АНАЛИЗ ЭНЕРГОЭФФЕКТИВНОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

А. А. Коновалова, А. Ю. Чечет

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

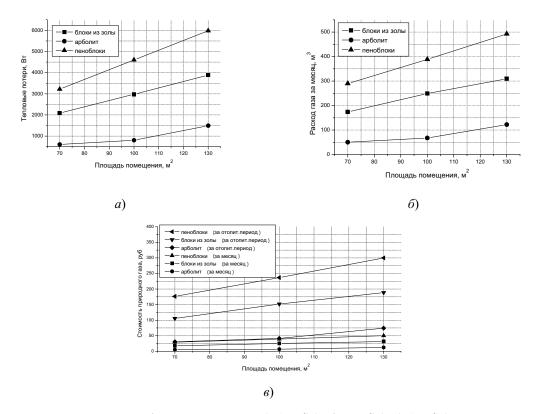
Научный руководитель Т. С. Юфанова

Энергосбережение — это приемы и методы эффективного и разумного использования топливно-энергетических ресурсов планеты, т. е. задача энергосбережения — сохранять ресурсы, как имеющие прямое отношение к производству энергии, так и косвенно касающиеся данного вопроса.

Около 40 % всей энергии, потребляемой в мире, используется в зданиях. Они являются основными потребителями энергии и главными источниками выбросов парниковых газов. Расходуется 2/3 этой энергии на отопление и кондиционирование, а современные технологии позволяют значительно сократить этот показатель.

Современные тенденции и перспективы строительства и реконструкции зданий, в первую очередь, касаются рационального подхода к использованию энергетических ресурсов, комфортного микроклимата в помещениях и уменьшения влияния на окружающую среду.

Рассмотрим эффективность использования следующих материалов для строительства ограждающих конструкций зданий:


- пеноблоки;
- блоки из золы;
- арболит.

Ниже приведены результаты расчета тепловых потерь через наружные ограждения дома (толщиной 40 см), выполненные из различных строительных материалов, а также затраты на отопление дома. Здание находится в г. Гомеле, температура воздуха внутри помещения принята $t_{\rm Bp}=22~^{\circ}{\rm C}$; расчетная температура наружного воздуха $t_{\rm Ho}=-24~^{\circ}{\rm C}$; источник тепла — природный газ. В расчетах учтены тепловые потери только через наружные стены здания, которые составляют около 30 % от общих тепловых потерь.

Результаты расчета приведены в таблице.

Результаты расчета

Параметр	Блоки из золы	Арболит	Пеноблоки
Теплопроводность, Вт/мК	0,26	0,1	0,4
Термическое сопротивление, $\text{м}^2 \cdot \text{C/Bt}$	1,54	4	1
а) площадь дома $F = 70 \text{ м}^2$			
Тепловые потери, Q , Вт	2090,9	605,5	3220
Расход газа в секунду, м ³ /с	0,000067	0,000019	0,001
Расход газа за месяц, V , м ³	173,79	50,44	289,75
Стоимость газа за месяц, S , p.	17,6	5,12	29,41
Стоимость газа за отопительный период, р.	105,6	30,72	176,46
б) площадь дома $F = 100 \text{ м}^2$			
Тепловые потери, Q , Вт	2978	805	4600
Расход газа в секунду, м ³ /с	0,000096	0,000026	0,00015
Расход газа за месяц, V , м ³	249,16	67,39	388,77
Стоимость газа за месяц, S , p.	25,29	6,9	39,46
Стоимость газа за отопительный период, р.	151,74	41,4	236,76
в) площадь дома $F = 130 \text{ м}^2$			
Тепловые потери, Q , Вт	3883,1	1495	5980
Расход газа в секунду, м ³ /с	0,00012	0,000048	0,00019
Расход газа за месяц, V , м ³	309,56	122,36	492,51
Стоимость газа за месяц, S , p.	31,42	12,42	49,99
Стоимость газа за отопительный период, p.	188,52	74,52	299,94

Puc. 1. Графики зависимости: *a*) Q = f(F); *б*) V = f(F); *в*) S = f(F)

Можно сделать вывод, что каждый строительный материал имеет свои недостатки и свои достоинства, но с точки зрения экономии на топливе (природный газ) самым выгодным материалом является арболит.

Использование современных энергоэффективных конструкций и материалов позволяет создавать здания не только с низким потреблением энергии, но и с различными показателями ценового диапазона, комфортабельности и экологичности, что, безусловно, является актуальным в рамках современной строительной индустрии.