одинаковых частей:  $\Delta x_i = (b-a)/n$ , выберем n достаточно большим, чтобы  $\Delta x_i < \frac{\varepsilon}{f(a)-f(b)}$ . Оценим для этого разбиения разность

$$S - s = \sum_{i=1}^{n} \varpi_i \Delta x_i < \frac{\varepsilon}{f(a) - f(b)} \cdot \sum_{i=1}^{n} \varpi_i.$$

Так как для невозрастающей функции:  $\sum_{w=1}^n \varpi_i = f(a) - f(b)$ , то  $S-s < \varepsilon$ . Теорема доказана.

<u>Пример.</u> Вычислить, исходя из определения, определенный интеграл:  $\int_{0}^{1} x dx$ . Так как функция f(x) = x непрерывна на сегменте [0,1], то интеграл существует. Разобьем сегмент [0,1] на п одинаковых частей:  $\Delta x_i = \frac{1}{n}, \ x_i = \frac{i}{n}$ . Промежуточные точки выберем  $\xi_i = x_i$  и выпишем для данного разбиения интегральную сумму

$$I(x_i, \xi_i) = \sum_{i=1}^n \frac{1}{n^2} = \frac{n(n+1)}{2n} = \frac{n+1}{2n}.$$

Так как 
$$\lim_{n\to\infty} \frac{n+1}{2n} = \frac{1}{2}$$
, то  $\int_{0}^{1} x dx = \frac{1}{2}$ .

Вычислить определенные интегралы, рассматривая их как пределы соответствующих интегральных сумм

1. 
$$\int_{0}^{2} x^{2} dx$$
, 2.  $\int_{1}^{2} \frac{dx}{x^{2}}$ , 3.  $\int_{0}^{1} \sin x dx$ .

### § 4. Свойства определенного интеграла. Оценки интегралов. Формула среднего значения

1) Интеграл с одинаковыми пределами равен нулю:

$$\int_{a}^{a} f(x)dx = 0$$

2) При перестановке пределов меняется знак:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

- **3)** Если функция f(x) интегрируема на сегменте [a,b], то она интегрируема на любом сегменте [c,d], принадлежащем сегменту [a,b].
- **4)** Если функция интегрируема на сегментах [a,c] и [c,b], то она интегрируема и на сегменте [a,b]:  $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$ .
  - **5)** Если две функции f(x) и g(x) интегрируемы на сегменте [a,b], то функции  $f(x) \pm g(x)$  и  $f(x) \cdot g(x)$  также интегрируемы на этом сегменте, причем:  $\int_{a}^{b} [f(x) \pm g(x)] \cdot dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$

Пусть функция f(x) интегрируема на сегменте [a,b] и неотрицательна этом сегменте, тогда

$$\int_{a}^{b} f(x)dx \ge 0. (4.1)$$

Если f(x) интегрируема на сегменте [a,b] и  $f(x) \ge m$ , то

$$\int_{a}^{b} f(x)dx \ge m(b-a).$$
 (4.2)

Действительно, если применить к функции  $g(x) = f(x) - m \ge 0$  оценку (4.1), то получим оценку (4.2).

Если две функции f(x) и g(x) интегрируемы на сегменте [a,b] и  $f(x) \ge g(x)$ , то

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx.$$
 (4.3)

Если функция f(x) интегрируема на сегменте [a,b], то и функция |f(x)| также интегрируема на этом сегменте и

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$
 (4.4)

Пусть функция f(x) интегрируема на сегменте [a,b], а M и m - точная верхняя и нижняя грани функции на сегменте [a,b], тогда

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a).$$
 (4.5)

Справедливость (4.5) вытекает из предыдущих оценок. Обозначим через  $\mu$  число  $\frac{1}{b-a}\cdot\int\limits_a^b f(x)dx$ , заключенное между m и M, тогда

$$\int_{a}^{b} f(x)dx = \mu(b-a), \quad m \le \mu \le M.$$
 (4.6)

Эта формула называется первой формулой среднего значения. Если функция f(x) непрерывна на сегменте [a,b], то она согласно теореме Вейерштрасса достигает на этом сегменте своего наибольшего и наименьшего значения:  $f(x_1) = M$ ,  $f(x_2) = m$ . Следовательно, согласно теореме о прохождении непрерывной функции через промежуточное значение  $\mu$  на сегменте  $[x_1, x_2]$ , а следовательно, и на сегменте [a,b] найдется точка  $\xi$  такая, что  $f(\xi) = \mu$ . Формула (4.6) в этом случае примет вид

$$\int_{a}^{b} f(x)dx = f(\xi) \cdot (b - a).$$
 (4.7)

### § 5. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница

Пусть функция f(x) интегрируема на любом сегменте, содержащемся на интервале (a,b). Возьмем на интервале (a,b) фиксированную точку с и произвольную точку x. Функция f(x) будет интегрируема на сегменте [c,x]. Следовательно, на интервале (a,b) определена функция

$$F(x) = \int_{c}^{x} f(t)dt$$
. (5.1)

Функцию (5.1) называют интегралом с переменным верхним пределом.

**Теорема.** Если функция f(x) непрерывна на интервале (a,b), то для нее на этом интервале существует первообразная, одной из которых является функция (5.1).

**Доказательство.** Рассмотрим приращение функции F(x), в точке x, вызванное приращением аргумента  $\Delta x$ 

$$\Delta F = F(x + \Delta x) - F(x) = \int_{C}^{x + \Delta x} f(t)dt - \int_{C}^{x} f(t)dt = \int_{x}^{x + \Delta x} f(t)dt . (5.2)$$

Применяя к интегралу формулу среднего значения, получим

$$\int_{x}^{x+\Delta x} f(t)dt = f(\xi) \cdot \Delta x.$$
 (5.3)

Где число  $\xi$  заключено между x и  $x+\Delta x$ . Подставляя (5.3) в (5.2), получим

$$\Delta F = f(\xi) \cdot \Delta x$$
. (5.4)

Деля обе части (2.20) на  $\Delta x$ , имеем

$$\frac{\Delta F}{\Delta x} = f(\xi). (5.5)$$

Из непрерывности функции f(x) следует, что  $f(\xi) \to f(x)$  при  $\Delta x \to 0$ , поэтому существует предел левой части (5.5), который по определению равен:  $\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = f(x)$ . Таким образом, переходя в (5.5) к пределу при  $\Delta x \to 0$ , получим, что F'(x) = f(x) для всех  $x \in (a,b)$ . Что и требовалось доказать.

**Замечание 1.** Если функция f(x) непрерывна на сегменте [a,b], то в качестве нижнего предела в формуле (2.17) можно взять число a.

**Замечание 2.** Производная от интеграла равна подынтегральной функции

$$\frac{d}{dx} \left[ \int_{c}^{x} f(t)dt \right] = f(x).$$
 (5.6)

Получим теперь основную формулу интегрального исчисления. Так как все первообразные отличаются друг от друга на постоянную, то любая первообразная непрерывной функции f(x) имеет вид

$$\varPhi(x) = \int\limits_a^x f(t)dt + C \,. \ (5.7)$$
 Так как  $\, \varPhi(a) = C \,, \, \varPhi(b) = \int\limits_a^b f(x)dx \,,$  то из этих равенств следует

 $\int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a).$  (5.8)

Это и есть основная формула интегрального исчисления, которая называется формулой Ньютона-Лейбница. Если ввести символ

$$\Phi(x)\Big|_{a}^{b} = \Phi(b) - \Phi(a)$$
, то формула (5.8) примет вид

$$\int_{a}^{b} f(x)dx = \Phi(x) \Big|_{a}^{b} = \Phi(b) - \Phi(a). (5.9)$$

Рассмотрим несколько примеров

$$\int_{1}^{2} 4x^{3} dx = x^{4} \Big|_{1}^{2} = 2^{4} - 1 = 15. \quad \int_{0}^{\frac{\pi}{6}} \sin 3x dx = -\frac{1}{3} \cdot \cos 3x \Big|_{0}^{\pi/6} =$$
$$= -\frac{1}{3} (\cos \frac{\pi}{6} - \cos 0) = \frac{1}{6}.$$

### Вычислить определенные интегралы

1. 
$$\int_{1}^{2} \sqrt{x} dx$$
, 2.  $\int_{0}^{\pi} \cos x dx$ , 3.  $\int_{0}^{1} \frac{dx}{\sqrt{4+x^{2}}}$ , 4.  $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+\cos x}$ .

# §6. Замена переменной под знаком определенного интеграла. Формула интегрирования по частям

Для вычисления многих определенных интегралов полезно заменить переменную интегрирования при помощи подстановки x=g(t) в другой интеграл с новой переменной интегрирования t. Имеет место следующая теорема

**Теорема.** Если функция f(x) непрерывна на сегменте [a,b], а сегмент [a,b] является множеством значений функции x=g(t), определенной на сегменте  $[\alpha,\beta]$  и имеющей на этом сегменте непрерывную производную g'(t), причем,  $g(\alpha)=a$ ,  $g(\beta)=b$ , то справедлива формула

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[g(t)] \cdot g'(t)dt$$
 (6.1)

**Доказательство.** Так как функция f(x) непрерывна на сегменте [a,b], то имеет место формула (5.8), где  $\Phi(x)$  некоторая первообразная функции f(x). Из условия теоремы следует, что сложная функция  $\Phi(g(t))$  дифференцируема на сегменте  $[\alpha,\beta]$ . Дифференцируя ее, получим

$$\frac{d}{dt} \left[ \Phi(g(t)) \right] = \Phi'(g(t)) \cdot g'(t), (6.2)$$

где  $\Phi'(g(t)) = \Phi'(x) = f(x) = f(g(t))$  при x = g(t). Подставляя  $\Phi'(g(t))$  в правую часть (6.2), получим

$$\frac{d}{dt} [\Phi(g(t))] = f(g(t)) \cdot g'(t) \cdot (6.3)$$

Из (6.3) следует, что функция  $\Phi(g(t))$  является первообразной для функции  $f(g(t)) \cdot g'(t)$  на сегменте  $[\alpha, \beta]$ . Следовательно, согласно формуле (5.8)

$$\int_{\alpha}^{\beta} f(g(t)) \cdot g'(t) dt = \Phi(g(\beta)) - \Phi(g(\alpha)) = \Phi(b) - \Phi(a)$$
 (6.4)

Из (5.8) и (6.4) следует справедливость формулы (6.1), что и требовалось доказать.

Примеры.

$$\int_{0}^{1} \sqrt{1 - x^{2}} \cdot dx = \left\{ x = \sin t, \quad dx = \cos t \cdot dt, \quad \sqrt{1 - x^{2}} = \cos t, t_{1} = 0, t_{2} = \frac{\pi}{2} \right\} =$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t \cdot dt = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \cdot dt = \frac{1}{2} (t + \frac{1}{2} \cdot \sin 2t) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

$$\int_{1}^{4} \cos \sqrt{x} \cdot \frac{dx}{2\sqrt{x}} = \left\{ x = t^{2}, \quad dx = 2t \cdot dt, \quad t_{1} = 1, \quad t_{2} = 2 \right\} = \int_{1}^{2} \sin t \cdot dt =$$

$$= -\cos t \Big|_{1}^{2} = \cos 1 - \cos 2$$

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} = \left\{ tg \frac{x}{2} = t, \quad \cos x = \frac{1 - t^{2}}{1 + t^{2}}, \quad dx = \frac{2dt}{1 + t^{2}}, \quad t_{1} = 0, \quad t_{2} = 1 \right\} =$$

$$= 2 \int_{0}^{1} \frac{dt}{t^{2} + 3} = \frac{2}{\sqrt{3}} \arctan \frac{t}{\sqrt{3}} \Big|_{0}^{1} = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}}.$$

Получим формулу интегрирования по частям для определенного интеграла.

Пусть функции u(x) и v(x) дифференцируемы на сегменте [a,b], а их производные непрерывны на этом сегменте. Обозначим  $F(x) = u(x) \cdot v(x)$ . Дифференцируя, получим:  $F'(x) = u' \cdot v + v' \cdot u$ . Ин-

тегрируя обе части этого равенства и используя формулу Ньютона-Лейбница, имеем

$$u \cdot v \Big|_{a}^{b} = \int_{a}^{b} u' \cdot v dx + \int_{a}^{b} v' \cdot u dx, \text{ откуда}$$

$$\int_{a}^{b} u \cdot dv = u \cdot v \Big|_{a}^{b} - \int_{a}^{b} v \cdot du. \quad (6.5)$$

Это и есть формула интегрирования по частям для определенного интеграла.

Примеры.

$$\int_{0}^{1} x \cdot e^{x} dx = \{u = x, \quad dv = e^{x} \cdot dx, \quad du = dx, \quad v = e^{x}\} = x \cdot e^{x} \Big|_{0}^{1} - e^{x} \Big|_{0}^{1} = 1$$

$$\int_{1}^{2} x \cdot \ln x dx = \{ u = \ln x, \quad dv = x dx, \quad du = \frac{dx}{x}, \quad v = \frac{x^{2}}{2} \} = \frac{x^{2}}{2} \cdot \ln x \Big|_{1}^{2} - \frac{1}{2} \int_{1}^{2} x dx = 2 \ln 2 - \frac{3}{4}.$$

Вычислить определенные интегралы

1. 
$$\int_{0}^{1} \sqrt{1-x^{2}} dx$$
, 2.  $\int_{0}^{1} \sqrt{1+x^{2}} dx$ , 3.  $\int_{0}^{1} x^{2} \sqrt{1-x^{2}}$ , 4.  $\int_{-1}^{1} \frac{1+x^{2}}{1+x^{4}} dx$ .

## § 7. Геометрические приложения определенного интеграла

# § 7.1. Длина дуги кривой

Кривая на плоскости может быть задана явно уравнением:  $y = f(x), \quad a \le x \le b$  и уравнениями:  $x = x(t), \quad y = y(t); \quad \alpha \le t \le \beta$ . Кроме того кривая может быть задана и неявно.

Пусть на плоскости задана простая кривая L от точки A до точки B . Разобьем кривую L с помощью точек  $A=M_0,M_1,M_2...M_n=B$  на n частей, возникающую при этом лома-

ную  $M_0M_1M_2...M_n$  будем называть ломаной, вписанной в данную кривую и отвечающей данному разбиению кривой L на части. Если обозначить через  $l_i$  длину  $M_{i-1}M_i$ , то длина всей ломаной будет равна

 $L_n = \sum_{i=1}^n l_i$ . Обозначим через  $\{L_n\}$  множество всех длин ломаных, вписанных в данную кривую.

**Определение.** Если множество  $\{L_n\}$  длин вписанных в кривую L ломаных ограничено, то кривая называется спрямляемой, а точная верхняя грань множества  $\{L_n\}$  называется длиной дуги кривой L.

**Теорема.** Если функция y = f(x) дифференцируема на сегменте [a,b], а ее производная непрерывна на этом сегменте, то кривая L, определяемая уравнением: y = f(x),  $a \le x \le b$ , спрямляема и ее длина находится по формуле

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx. (7.1)$$

**Доказательство.** Разобьем сегмент [a,b] с помощью точек  $a=x_0 < x_2 < ... < x_n = b$  на n частей и образуем ломаную с вершинами в точках  $M_i(x_i,f(x_i))$ . Длина звена ломаной  $M_{i-1}M_i$  равна

$$l_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$
 , где  $\Delta y_i = f(x_i) - f(x_{i-1})$ .

Длина  $L_n$  всей ломаной будет равна

$$L_n = \sum_{i=1}^{n} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}. (7.2)$$

Применим к функции f(x) на сегменте  $[x_{i-1}, x_i]$  формулу Лагранжа

$$\Delta y_i = \dot{f}(\xi_i) \cdot \Delta x_i$$
, где  $x_{i-1} \leq \xi_i \leq x_i$  . (7.3)

Подставляя (2.33) в (2.32), получим

$$L_{n} = \sum_{i=1}^{n} \sqrt{1 + (f'(\xi_{i}))^{2}} \cdot \Delta x_{i}$$
 (7.4)

Так как выражение (7.4) представляет интегральную сумму непрерывной функции  $\sqrt{1+(f'(x))^2}$ , то при  $\lambda=\max\Delta x_i\to 0$  предел инте-

гральной суммы (7.4) равен интегралу, стоящему в правой части (7.1).

<u>Пример.</u> Найти длину дуги полукубической параболы:  $y = \frac{2}{3}x^{\frac{3}{2}}$ ,  $0 \le x \le 2$ . Находим производную:  $y' = \sqrt{x}$  и подставляем ее в формулу (7.1), получим

$$L = \int_{0}^{2} \sqrt{1+x} dx = \frac{2}{3} \sqrt{(1+x)^{3}} \Big|_{0}^{2} = \frac{2}{3} (3\sqrt{3} - 1).$$

В случае, когда кривая задана параметрически, имеет место следующая теорема.

**Теорема.** Если функции x = x(t) и y = y(t) имеют на сегменте  $[\alpha, \beta]$  непрерывные производные, то кривая L, задаваемая этими уравнениями, спрямляема и длина дуги кривой находится по формуле

$$L = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} \cdot dt . (7.5)$$

*Пример*. Вычислить длину дуги циклоиды:

$$x = a(t - \sin t), y = a(1 - \cos t), \quad 0 \le t \le 2\pi.$$

Находим производные

$$x'(t) = a(1-\cos t), \quad y'(t) = a\sin t, \quad (x'(t))^2 + (y'(t))^2 = 4a^2\sin^2\frac{t}{2}.$$

Подставляя эти выражения в формулу (7.5), получим

$$L = \int_{0}^{2\pi} 2a \sin \frac{t}{2} \cdot dt = -4a \cos \frac{t}{2} \Big|_{0}^{2\pi} = 8a.$$

Если кривая задана в полярных координатах:  $r=r(\phi), \quad \alpha \leq \phi \leq \beta$  и функция  $r=r(\phi)$  имеет на сегменте  $[\alpha,\beta]$  непрерывную производную, то длина дуги кривой находится по формуле

$$L = \int_{\alpha}^{\beta} \sqrt{(r(\varphi))^2 + (r'(\varphi))^2} \cdot d\varphi. (7.6)$$

Действительно, в этом случае параметрические уравнения кривой имеет вид:

$$x = r(\varphi)\cos\varphi$$
,  $y = r(\varphi)\sin\varphi$ .

Дифференцируя эти функции, получим:

$$x'(\varphi) = r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi, \quad y'(\varphi) = r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi.$$

Имеем:  $(x'(\varphi))^2 + (y'(\varphi))^2 = (r(\varphi))^2 + (r'(\varphi))^2$ . Подставляя это выражение в (7.5) получим для длины дуги кривой формулу (7.6).

<u>Пример.</u> Найти всю длину кардиоиды:  $r = a(1 + \cos \varphi)$ .

$$r'(\varphi) = -a\sin\varphi$$
, то  $(r'(\varphi))^2 + (r(\varphi))^2 = 4a^2\cos^2\frac{\varphi}{2}$  и
$$L = 4a\int_0^\pi \cos\frac{\varphi}{2}d\varphi = 8a\sin\frac{\varphi}{2}\Big|_0^\pi = 8a.$$

- 1. Вычислить длину дуги астроиды :  $x = a \cos^3 t$ ,  $y = a \sin^3 t$ .
- 2. Вычислить длину дуги кривой :  $y = x^2$ ,  $0 \le x \le 1$ .
- 3. Вычислить длину эволюты эллипса :  $x = \frac{c^2}{a} \cos^3 t$ ,  $y = \frac{c^2}{b} \sin^3 t$ .

# § 7.2. Площадь плоской фигуры

Плоской фигурой Q будем называть часть плоскости, ограниченной простой замкнутой кривой L. Кривую L называют границей фигуры Q. Если все точки некоторого многоугольника принадлежат фигуре Q, то такой многоугольник называется вписанным в фигуру Q. Если все точки плоской фигуры и ее границы принадлежат некоторому многоугольнику ,то такой многоугольник называется описанным возле фигуры. Обозначим  $\{S_i\}$  и  $\{S_d\}$  — числовые множества площадей всех вписанных в фигуру и описанных возле фигуры многоугольников. Очевидно, что первое множество ограничено сверху, а второе — снизу. Обозначим S и S — точную верхнюю и нижнюю грани множеств  $S_i\}$  и  $S_d$ . Числа S и S называют нижней и верхней площадью фигуры. Очевидно, что S S S S

**Определение.** Плоская фигура называется квадрируемой, если ее верхняя площадь совпадает с нижней площадью.  $S = \underline{S} = \overline{S}$  называется площадью фигуры.

**Теорема.** Для того чтобы плоская фигура была квадрируемой необходимо и достаточно, чтобы для любого  $\varepsilon > 0$  нашлись такие вписанный в фигуру и описанный возле фигуры многоугольники, что для этих многоугольников разность их площадей была меньше чем  $\varepsilon$ 

$$S_d - S_i < \varepsilon$$
. (7.7)

# § 7.2.1. Площадь криволинейной трапеции

Плоская фигура, ограниченная сверху графиком непрерывной и неотрицательной функции f(x), снизу — осью OX, а слева и справа — прямыми x=a и x=b называется криволинейной трапецией. Докажем, что криволинейная трапеция является квадрируемой фигурой и найдем ее площадь.

**Доказательство.** Так как функция f(x) непрерывна на сегменте [a,b], то она интегрируема на этом сегменте. Следовательно, для любого  $\varepsilon > 0$  найдется такое разбиение сегмента на части, что разность между верхней и нижней интегральными суммами данного разбиения будет меньше чем  $\varepsilon$ :  $S-s<\varepsilon$ .

Так как в данном случае верхняя интегральная сумма  $S=S_d$ , нижняя интегральная сумма  $s=S_i$ , где  $S_d$  и  $S_i$  площади ступенчатых фигур описанной возле криволинейной трапеции и вписанной в нее, то для данного разбиения сегмента [a,b] выполнено необходимое и достаточное условие квадрируемости плоской фигуры:  $S_d-S_i<\varepsilon$ . Так как предел верхней и нижней интегральных сумм при

$$\Delta = \max \Delta x_i \to 0$$
 равен  $\int_a^b f(x)dx$  и  $s \le S \le S$ , то  $S = \int_a^b f(x)dx$ . (7.8)

<u>Пример.</u> Вычислить площадь фигуры, ограниченной параболой  $y = -x^2 + 2x$  и осью *OX*. Парабола пересекает ось *OX* точках x = 0 и x = 2. Вершина параболы находится в точке M(1;1).

$$S = \int_{0}^{2} (-x^{2} + 2x) dx = \left(-\frac{x^{3}}{3} + x^{2}\right)\Big|_{0}^{2} = -\frac{8}{3} + 4 = \frac{4}{3}.$$

Замечание 1. Если функция f(x) непрерывна и не положительна на сегменте [a,b], то  $\int_a^b f(x) dx \le 0$ , поэтому площадь криволинейной трапеции в этом случае равна  $S = \left| \int_a^b f(x) dx \right|$ .

Замечание 2. Площадь криволинейной фигуры, ограниченной сверху и снизу соответственно непрерывными кривыми  $y = f_1(x)$  и  $f_2(x)$ , слева и справа - прямыми x = a и x = b, определяется формулой

$$S = \int_{a}^{b} [f_1(x) - f_2(x)] dx. (7.9)$$

<u>Пример.</u> Вычислить площадь фигуры, ограниченной линиями:  $y = 8x - x^2$  и y = x + 6. Совместно решая данные уравнения, находим

рис. 1 Y=16-(X-4)<sup>2</sup> Y=X+6 две точки пересечения линий: A(1;7), B(6;12).

Искомая фигура изображена на рис. 1. Площадь этой фигуры находим по формуле

$$S = \int_{1}^{6} (8x - x^{2} - x - 6) dx =$$

$$= \left[ \frac{7}{2}x^{2} - \frac{1}{3}x^{3} - 6x \right]_{1}^{6} = 20\frac{5}{6}$$

**Замечание 3.** Если кривая, ограничивающая фигуру сверху, задана параметрическими уравнениями:

$$x = x(t), \quad y = y(t), \quad \alpha \le t \le \beta$$

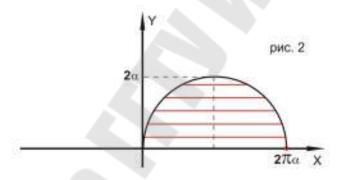
и функции x(t) и y(t)имеют на сегменте  $[\alpha, \beta]$  непрерывные производные, то площадь криволинейной трапеции находится по формуле

$$S = \int_{\alpha}^{\beta} y(t) \cdot x'(t) dt.$$
 (7.10)

<u>Пример.</u> Найти площадь, ограниченную одной аркой циклоиды:  $x = a(t - \sin t), y = a(1 - \cos t)$  и осью OX (рис. 2). По формуле (7.10) находим

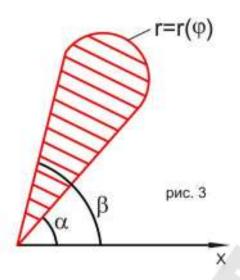
$$S = \int_{0}^{2\pi} a(1 - \cos t)a(1 - \cos t)dt = a^{2} \int_{0}^{2\pi} (1 - \cos t)^{2} dt = a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \cos^{2} t)dt$$

$$= a^{2} \cdot (t - 2\sin t) \Big|_{0}^{2\pi} + \frac{a^{2}}{2} \int_{0}^{2\pi} (1 + \cos 2t) dt = 2\pi a^{2} + \frac{a^{2}}{2} (t + \frac{1}{2}\sin 2t) \Big|_{0}^{2\pi} = 3\pi a^{2}.$$



### § 7.2.2. Площадь криволинейного сектора

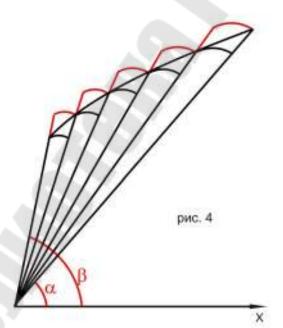
Пусть кривая L задана в полярной системе координат уравнением:  $r=r(\phi), \quad \alpha \leq \phi \leq \beta$ . Функция  $r(\phi)$  непрерывна и неотрицательна на сегменте  $[\alpha,\beta]$ . Плоская фигура, ограниченная кривой L и двумя лучами  $\phi=\alpha$  и  $\phi=\beta$  называется криволинейным сектором (рис.3).



**Теорема.** Криволинейный сектор является квадрируемой фигурой и его площадь находится по формуле

$$S = \frac{1}{2} \cdot \int_{\alpha}^{\beta} r^2(\varphi) d\varphi.$$
 (7.11)

Доказательство. Разобьем сегмент  $[\alpha,\beta]$  с помощью точек  $\alpha=\phi_0<\phi_1<...<\phi_n=\beta$  на n частей. Пусть  $M_i$  и  $m_i$  — наибольшее и наименьшее значения функции  $r(\phi)$  на сегменте  $[\phi_{i-1},\phi_i]$ . Для каждого частичного сегмента построим круговые секторы радиусов  $M_i$  и  $m_i$ .



Мы получим описанную около криволинейного сектора и вписанную в него веерообразные фигуры (рис.4). Площади этих фигур соответственно равны

$$S_d = \frac{1}{2} \cdot \sum_{i=1}^n M_i^2 \cdot \Delta \varphi_i,$$

$$S_i = \frac{1}{2} \cdot \sum_{i=1}^{n} m_i^2.$$

Эти суммы являются соответственно верхней и нижней интегральными суммами для

функции  $\frac{1}{2}r^2(\varphi)$  для данного разбиения сегмента  $[\alpha,\beta]$ :  $S_d=S, \quad S_i=s$  .Так как функция  $\frac{1}{2}r^2(\varphi)$  непрерывна, а следовательно , и интегрируема на сегменте  $[\alpha,\beta]$ , то для любого  $\varepsilon>0$ 

$$S - s = S_d - S_i < \varepsilon.$$

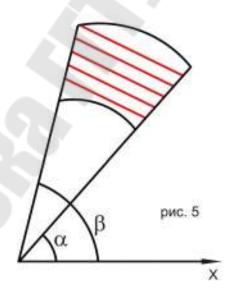
Из последнего неравенства следует квадрируемость криволинейного сектора. А так как

$$S_i \le \frac{1}{2} \cdot \int_{\alpha}^{\beta} r^2(\varphi) d\varphi \le S_d, (7.12).$$

то из (7.12) вытекает справедливость формулы (7.11).

**Замечание.** Площадь криволинейного сегмента (рис. 5) находится по формуле

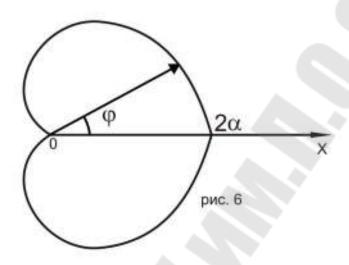
$$S = \frac{1}{2} \cdot \int_{\alpha}^{\beta} \left[ r_2^2(\varphi) - r_1^2(\varphi) \right] \cdot d\varphi.$$
 (7.13)



<u>Пример.</u> Вычислить площадь, ограниченную кардиоидой:

$$r = a(1 + \cos \varphi)$$
 (рис.6).

$$S = \int_{0}^{\pi} a^{2} (1 + \cos \varphi)^{2} d\varphi = a^{2} \int_{0}^{\pi} (1 + 2\cos \varphi + \cos^{2} \varphi) d\varphi = a^{2} (\varphi + 2\sin \varphi) \Big|_{0}^{\pi} + \frac{a^{2}}{2} \int_{0}^{\pi} (1 + \cos 2\varphi) d\varphi = \pi a^{2} + \frac{a^{2}}{2} (\varphi + \frac{1}{2} \sin 2\varphi) \Big|_{0}^{\pi} = \frac{3\pi a^{2}}{2}.$$



Найти площади, ограниченные линиями:

- 1. Параболой  $y = 4x x^2$  и осью ОХ.
- 2. Гиперболой xy = 6 и прямой y = 7 x.
- 3. Трехлепестковой розой  $r = a \cos 3\varphi$ .
- 4. Окружностью  $x^2 + y^2 = 4x$  и параболой  $y^2 = 2x$ .

# § 7.3. Объемы тел и площади поверхностей

Пусть задано некоторое тело T . Многогранник называется вписанным в тело T , если каждая его точка принадлежит телу T . Многогранник называется описанным возле тела T , если все точки тела принадлежат многограннику. Обозначим  $\{V_i\}$  и  $\{V_d\}$  — числовые множества объемов всех многогранников, вписанных в тело и описанных возле него. Очевидно, что первое множество ограничено сверху, а второе — снизу. Точная верхняя грань первого множества и

точная нижняя грань второго множества, числа  $\underline{V}$  и  $\overline{V}$ , называются соответственно нижним и верхним объемами тела T.

**Определение.** Тело T называется кубируемым, если  $\underline{V} = \overline{V}$ . Число  $V = \underline{V} = \overline{V}$  называется объемом тела T.

Имеет место следующая теорема.

**Теорема.** Для того чтобы тело T было кубируемым, необходимо и достаточно, чтобы для любого  $\varepsilon > 0$  нашлись такой вписанный в тело многогранник и такой описанный вокруг тела многогранник, что разность их объемов была бы меньше чем  $\varepsilon$ 

$$V_d - V_i < \varepsilon$$
. (7.14)

Используя эту теорему можно доказать кубируемость некоторых классов тел.

**Теорема.** Прямой цилиндр, основанием которого является квадрируемая фигура Q, является кубируемым телом и его объем равен

$$V = Sh$$
, (7.15)

где S - площадь фигуры Q, а h – высота цилиндра.

**Доказательство.** Так как фигура Q квадрируема, то найдутся такие вписанный в фигуру и описанный возле фигуры многоугольники, что разность между их площадями будет сколь угодно малой:

$$S_d - S_i < \frac{\varepsilon}{h}$$
.

Объемы вписанной в цилиндр и описанной возле цилиндра призм высотой h, будут равны:  $V_d = S_d h$ ,  $V_i = S_i h$ . А их разность будет:  $V_d - V_i = h(S_d - S_i) < \varepsilon$ .

Следовательно, согласно предыдущей теореме цилиндр является кубируемым телом.

A так как  $V_i \leq Sh \leq V_d$ , то объем цилиндра равен: V = Sh.

Следствие. Кубируемым является также ступенчатое тело, составленное из прямых цилиндров, лежащих друг на друге.

**Замечание.** Если разность между объемами двух ступенчатых тел одно из которых вписано в тело T, а другое описано возле этого тела будет сколь угодно малой:  $V_d$  – $V_i$ <  $\epsilon$ , то тело T кубируемо.

Пусть теперь требуется найти объем тела ограниченного некоторой поверхностью и плоскостями x = a и x = b. Пусть сечение тела любой плоскостью x = X представляет собой квадрируемую фигуру,

площадь которой является некоторой непрерывной функцией S(x). Разобьем сегмент [a,b] на n частичных сегментов  $[x_{i-1},x_i]$ . Пусть  $M_i$  и  $m_i$  — точная верхняя и нижняя грани функции S(x) на сегменте. Впишем в наше тело ступенчатое тело, состоящее из цилиндров с площадью оснований  $m_i$  и высотами  $h_i = \Delta x_i$  и опишем возле тела ступенчатое тело, составленное из цилиндров с площадью оснований  $M_i$  и высотами  $h_i = \Delta x_i$ . Объемы этих тел равны

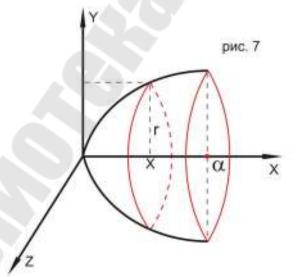
$$V_i = \sum_{i=1}^{n} m_i \Delta x_i, \quad V_d = \sum_{i=1}^{n} M_i \Delta x_i.$$
 (7.16)

Очевидно, выражения (7.16) представляют собой нижнюю и верхнюю интегральные суммы для функции S(x). Так как эта функция интегрируема, то разность указанных сумм для данного разбиения сегмента [a,b] будет меньше любого положительного числа  $\varepsilon$ . Следовательно, наше тело кубируемо.

Так как предел указанных сумм равен  $\int_a^b S(x)dx$ , то и объем тела равен

$$V = \int_{a}^{b} S(x) dx . (7.17)$$

<u>Пример.</u> Найти объем тела, ограниченного поверхностью:



 $xa = y^2 + z^2$  и плоскостью x = a (a > 0)(рис.7).

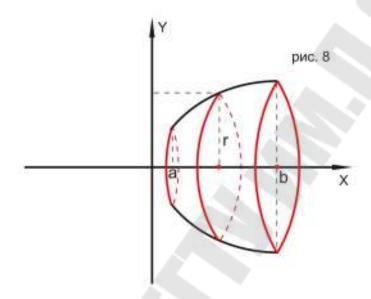
Сечением эллиптического параболоида, перпендикулярным оси OX точке x, является круг радиуса  $r = \sqrt{ax}$ . Следовательно, площадь сечения равна

$$S(x) = \pi ax$$
.

По формуле (7.17) находим объем тела

$$V = \int_{0}^{a} \pi a x dx = \frac{\pi a x^{2}}{2} \Big|_{0}^{a} = \frac{\pi a^{3}}{2}.$$

Если тело T получено вращением непрерывной линии: y = f(x),  $a \le x \le b$  вокруг оси OX и линия не пересекает ось OX на данном участке, то сечением данного тела плоскостью, перпендикулярной оси OX, является круг радиуса r = f(x) (рис.8).

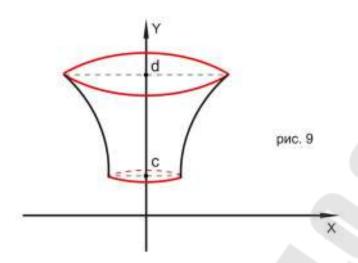


Следовательно, в этом случае  $S(x) = \pi y^2$  и, согласно (7.17), объем тела вращения будет равен

$$V = \int_{a}^{b} y^2 dx . (7.18)$$

Если же тело получено вращением линии вокруг оси OY (рис.9), то формула для объема тела вращения имеет вид

$$V = \int_{c}^{d} x^{2} dy. (7.19)$$



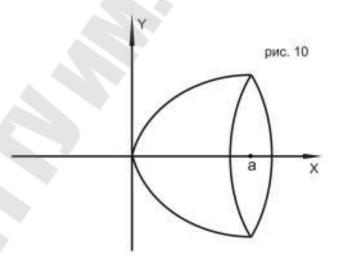
*Пример*. Найти объем тела, образованного вращением параболы:

$$y^2 = 2px$$
,  $0 \le x \le a$  во-  
круг оси  $OX$  (рис.10).

По формуле (7.18) находим

$$V = \pi \int_{0}^{a} 2 px dx = \pi px^{2} \Big|_{0}^{a} = \pi pa^{2}.$$

В заключение данного раздела приведем нестрогий вывод формулы площади поверхности, образованной вращением ду-



ги AB плоской кривой L вокруг оси OX (рис.8). Пусть кривая L задана уравнением:  $y = f(x), x \in [a,b]$  и функция f(x) непрерывна на сегменте [a,b]. Дифференциал площади этой поверхности равен площади боковой поверхности усеченного круглого конуса с образующей dl и радиусами оснований y и y+dy

$$ds = \pi(2y + dy) \cdot dl \approx 2\pi y \cdot dl \ (7.20)$$

Согласно (7.20), с учетом того что  $dl = \sqrt{1 + \left[f'(x)\right]^2} dx$ , площадь поверхности вращения будет равна

$$S = 2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + [f'(x)]^2} dx. (7.21)$$

<u>Пример.</u> Найти площадь поверхности, образованной вращением параболы  $y^2 = 2px$ ,  $0 \le x \le a$  вокруг оси OX (рис.9).

Находим производную:  $y'(x) = \sqrt{\frac{p}{2x}}$ ,  $1 + [y'(x)]^2 = \frac{p+2x}{2x}$ . Подставляя в формулу (7.21), получим

$$S = 2\pi \int_{0}^{a} \sqrt{2px} \cdot \sqrt{\frac{p+2x}{2x}} dx = 2\pi \sqrt{p} \int_{0}^{a} \sqrt{p+2x} dx = \frac{2\pi \sqrt{p}}{3} \sqrt{(p+2x)^{3}} \Big|_{0}^{a} = \frac{2\pi \sqrt{p}}{3} \Big[ \sqrt{(p+2a)^{3}} - \sqrt{p^{3}} \Big]$$

При вращении дуги AB кривой L, заданной уравнением:  $x = g(y), y \in [c,d]$ , вокруг оси OY (рис.9) площадь поверхности вращения находится по формуле

$$S = 2\pi \int_{c}^{d} g(y) \cdot \sqrt{1 + [g'(y)]^{2}} dy. (7.22)$$

Если поверхность получается вращением вокруг оси OX кривой, определяемой уравнениями:  $x = x(t), y = y(t), t \in [\alpha, \beta]$ , то осуществляя в формуле (7.21) замену переменных под знаком определенного интеграла, получим для площади поверхности выражение

$$S = 2\pi \int_{a}^{\beta} y(t) \cdot \sqrt{[x'(t)]^2 + [y'(t)]^2} \cdot dt. (7.23)$$

<u>Пример.</u> Найти площадь поверхности, образованной вращением арки циклоиды вокруг оси OX. Для циклоиды:  $(x')^2 + (y')^2 = 4a^2 \sin^2 t$ . Подставляя это выражение в формулу (7.23), получим

$$S = 2\pi \int_{0}^{2\pi} 2a \sin \frac{t}{2} \cdot a(1 - \cos t) dt = 4\pi a^{2} \int_{0}^{2\pi} \sin \frac{t}{2} dt - 4\pi a^{2} \int_{0}^{2\pi} \sin \frac{t}{2} \cos t dt =$$

$$-8\pi a^2 \cos \frac{t}{2} \Big|_0^{2\pi} - 4\pi a^2 \left[ \cos \frac{t}{2} - \frac{1}{3} \cos \frac{3t}{2} \right]_0^{2\pi} = 16\pi a^2 + \frac{16\pi a^2}{3} = \frac{64\pi a^2}{3}.$$

Вычислить объем тела, образованной вращением фигуры, ограниченной линиями :

- 1.  $y^2 = 2x, x = 2$  вокруг оси ОХ.
- 2.  $x = a \cos^3 t$ ,  $y = a \sin^3 t$  вокруг оси ОХ.
- 3.  $\frac{x^2}{2^2} + \frac{y^2}{3^2} = 1$  вокруг оси ОҮ.

Вычислить площадь поверхности, образованной вращением вокруг оси OX:

- 1. Окружности  $x^2 + y^2 = a^2$ .
- 2. Одной волны косинусоиды  $y = \cos x$ .
- 3. Эллипса  $x^2 + 2y^2 = 8$ .

## § 8. Физические приложения определенного интеграла

# § 8.1 Масса, центр масс и момент инерции неоднородного стержня

Пусть  $\rho(x)$  — линейная плотность неоднородного стержня, расположенного на сегменте [a,b] оси OX. Разобьем сегмент на п частей и возьмем на каждом сегменте  $[x_{i-1},x_i]$  по точке  $\xi_i$ . Выражение  $\rho(\xi_i)\Delta x_i \approx m_i$  — массе участка стержня  $\Delta x_i$ . А масса всего стержня будет приближенно равна

$$M \approx \sum_{i=1}^{n} \rho(\xi_i) \Delta x_i$$
. (8.1)

Определим массу стержня как предел сумм (8.1) при  $\Delta = \max \Delta x_i \to 0$ . Имеем

$$M = \int_{a}^{b} \rho(x) dx.$$
 (8.2)

Координата центра масс стержня находится по формуле

$$\overline{X} = \frac{\int_{a}^{b} \rho(x)xdx}{\int_{a}^{b} \rho(x)dx}.$$
 (8.3)

<u>Пример.</u> Найти координату центра масс неоднородного стержня длиной l, на котором сосредоточены массы с линейной плотностью  $\rho(x) = kx$ . Найти момент инерции стержня относительно оси, проходящей перпендикулярно стержню через начало координат. Находим массу стержня:

$$M = \int_{0}^{l} kx dx = \frac{kx^{2}}{2} \Big|_{0}^{l} = \frac{kl^{2}}{2} \text{ M} \int_{0}^{l} kx^{2} dx = \frac{kx^{3}}{3} \Big|_{0}^{l} = \frac{kl^{3}}{3}.$$

По формуле (8.3) находим координату центра масс

$$\overline{X} = \frac{kl^3}{3}$$
:  $\frac{kl^2}{2} = \frac{2l}{3}$ .

Момент инерции неоднородного стержня относительно оси, проходящей перпендикулярно стержню на расстоянии равном c от его начала (точка x=0), равен

$$J = \int_{0}^{l} \rho(x)(x-c)^{2} dx.$$
 (8.4)

Согласно (8.4) имеем (c = 0)

$$J = k \int_{0}^{l} x^{3} dx = \frac{kx^{4}}{4} = \frac{kl^{4}}{4} = \frac{3Ml^{2}}{4}.$$

# § 8.2. Работа переменной силы

Пусть под действием переменной силы F = F(x), направленной вдоль оси OX, движется материальная точка. Найдем работу, которую совершает эта сила при перемещении тела вдоль оси OX из точки a в точку b. Для этого разобьем весь путь на n частей. Выберем на каж-

дом участке  $[x_{i-1}, x_i]$  по точке  $\xi_i$ , тогда работа силы на этом участке будет приближенно равна:  $F(\xi_i)\Delta x_i$ .

А работа силы на всем участке пути приближенно равна

$$A \approx \sum_{i=1}^{n} F(\xi_i) \Delta x_i.$$

Определим работу переменной силы F(x) на участке пути [a,b], как

$$A = \int_{a}^{b} F(x)dx.$$
 (8.5)

<u>Пример.</u> Определить работу, которую совершает гравитационное поле земли при подъеме ракеты массой m с поверхности земли на высоту H.

Сила, действующая со стороны земли на тело массы m, находится по известной формуле закона всемирного тяготения

$$F(x) = -\frac{\gamma mM}{x^2},$$

где  $\gamma$  – константа , M – масса Земли , x – расстояние до центра Земли. По формуле (8.5) находим работу

$$A = -\gamma mM \int_{R}^{R+H} \frac{dx}{x^2} = \gamma mM \cdot \frac{1}{x} \Big|_{R}^{R+H} = \gamma mM \left[ \frac{1}{R+H} - \frac{1}{R} \right] = -\frac{\gamma mMH}{R(R+H)}.$$

Так как  $\frac{\gamma M}{R^2} = g$  — ускорение свободного падении, то работу можно представить в виде

$$A = -\frac{mgRH}{R+H}.$$

- 1. Найти центр тяжести однородной дуги полуокружности,  $x^2 + y^2 = a^2$ , расположенной над осью ОХ.
- 2. Найти координаты центра тяжести области, ограниченной кривой  $r = a(1 + \cos \varphi)$ .
- 3. Определить массу прямого кругового конуса, васота которого равна H, а угол между высотой и образующей  $\alpha$ , если плотность в каждой точке конуса пропорциональна расстоянию ее от плоскости, проходящей через ее вершину параллельно основанию.

4. Вычислить работу, необходимую для выкачивания воды из котла, имеющего форму полусферы с радиусом R.

#### ГЛАВА 3.

#### НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

### 3.1. Несобственные интегралы первого рода

Ранее было введено понятие определенного интеграла  $\int f(x)dx$  для случая конечного промежутка [a,b] и ограниченной функции f(x). Обобщим понятие определенного интеграла на бесконечный проме жуток. Пусть функция f(x) определена на полупрямой  $[a,\infty)$  и интегрируема на любом сегменте [a, A], A > a. В этом случае существует определенный интеграл

$$\int_{a}^{A} f(x)dx. \tag{3.1}$$

Устремим теперь в формуле (3.1)  $A \rightarrow \infty$ .

Определение. Конечный или бесконечный предел интеграла (3.1) при  $A \to \infty$  называют несобственным интегралом функции f(x) на полупрямой  $[a, \infty)$  и обозначают символом

$$\int_{a}^{\infty} f(x)dx = \lim_{A \to \infty} \int_{a}^{A} f(x)dx.$$
 (3.2)

Если предел (3.2) конечный то говорят, что интеграл сходится, а функцию f(x) называют интегрируемой на полупрямой  $[a, \infty)$ . В противном случае говорят, что интеграл расходится.

Аналогично (3.2) определяется несобственный интеграл функции f(x) на полупрямой  $(-\infty, a]$  и на всей числовой прямой  $(-\infty, +\infty)$ .

$$\int_{-\infty}^{a} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx, \quad B < a.$$

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to +\infty} \lim_{B \to -\infty} \int_{B}^{A} f(x)dx.$$
(3.3)

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to +\infty} \lim_{B \to -\infty} \int_{B}^{A} f(x)dx . \qquad (3.4)$$

Несобственный интеграл (3.4) можно определить и равенством

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$
 (3.5)

за исключением случая, когда оба интеграла равны бесконечности разных знаков.

**Пример.** Вычислить  $\int_{1}^{\infty} \frac{dx}{x^{\alpha}}$ .

Рассмотрим три случая:  $\alpha = 1$ ,  $\alpha < 1$ ,  $\alpha > 1$ 

$$\int_{1}^{A} \frac{dx}{x} = \ln x \bigg|_{1}^{A} = \ln A,$$

Так как  $\lim_{A\to\infty} \ln A = +\infty$ , то несобственный интеграл  $\int\limits_1^\infty \frac{dx}{x}$  расходится.

$$\int_{1}^{A} \frac{dx}{x^{\alpha}} = \frac{x^{-\alpha+1}}{-\alpha+1} \bigg|_{1}^{A} = \frac{1}{1-\alpha} \Big[ A^{-\alpha+1} - 1 \Big]$$

Так как во втором случае  $\lim_{A\to\infty}A^{-\alpha+1}=+\infty$  , то несобственный интеграл  $\int\limits_{1}^{\infty}\frac{dx}{x^{\alpha}}$  расходится.

Так как в третьем случае  $\lim_{A\to\infty}A^{-\alpha+1}=0$ , то несобственный интеграл сходитсяи его значение равно :  $\int_{1}^{\infty}\frac{dx}{x^{\alpha}}=\frac{1}{\alpha-1}$ 

**Пример.** Вычислить  $\int_{0}^{\infty} \frac{dx}{x^2 + 4}$ .

$$\int_{0}^{A} \frac{dx}{x^{2} + 4} = \frac{1}{2} \arctan \left( \frac{x}{2} \right)_{0}^{A} = \frac{1}{2} \arctan \left( \frac{A}{2} \right).$$

Так как  $\lim_{A\to\infty} arctg \frac{A}{2} = \frac{\pi}{2}$ , то несобственный интеграл сходится и его значение равно

$$\int_{0}^{\infty} \frac{dx}{x^2 + 4} = \frac{\pi}{4}.$$

Пусть F(x)- первообразная функции f(x) на полупрямой  $[a,\infty)$ , тогда согласно формуле Ньютона-Лейбница

$$\int_{a}^{A} f(x)dx = F(A) - F(a).$$
 (3.6)

Из (3.6) следует , что несобственный интеграл  $\int_{a}^{\infty} f(x)dx$  сходится , только в случае , когда существует конечный предел

$$\lim_{A \to \infty} F(A) = F(\infty). \tag{3.7}$$

В этом случае

$$\int_{a}^{\infty} f(x)dx = F(\infty) - F(a) = F(x) \Big|_{a}^{\infty}.$$
 (3.8)

Аналогично имеют место формулы

$$\int_{-\infty}^{a} f(x)dx = F(x)\Big|_{-\infty}^{a}, \qquad \int_{-\infty}^{+\infty} f(x)dx = F(x)\Big|_{-\infty}^{+\infty}.$$

Где  $F(-\infty) = \lim_{B \to \infty} F(B)$ .

Определение. Если существует конечный предел интеграла  $\lim_{A \to \infty} \int_{-L}^{L} f(x) dx$  , то этот предел называется главным значением несобст-

венного интеграла  $\int_{-\infty}^{+\infty} f(x) dx$  и обозначается символом  $V.P. \int_{-\infty}^{+\infty} f(x) dx = \lim_{A \to \infty} \int_{-A}^{+A} f(x) dx.$  (3.9)

$$V.P. \int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to \infty} \int_{-A}^{+A} f(x)dx.$$
 (3.9)

Пример . Найти главное значение несобственного интеграла  $\int_{-\infty}^{+\infty} \frac{xdx}{x^2+1}$ . Очевидно, что этот несобственный интеграл расходится, но главное значение существует

$$\int_{-A}^{A} \frac{x dx}{x^2 + 1} = \frac{1}{2} \ln(x^2 + 1) \Big|_{-A}^{A} = 0.$$

Следовательно

$$V.P.\int_{0}^{+\infty} \frac{xdx}{x^2 + 1} = 0.$$

Пусть функция  $f(x) \ge 0$  на полупрямой  $[a, \infty)$ , тогда интеграл (2.58) представляет собой монотонно неубывающую функцию переменнойA

$$\Phi(A) = \int_{a}^{A} f(x)dx. \qquad (3.10)$$

Следовательно ,согласно теореме о существовании конечного предела монотонно неубывающей функции  $\Phi(A)$  при  $A \to \infty$ , для сходимости несобственного интеграла необходимо и достаточно, чтобы интеграл (3.10) с ростом A был ограничен сверху

$$\int_{a}^{A} f(x)dx \le L. \tag{3.11}$$

В противном случае несобственный интеграл имеет значение  $\infty$ . Имеет место следующая теорема.

**Теорема.** Если две неотрицательные функции f(x) и g(x) удовлетворяют на полупрямой  $[a, \infty)$  неравенству  $f(x) \le g(x)$ , то из сходимости интеграла  $\int\limits_{-\infty}^{\infty} g(x)dx$  следует сходимость интеграла  $\int\limits_{-\infty}^{\infty} f(x)dx$  . А из расходимости второго интеграла следует расходимость первого.

**Доказательство.** Так как согласно условию теоремы  $f(x) \le g(x)$ то и,

$$\int_{a}^{A} f(x)dx \le \int_{a}^{A} g(x)dx$$
 для всех  $A > a$  (3.12)

 $\int_{a}^{A} f(x) dx \leq \int_{a}^{A} g(x) dx \qquad \text{для всех } A > a \qquad (3.12)$  Так как интеграл  $\int_{a}^{\infty} g(x) dx \text{ сходится , то имеет место неравенство}$ 

$$\int_{a}^{A} g(x)dx \le L . \tag{3.13}$$

Из неравенств (3.12) и (3.13) следует, что для функции f(x) также выполнятся неравенство (23.11), что и означает сходимость несобственного интеграла  $\int_{a}^{b} f(x)dx$ . Вторая часть теоремы доказывается аналогично.

**Следствие.** Если существует конечный предел :  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = q \neq 0$ , то оба несобственных интеграла одновременно либо сходятся либо рас-XO дятся. Во многих случаях функцию g(x) выбирают в виде :  $g(x) = \frac{1}{x^{\alpha}}$ . Как было установлено ранее, несобственный интеграл  $\int_{-\infty}^{\infty} \frac{dx}{x^{\alpha}}$  сходится при  $\alpha > 1$  и расходится при  $\alpha \le 1$ .

**Пример.** Доказать , что несобственный интеграл  $\int_{1}^{\infty} \frac{dx}{\sqrt{1+x^3}}$  сходит-СЯ.

Так как подынтегральная функция  $\frac{1}{\sqrt{1+x^3}} < \frac{1}{\sqrt{x^3}}$  при  $x \ge 1$ , а несобственный интеграл  $\int\limits_1^\infty \frac{dx}{\sqrt{x^3}}$  сходится, то и наш несобственный интеграл также сходится.

### 3.2. Несобственные интегралы второго рода

Распространим понятие определенного интеграла на неограниченные функции. Пусть функция f(x) определена на сегменте [a,b] за исключением точки b, в окрестности которой она не ограничена. Кроме того функция f(x) интегрируема на сегменте  $[a,b-\varepsilon]$ ,  $0<\varepsilon< b-a$ . В этом случае существует определенный интеграл  $\int_a^{b-\varepsilon} f(x) dx$ . Предел этого интеграла при  $\varepsilon \to 0$  называется несобственным интегралом функции f(x) на сегменте [a,b] и обозначается символом

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx.$$
 (3.14)

Если предел конечный , то говорят , что несобственный интеграл (3.14) сходится , а функцию f(x) называют интегрируемой на сегменте [a,b]. В противном случае говорят , что несобственный интеграл расходится.

Аналогично определяется несобственный интеграл второго рода в случае, когда функция f(x) определена на сегменте [a,b], за исключеием точки a, в окрестности которой она не ограничена и кроме того интегрируема на сегменте  $[a+\varepsilon,b]$ .

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx.$$
 (3.15)

Если функция f(x) не ограничена в некоторой внутренней точке c сегмента , то несобственный интеграл определяется так

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\delta \to 0} \int_{c+\delta}^{b} f(x)dx.$$
 (3.16)

**Пример**. Вычислить  $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}. \int_{0}^{1-\varepsilon} \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x \Big|_{0}^{1-\varepsilon} = \arcsin(1-\varepsilon).$ 

Так как  $\lim_{\varepsilon \to 0} \arcsin(1-\varepsilon) = \frac{\pi}{2}$ , то несобственный интеграл  $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$ 

сходится и его значение равно :  $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{2}$ .

Пусть функция f(x) непрерывна на сегменте  $[a,b-\varepsilon]$  и на полусегменте [a,b) для функции f(x) существует первообразная F(x), тогда

$$\int_{a}^{b-\varepsilon} f(x)dx = F(b-\varepsilon) - F(a). \tag{3.17}$$

Согласно (3.17) сходимость несобственного интеграла (3.14) равносильна существованию конечного предела  $\lim_{\varepsilon\to 0} F(b-\varepsilon)$ . Если он существует , то положив  $F(b) = \lim_{\varepsilon\to 0} F(b-\varepsilon)$ , мы получим , что функция F(x) будет непрерывной на сегменте [a,b] и для вычисления несобственного интеграла мы получим обычную формулу Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{3.18}$$

Эта же формула будет справедлива и в случаях, когда функция f(x) не ограничена в нескольких внутренних точках сегмента [a,b] при условии, чтобы первообразная F(x) была непрерывна и в этих точках.

**Пример.** Вычислить  $\int_{2}^{6} \frac{dx}{(4-x)^{\frac{2}{3}}}$ . Так как первообразная

 $F(x) = 3(4-x)^{\frac{1}{3}}$  и она непрерывна на сегменте [4,6], то

$$\int_{2}^{6} \frac{dx}{(4-x)^{\frac{2}{3}}} = 3(4-x)^{\frac{1}{3}} \Big|_{2}^{6} = 6 \cdot 2^{\frac{1}{3}}.$$

Сформулируем признак сходимости несобственного интеграла (3.14) в случае положительной функции f(x) .

**Теорема.** Для того чтобы несобственный интеграл (3.14) сходился, необходимо и достаточно чтобы выполнялось неравенство

$$\int_{a}^{b-\varepsilon} f(x)dx \le L. \tag{3.19}$$

Если же (3.19) не выполняется , то несобственный интеграл имеет значение  $+\infty$  .

Так как несобственный интеграл  $\int_a^b \frac{dx}{(b-x)^{\lambda}}$  сходится при  $\lambda < 1$  и

расходится при  $\lambda \le 1$  , то имеет место следующий признак сравнения **Теорема** . Если существует конечный предел выражения

$$\lim_{x \to b} \frac{f(x)}{(b-x)^{\lambda}} = q \neq 0, \tag{3.20}$$

то несобственный интеграл (3.14) сходится при  $\lambda < 1$  и расходится при  $\lambda \ge 1$ . В заключение приведем пример вычисления площади неограниченной фигуры .

**Пример.** Найти площадь, заключенную между кривой  $y = e^{-x}$  и осями координат  $(x \ge 0)$  .

Площадь фигуры равна

$$S = \int_{0}^{\infty} e^{-x} dx = -\lim_{A \to \infty} (e^{-A} - 1) = 1.$$

Найти следующие несобственные интегралы

$$1. \int_{2}^{\infty} \frac{dx}{x^{2} + x - 2} , 2. \int_{0}^{\infty} \frac{dx}{1 + x^{3}}, 3. \int_{2}^{\infty} \frac{dx}{x^{3}}, 4. \int_{0}^{2} \ln x dx, 5. \int_{0}^{1} \frac{dx}{(2 - x)\sqrt{1 - x}}$$

#### ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Первообразная и неопределенный интеграл.
- 2. Свойства неопределенного интеграла.
- 3. Таблица интегралов.
- 4. Замена переменной в неопределенном интеграле.
- 5. Интегралы от некоторых функций, содержащих квадратный трехчлен.
- 6. Формула интегрирования по частям.
- 7. Рациональные дроби. Разложение правильной рациональной дроби на сумму простейших дробей.

- 8. Интегрирование рациональной дроби.
- 9. Интегралы от иррациональных выражений.
- 10.Интегрирование биномиальных дифференциалов (подстановки Чебышева).
- 11.Интегралы вида  $\int R(x, \sqrt{ax^2 + bx + c}) dx$ . (подстановки Эйлера).
- 12.Вычисление интегралов вида  $\int R(x, \sqrt{ax^2 + bx + c}) dx$  с помощью тригонометрических подстановок .
- 13. Вычисление интегралов вида  $\int R(\cos x, \sin x) dx$ .
- 14. Интегральные суммы. Необходимое и достаточное условие ин тегрируемости.
- 15. Равномерная непрерывность функции. Теорема о равномерной непрерывности.
- 16. Интегрирование непрерывной функции.
- 17. Интегрирование монотонной функции.
- 18. Свойства определенного интеграла. Оценки интегралов. Фор мула среднего значения.
- 19. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 20. Замена переменой в определенном интеграле.
- 21. Вычисление длины дуги кривой.
- 22. Площадь плоской фигуры.
- 23. Объем тела вращения и площадь поверхности вращения.
- 24. Физические приложения определенного интеграла.
- 25. Несобственные интегралы первого рода.
- 26. Несобственные интегралы второго рода.

### Литература

- 1. Г.М.Фихтенгольц «Основы математического анализа», т.1. Москва: Наука, 1968. 440 с.
- 2. Н.С.Пискунов «Дифференциальное и интегральное исчисление», т.1. Москва: Наука, 1978. 450 с.
- 3. Г.М.Фихтенгольц «Курс дифференциального и интегрального исчисления», т.2. Москва: Наука, 1966. 710 с.
- 4. И.И.Ляшко, А.К.Боярчук, Я.Г.Гай «Справочное пособие по математическому анализу», ч.2. Киев: Вища школа, 1978. 696 с.
- 5.. В.А.Ильин, Э.Г.Позняк « Основы математического анализа», ч.1-Москва: Наука, 1982.-616 с.

# Содержание

| ГЛА  | ВА 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ                                            |    |
|------|--------------------------------------------------------------------------|----|
| §1.  | Первообразная и неопределенный интеграл                                  | 3  |
| -    | Некоторые свойства неопределенного интеграла                             | 6  |
| -    | Таблица интегралов                                                       | 7  |
| §4.  | Интегрирование методом замены переменного или спосо-                     |    |
|      | бом подстановки                                                          | 11 |
| §5.  | Интегралы от некоторых функций, содержащих квадратный                    |    |
|      | трехчлен                                                                 | 14 |
| §6.  | Интегрирование по частям                                                 | 20 |
| §7.  | Рациональные дроби. Простейшие рациональные дроби и                      |    |
|      | их интегрирование                                                        | 24 |
| §8.  | Разложение рациональной дроби на простейшие                              | 30 |
| -    | Интегрирование рациональных дробей                                       | 34 |
| §10. |                                                                          | 39 |
| §11. | Интегралы вида $\int R(x, \sqrt{ax^2 + bx} + c) dx$ . Подстановки Эйлера | 44 |
| §12. | Интегрирование биномиальных дифференциалов                               | 48 |
| §13. | Интегрирование некоторых классов тригонометрических                      |    |
|      | функций                                                                  | 52 |
| §14. | Интегрирование некоторых иррациональных функций с по-                    |    |
|      | мощью тригонометрических подстановок                                     | 62 |
| ГЛА  | ВА 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ                                              |    |
| §1.  | Интегральные суммы и интегрируемость                                     | 68 |
|      | Равномерная непрерывность функции на множестве                           | 71 |
| §3.  | Классы интегрируемых функций                                             | 72 |
| §4.  | Свойства определенного интеграла. Оценки интегралов.                     |    |
|      | Формула среднего значения                                                | 73 |
| §5.  | Интеграл с переменным верхним пределом. Формула Нью-                     |    |
|      | тона-Лейбница                                                            | 75 |
| §6.  | Замена переменной под знаком определенного интеграла.                    |    |
|      | Формула интегрирования по частям                                         | 78 |
| §7.  | Геометрические приложения определенного интеграла                        | 80 |
|      | §7.1. Длина дуги кривой                                                  | 80 |
|      | §7.2. Площадь плоской фигуры                                             | 83 |
|      | §7.2.1. Площадь криволинейной трапеции                                   | 84 |
|      | 87.2.2. Плошаль криволинейного сектора                                   | 86 |

| §7.3. Объемы тел и площади поверхностей                | 89  |
|--------------------------------------------------------|-----|
| §8. Физические приложения определенного интеграла      | 95  |
| §8.1. Масса, центр масс и момент инерции неоднородного |     |
| стержня                                                | 95  |
| §8.2. Работа переменной силы                           | 97  |
|                                                        |     |
| ГЛАВА 3. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ                       |     |
|                                                        |     |
| 3.1. Несобственные интегралы первого рода              | 98  |
|                                                        |     |
| 3.2 Несобственные интегралы второго рода               | 102 |
|                                                        |     |
| Вопросы к экзамену                                     | 104 |
| Литература                                             | 106 |

# **Вальковская** Валентина Ивановна **Лашкевич** Василий Иванович

# ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Учебно-методическое пособие по дисциплине «Математика» для студентов технических специальностей дневной и заочной форм обучения

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 13.10.11.

Per. № 42E. E-mail: ic@gstu.by http://www.gstu.by