

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Физика и электротехника»

Я. О. Шабловский

нелинейные электрические цепи

ПРАКТИКУМ

по решению задач по дисциплине «Теоретические основы электротехники» для студентов специальности 1-53 01 05 «Автоматизированные электроприводы» дневной и заочной форм обучения

Электронный аналог печатного издания

УДК 621.3(075.8) ББК 31.27-01я73 Ш13

Рекомендовано к изданию научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол № 1 от 26.09.2017 г.)

Рецензент: доц. каф. «Электроснабжение» ГГТУ им. П. О. Сухого канд. техн. наук, доц. *Ю. А. Рудченко*

Шабловский, Я. О.

Ш13 Нелинейные электрические цепи: практикум по решению задач по дисциплине «Теоретические основы электротехники» для студентов специальности 1-53 01 05 «Автоматизированные электроприводы» днев. и заоч. форм обучения / Я. О. Шабловский. – Гомель: ГГТУ им. П. О. Сухого, 2018. – 77 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

ISBN 978-985-535-385-1.

Практикум посвящен решению типовых задач по заключительной части курса ТОЭ и охватывает разделы «Нелинейные электрические цепи постоянного тока», «Магнитные цепи постоянного тока» и «Нелинейные электрические цепи переменного тока». Содержит примеры решения задач базового уровня сложности с подробными пояснениями и может использоваться как на аудиторных практических занятиях по ТОЭ, так и при самоподготовке.

Для студентов специальности 1-53 01 05 «Автоматизированные электроприводы».

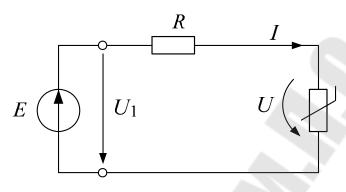
УДК 621.3(075.8) ББК 31.27-01я73

ISBN 978-985-535-385-1

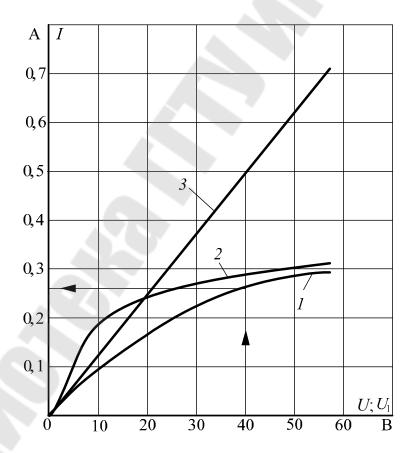
- © Шабловский Я. О., 2018
- © Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2018

1. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. В цепи рис. 1.1.1 последовательно включены линейный резистор R=80 Ом и нелинейный резистор, характеристика которого приведена на рис. 1.1.2 (кривая 2). Определить ток I при E=40 В.



Puc. 1.1.1



Puc. 1.1.2

1 способ

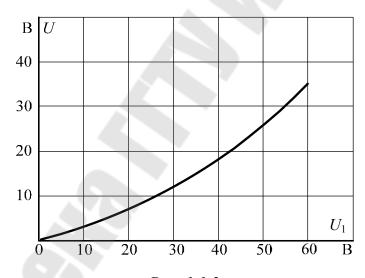
Состояние цепи описывается уравнением, составленным по второму закону Кирхгофа:

$$U_1(I) = RI + U(I) = U_R(I) + U(I).$$

В соответствии с этим выражением на рис. 1.1.2 построена основная расчетная характеристика $U_1(I)$ (кривая I), полученная суммированием характеристик нелинейного резистора (кривая 2) и линейного резистора (прямая 3). При $E=U_1=40$ В искомый ток I=0,26 А определим непосредственно по этой характеристике.

2 способ

Тот же результат можно получить, построив на рис. 1.1.3 вспомогательную зависимость $U(U_1)$. Тогда искомый ток I=0,26 А определится при $E=U_1=40$ В по заданной ВАХ нелинейного элемента (кривая 2 на рис. 1.1.2).



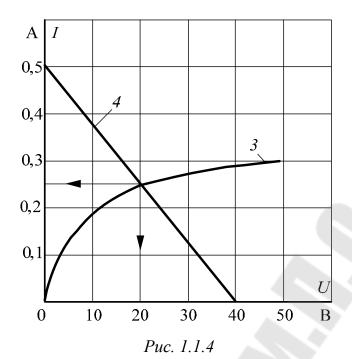
Puc. 1.1.3

3 способ

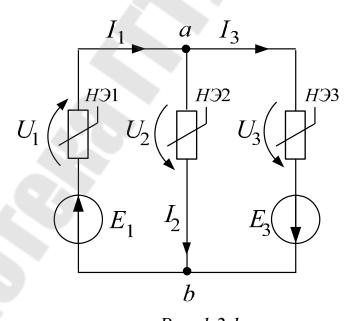
Запишем уравнение состояния цепи в виде:

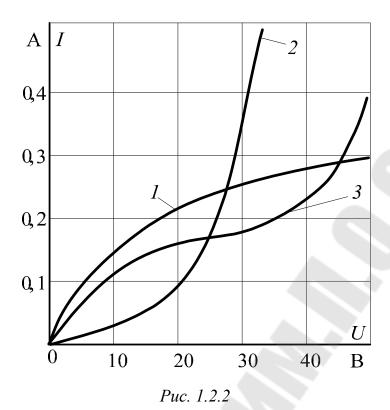
$$U(I) = E - RI$$

и построим на рис. 1.1.4 вольт-амперные характеристики левой (кривая 3) и правой (прямая 4) частей этого уравнения. Равенство его левой и правой частей соответствует точке пересечения этих характеристик, в которой I=0.26 A, U=20 B.



1.2. В схеме рис. 1.2.1 E_1 = 40 В; E_3 = 20 В; симметричные характеристики нелинейных элементов приведенные на рис. 1.2.2: H91 — кривая I; H92 — кривая 2; H93 — кривая 3. Определить режим работы нелинейных элементов.





Решение

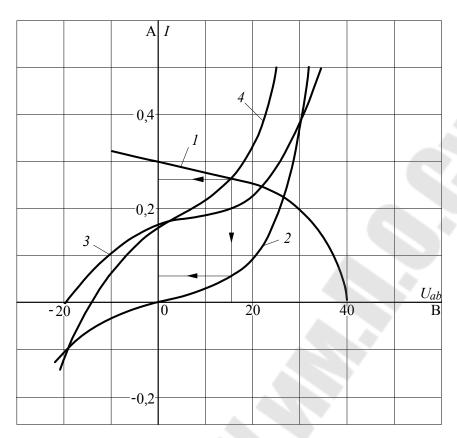
Первоначально построим зависимости токов всех ветвей от одной и той же величины – от межузлового напряжения U_{ab} :

$$U_{ab} = E_1 - U_1(I_1); \quad U_{ab} = U_2(I_2); \quad U_{ab} = U_3(I_3) - E_3.$$

Эти вольт-амперные характеристики изображены на рис. 1.2.3 (кривые 1-3 соответственно). После этого с помощью рис. 1.2.3 графически решим уравнение, составленное по первому закону Кирхгофа:

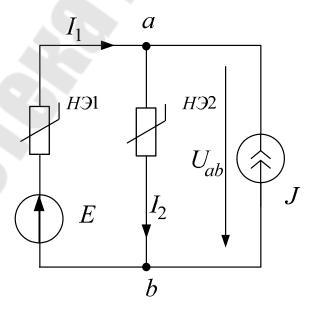
$$I_1(U_{ab}) = I_2(U_{ab}) + I_3(U_{ab}).$$

Согласно этому уравнению рабочий режим определяется точкой, в которой ток I_1 (кривая I) равен сумме токов I_2+I_3 (кривая I). Для этой точки $U_{ab}=15\,$ B; $I_1=0.26\,$ A; $I_2=0.06\,$ A; $I_3=0.2\,$ A. Напряжения на нелинейных элементах находим по их исходным характеристикам: $U_1=25\,$ B, $U_2=15\,$ B, $U_3=35\,$ B.



Puc. 1.2.3

1.3. В схеме рис. 1.3.1 E = 40 В; J = 0.2 А; симметричные характеристики нелинейных элементов изображены на рис. 1.2.2: H91 -кривая I; H92 -кривая 2. Определить токи и напряжения нелинейных элементов.



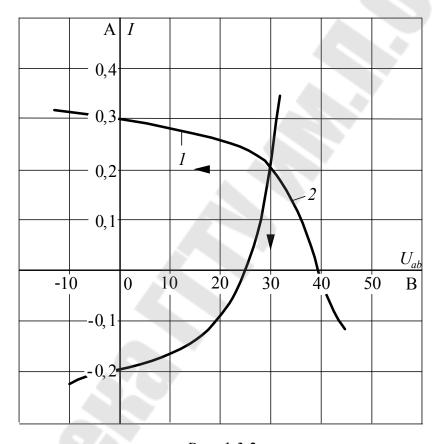
Puc. 1.3.1

Характеристики ветвей ${\it 1}$ и ${\it 2}$ запишем в функции общего межузлового напряжения ${\it U}_{ab}$:

$$U_{ab} = E - U_1(I_1); (1)$$

$$U_{ab} = U_2(I_2), (2)$$

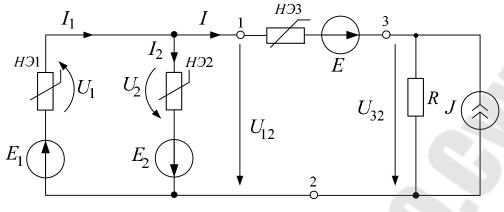
после чего графически решим составленное по первому закону Кирхгофа уравнение $I_1(U_{ab}) = I_2(U_{ab}) - J$ (рис. 1.3.2).



Puc. 1.3.2

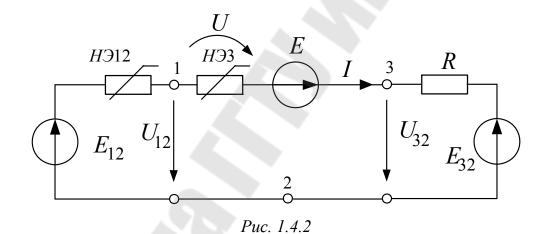
Точка пересечения определяет напряжение $U_{ab}=U_2=30~{\rm B}$ и ток $I_1=0,2~{\rm A}.$ На основании уравнений (1), (2) и характеристик нелинейных элементов находим: $U_1=10~{\rm B};~I_2=0,4~{\rm A}.$

1.4. В схеме рис. 1.4.1 $E_1 = 40~\mathrm{B}$; $E_2 = 15~\mathrm{B}$; $J = 0.2~\mathrm{A}$. Характеристики нелинейных элементов (симметричные) приведены на рис. 1.2.2: для HЭ1 и HЭ3 — кривая I, для HЭ2 — кривая J. Определить напряжение U и ток J элемента HЭ3, если: а) $E = 30~\mathrm{B}$; б) $E = -30~\mathrm{B}$; в) E = 0.



Puc. 1.4.1

Предварительно преобразуем заданную схему в эквивалентную неразветвленную, заменив источник тока эквивалентным источником ЭДС с $E_{32}=rJ=10\,$ В. Эквивалентная схема показана на рис. 1.4.2.



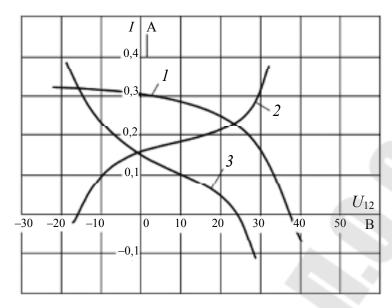
Исходим из уравнений, составленных по законам Кирхгофа:

$$U_{12} = E_1 - U_1(I_1); (1)$$

$$U_{12} = U_2(I_2) - E_2; (2)$$

$$I(U_{12}) = I_1(U_{12}) - I_2(U_{12}). (3)$$

Характеристики (1), (2) и графическое решение уравнения (3) показаны на рис. 1.4.3 (кривые I-3 соответственно). При построении учитывалась симметричность характеристик.

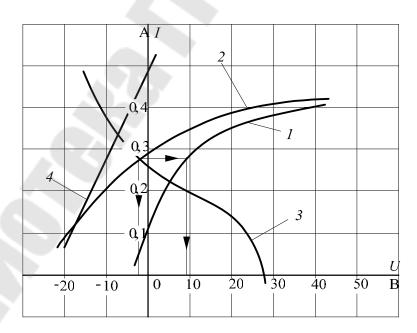


Puc. 1.4.3

После построения характеристики $I(U_{12})$, или, то же самое, $U_{12}(I)$, находим ток в схеме рис. 1.4.2, для которой

$$U_{12}(I) = U(I) + U_{32}(I) - E.$$

Это уравнение решаем графически методом пересечений. Для этого на рис. 1.4.4 построены: кривая I-U(I); кривая $2-U=U_{32}-E=f_2(I)$; кривая $3-U_{12}(I)$; кривая $4-U_{32}-E=f_1(I)$.

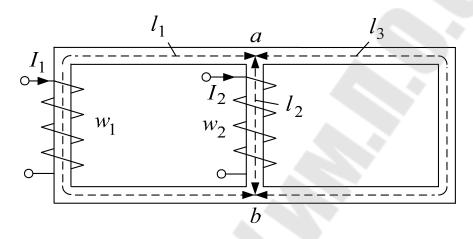


Puc. 1.4.4

Окончательно получаем: U = 8 B, I = 0.17 A.

2. НЕЛИНЕЙНЫЕ МАГНИТНЫЕ ЦЕПИ ПОСТОЯННОГО ТОКА

2.1. В цепи рис. 2.1.1 магнитопровод, выполненный из электротехнической стали 1512, имеет следующие размеры: $l_1=30\,$ см; $l_2=12\,$ см; $l_3=30\,$ см; $S_1=S_2=S_2=15\,$ см²; $F_1=I_1w_1=100\,$ A; $F_2=I_2w_2=470\,$ A. Определить магнитную индукцию в каждом стержне.



Puc. 2.1.1

Решение

Составим эквивалентную схему (рис. 2.1.2) и запишем уравнения второго закона Кирхгофа для магнитной цепи:

$$U_{M_{a\bar{b}}} = F_1 - U_{M_1}; \tag{1}$$

$$U_{M_{q\bar{0}}} = F_2 - U_{M_1}; (2)$$

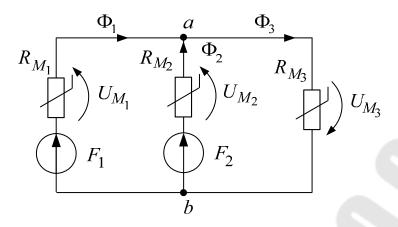
$$U_{M_{a\delta}} = U_{M_3}; (3)$$

$$F_1 = I_1 w_1; \quad F_2 = I_2 w_2; \quad U_{M_1} = H_1 l_1; \quad U_{M_2} = H_2 l_2; \quad U_{M_3} = H_3 l_3.$$

По первому закону Кирхгофа:

$$\Phi_1 + \Phi_2 = \Phi_3. \tag{4}$$

Рассчитаем вебер-амперные характеристики участков $\Phi_M(U_M)$. Задав поток Φ , определим индукцию $B = \Phi/S$, по справочной кривой намагничивания стали (см. Приложение) найдем H и вычислим $U_M = Hl$. Результаты расчетов заносим в табл. 2.1.1.

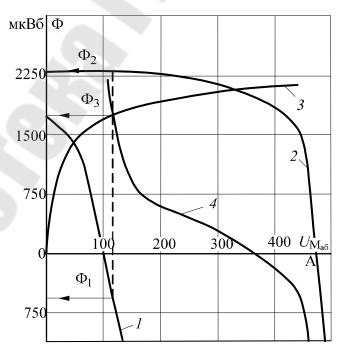


Puc. 2.1.2

Таблица 2.1.1

$\Phi_1 = \Phi_2 = \Phi_3$, мВб	0	1,095	1,50	1,875	1,98	2,06	2,10	2,16	2,25
$B_1 = B_2 = B_3$, Тл	0	0,73	1,0	1,25	1,32	1,36	1,4	1,44	1,5
$H_1 = H_2 = H_3$, A/cm	0	1,0	2,0	6,0	8,0	10	12	14	20
$U_{M_1} = U_{M_3}, A$	0	30	60	180	240	300	360	420	600
U_{M_2} , A	0	12	24	72	96	120	144	168	240

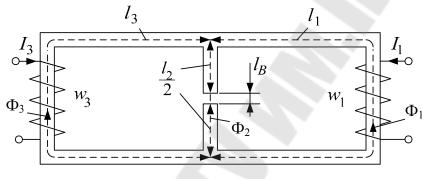
По уравнениям (1)–(3) строим зависимости Φ_1 – Φ_3 от межузлового напряжения $U_{M_{a\delta}}$ (кривые I–J на рис. 2.1.3). Согласно уравнению (4) складываем ординаты кривых I и I, получаем суммарную кривую I.



Puc. 2.1.3

Точка пересечения кривых 3 и 4 дает решение системы уравнений (1)–(4): $\Phi_1=-0,57\,$ мВб; $\Phi_2=2,3\,$ мВб; $\Phi_3=1,73\,$ мВб. Соответственно, $B_1=-0,38\,$ Тл; $B_2=1,53\,$ Тл; $B_3=1,15\,$ Тл. Отрицательные знаки Φ_1 и B_1 показывают, что истинное направление магнитного потока Φ_1 противоположно выбранному.

2.2. Магнитопровод цепи, изображенной на рис. 2.2.1, выполнен из электротехнической стали 1211 и имеет следующие размеры: $l_1=60\,$ см; $l_2=20\,$ см; $l_3=80\,$ см; $S_1=S_2=S_3=10\,$ см 2 . Ширина воздушного зазора $l_{\rm B}=0,1\,$ см. Магнитные потоки в крайних стержнях $\Phi_1=0,25\,$ мВб и $\Phi_3=1,31\,$ мВб. Найти МДС $F_1=I_1w_1\,$ и $F_3=I_3w_3$; определить направления токов в обмотках.



Puc. 2.2.1

Решение

По первому закону Кирхгофа для магнитной цепи

$$\Phi_2 = \Phi_1 + \Phi_3 = 1,56$$
 мВб.

Индукция в стержнях магнитопровода:

$$B_1 = \Phi_1 / S_1 = 0.25$$
 Тл; $B_2 = \Phi_2 / S_2 = 1.56$ Тл; $B_3 = \Phi_3 / S_3 = 1.31$ Тл.

По справочной кривой намагничивания стали 1211 (см. Приложение) находим:

$$H_1 = 0.6$$
 A/cm; $H_2 = 20$ A/cm; $H_3 = 6$ A/cm.

По второму закону Кирхгофа определяем МДС:

$$F_1 = I_1 w_1 = H_1 l_1 + H_2 l_2 + H_B l_B = 1680 \text{ A};$$

 $F_3 = I_3 w_3 = H_3 l_3 + H_2 l_2 + H_B l_B = 2130 \text{ A}.$

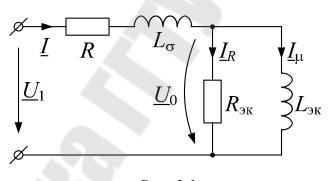
При этом напряженность магнитного поля в воздухе определяем по формуле $H_{\scriptscriptstyle \rm B} = 8B \cdot 10^5.$

3. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

3.1. Катушка с сердечником имеет w=500 витков. При подключении к промышленной сети ($U=220\,\mathrm{B}$) катушка потребляет активную мощность $P=1,5\,$ кВт. При токе $I=10\,$ А амплитуда магнитного потока в сердечнике $\Phi_m=1\,$ мВб. Определить параметры последовательно-параллельной схемы замещения катушки, если активное сопротивление ее обмотки $R=10\,$ Ом.

Решение

Схема замещения катушки с сердечником представлена на рис. 3.1. Помимо собственного активного сопротивления обмотки (R) мы учитываем эквивалентное активное сопротивление тепловых потерь в сердечнике $(R_{\rm эк})$, «рабочую» индуктивность $L_{\rm эк}$, соответствующую основному магнитному потоку в сердечнике, и индуктивность $L_{\rm σ}$, соответствующую рассеянному магнитному потоку.



Puc. 3.1

При известном амплитудном значении магнитного потока в сердечнике действующее значение соответствующего напряжения

$$\underline{U}_0 = j4,44 w f \Phi_m = j4,44 \cdot 500 \cdot 50 \cdot 10^{-3} = j111 \text{ B}.$$

Активная мощность, потребляемая катушкой, равна сумме активной мощности тока в обмотке и мощности тепловых потерь в сердечнике:

$$P = RI^2 + \frac{U_0^2}{R_{\text{ok}}}.$$

Отсюда

$$R_{_{9K}} = \frac{U_0^2}{P - RI^2} = \frac{111^2}{1500 - 10 \cdot 10^2} = 24,5 \text{ Om.}$$

Для определения величины $L_{\rm эк}$ вначале найдем соответствующее индуктивное сопротивление $X_{\rm эк}=2\pi f L_{\rm эк}$. Эквивалентный ток тепловых потерь в сердечнике

$$I_R = \frac{U_0}{R_{2K}} = \frac{111}{24.5} = 4.53 \text{ A}.$$

Тогда намагничивающий ток

$$I_{\rm u} = \sqrt{I^2 - I_R^2} = \sqrt{10^2 - 4.53^2} = 8.9 \text{ A}.$$

Отсюда находим:

$$X_{_{9K}} = \frac{U_0}{I_{_{U}}} = \frac{111}{8,9} = 12,5 \text{ Om}, \quad L_{_{9K}} = \frac{X_{_{9K}}}{2\pi f} = \frac{12,5}{2\pi \cdot 50} = 0,04 \text{ \GammaH}.$$

Для определения величины L_{σ} вначале найдем соответствующее индуктивное сопротивление $X_{\sigma}=2\pi f L_{\sigma}$. Выражение для комплексного сопротивления схемы

$$\underline{Z} = R + jX_{\sigma} + \frac{jX_{3K}R_{3K}}{R_{3K} + jX_{3K}}$$

после подстановки известных числовых значений принимает вид:

$$\underline{Z} = 15,05 + j(X_{\sigma} + 9,9).$$
 (1)

Поскольку

$$Z = \frac{U}{I} = \frac{220}{10} = 22 \text{ Om},$$

для определения X_{σ} из (1) получаем уравнение

$$22^2 = 15,05^2 + (X_{\sigma} + 9,9)^2$$

откуда

$$X_{\sigma} = 6.2 \text{ Om}, \quad L_{\sigma} = \frac{X_{\sigma}}{2\pi f} = \frac{6.2}{2\pi \cdot 50} = 0.02 \text{ }\Gamma\text{H}.$$

3.2. Синусоидальное напряжение $U=100~\mathrm{B.}$ создает в катушке с сердечником ток $I=0,1~\mathrm{A.}$ При этом катушка потребляет мощность $P=1,58~\mathrm{Br.}$ Найти намагничивающий ток катушки, если активное сопротивление ее обмотки $R=20~\mathrm{Om}$, а индуктивное сопротивление рассеяния $X_\sigma=50~\mathrm{Om}$.

Решение

Расчет проводим по схеме замещения, представленной на рис. 3.1. Эквивалентный коэффициент мощности катушки

$$\cos \varphi = \frac{P}{UI} = \frac{1,58}{100 \cdot 0,1} = 0,158.$$

Следовательно, сдвиг фаз между питающим напряжением и эквивалентной синусоидой тока катушки равен $\phi = 80,83^{\circ}$. Полагая $U = 100e^{j0^{\circ}}$, получим:

$$\underline{I} = 0.1e^{-j80.83^{\circ}}$$
 A.

Тогда действующее значение намагничивающего напряжения

$$\underline{U}_0 = \underline{U} - (R + jX_{\sigma})\underline{I} = 100 - (20 + j50)0, 1e^{-j80,83^{\circ}} = 94,75e^{-j40^{\circ}}$$
 B.

Мощность потерь в сердечнике

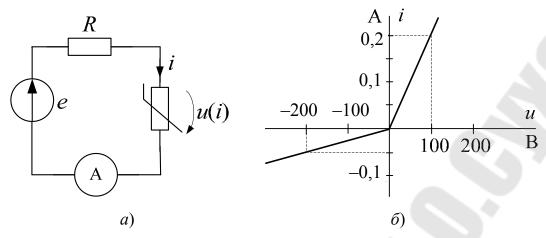
$$P_{\mu} = P - RI^2 = 1,58 - 20 \cdot 0,1^2 = 1,38 \text{ Bt.}$$

Следовательно,

$$I_R = \frac{P_{\mu}}{U_0} = \frac{1,38}{94,75} = 0,0146 \text{ A},$$

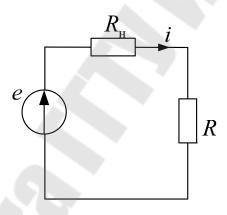
$$I_{\mu} = \sqrt{I^2 - I_R^2} = \sqrt{0.1^2 - 0.0146^2} = 0.0985 \text{ A}.$$

3.3. В цепи рис. 3.3.1, a $e(t) = 220 \sin \omega t$, B, R = 1 кОм, а ВАХ нелинейного резистора кусочно-линейна (рис. 3.3.1, δ). Определить мгновенное, среднее и действующее значения токов в цепи и мощность источника.



Puc. 3.3.1

Заданная кусочно-линейная ВАХ нелинейного резистора позволяет произвести расчет тока по схеме замещения, представленной на рис. 3.3.2.



Puc. 3.3.2

Сопротивление активного элемента $R_{\rm H}$ определяется соответствующей ветвью заданной характеристики: для положительной полуволны тока:

$$R_{\rm H} = R_{\rm H}^+ = \frac{100}{0.2} = 0.5 \text{ kOm},$$

а для отрицательной полуволны:

$$R_{\rm H} = R_{\rm H}^- = \frac{200}{0.05} = 4 \text{ кOm}.$$

Положительная и отрицательная полуволны тока имеют амплитуды:

$$I_m^+ = \frac{E_m}{R + R_H^+} = \frac{150}{(1 + 0.5) \cdot 10^3} = 0.1 \text{ A};$$

$$I_m^- = \frac{E_m}{R + R_H^-} = \frac{150}{(1+4)10^3} = 0.03 \text{ A}.$$

Мгновенное значение силы тока:

$$i(t) = i^+(t) = I_m^+ \sin \omega t$$
 при $0 \le \omega t \le \pi$;

$$i(t) = i^-(t) = I_m^- \sin \omega t$$
 при $\pi \le \omega t \le 2\pi$.

Среднее за полпериода значение тока, изменяющегося по закону $i(t) = I_m \sin(\omega t + \psi_i)$, равно:

$$I_{\rm cp} = \frac{2I_m}{\pi}$$
.

В нашем случае среднее значение тока для положительной полуволны

$$I_{\rm cp}^+ = \frac{2I_m^+}{\pi},$$

а для отрицательной полуволны

$$I_{\rm cp}^- = -\frac{2I_m^-}{\pi}.$$

Тогда среднее значение тока в цепи

$$I_{\rm cp} = I_{\rm cp}^+ + I_{\rm cp}^- = \frac{2(0.1 - 0.03)}{\pi} = 0.044 \text{ A}.$$

Действующее значение тока

$$I = \sqrt{\frac{1}{2\pi}} \left(\int_{0}^{\pi} (I_{m}^{+})^{2} \sin^{2}\omega t \, d(\omega t) + \int_{\pi}^{2\pi} (I_{m}^{-})^{2} \sin^{2}\omega t \, d(\omega t) \right) =$$

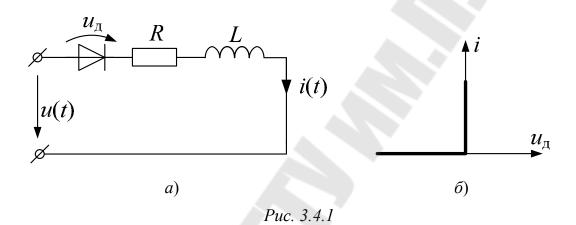
$$= \frac{1}{2} \sqrt{(I_{m}^{+})^{2} + (I_{m}^{-})^{2}} = \frac{1}{2} \sqrt{0.1^{2} + 0.03^{2}} = 0.052 \text{ A}.$$

Мощность источника

$$P = \frac{1}{2\pi} \left[\int_{0}^{\pi} ei^{+} d(\omega t) + \int_{\pi}^{2\pi} ei^{-} d(\omega t) \right] =$$

$$= \frac{E_{m}(I_{m}^{+} + I_{m}^{-})}{4} = \frac{150(0.1 + 0.03)}{4} = 4.88 \text{ Bt.}$$

3.4. На входе цепи рис. 3.4.1, a действует синусоидальное напряжение $u(t) = 70,71\sin(100t + 30^\circ)$. Найти мгновенное значение тока в цепи при R = 20 Ом, L = 0,2 Гн.



Решение

Идеальный диод имеет кусочно-линейную BAX, показанную на рис. 3.4.1, δ . Искомое выражение для i(t) получим для каждого линейного отрезка BAX отдельно.

$$Ri + L\frac{di}{dt} = u(t). (1)$$

Идеальный диод ведет себя как ключ, а его отпирание (запирание) эквивалентно коммутации, поэтому ток i содержит установившуюся и свободную составляющие:

$$i = i_{\rm v} + i_{\rm cB}. \tag{2}$$

Установившуюся составляющую тока определяем символическим методом:

$$\underline{I}_{my} = \frac{\underline{U}_m}{R + j\omega L} = \frac{70,71e^{j30^{\circ}}}{20 + j100 \cdot 0,2} = 2,5e^{-j15^{\circ}} \text{ A};$$
 (3)

$$i_{\rm v} = 2.5\sin(100t - 15^{\circ}), \text{ A.}$$
 (4)

Свободная составляющая искомого тока выражается в виде:

$$i_{\rm CB} = De^{p(t-t')}, \tag{5}$$

где t' — момент отпирания диода; p — корень характеристического уравнения pL + R = 0.

В заданном случае

$$p = -\frac{R}{L} = \frac{-20}{0.2} = -100 \text{ c}^{-1}.$$

Постоянная интегрирования D в выражении (5) определяется с учетом начального условия

$$i\big|_{t=t'}=0. (6)$$

Применяя требование (6) к вытекающему из (2), (4), (5) выражению

$$i(t) = 2.5\sin(100t - 15^{\circ}) + De^{-100(t-t')}$$

для определения постоянной D получаем уравнение

$$i(t) = 2.5\sin(100t' - 15^{\circ}) + De^{-100(t-t')}.$$
 (7)

2. Диод закрыт $(R_{\rm д} = \infty, i = 0)$. В этом случае

$$u_{\mathbf{A}} = u, \tag{8}$$

поэтому момент отпирания диода t = t' определяется парой уравнений

$$u = 0, \quad \frac{du}{dt} > 0. \tag{9}$$

Из (8) и (9) получаем:

$$U_m \sin(100t' + 30^\circ) = 0,$$

 $t' = -5.2 \text{ Mc}.$

Подставив найденное значение t' в уравнение (7), находим: D = 0.64 А.

Тогда из итогового выражения

$$i(t) = 2.5\sin(100t - 15^{\circ}) + 0.64e^{-100(t - 0.0052)}$$
(10)

можно найти момент t'' запирания диода, который определяется парой уравнений

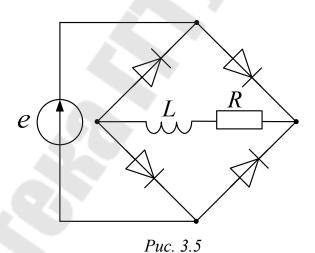
$$i = 0, \quad \frac{di}{dt} < 0. \tag{11}$$

Применяя требования (11) к выражению (10), получаем для момента t'' трансцендентное уравнение

$$2.5\sin(100t''-15^{\circ}) + 0.64e^{-100(t''-0.0052)} = 0,$$

имеющее решение t'' = 3,55 мс.

3.5. На входе мостового двухполупериодного выпрямителя (рис. 3.5) действует синусоидальная ЭДС $e = E_m \sin \omega t$. Получить выражение зависимостей мгновенного и среднего значений тока в нагрузке от ее сопротивления и от величины индуктивности.



Решение

Искомый ток содержит установившуюся и свободную составляющие:

$$i = i_{y} + i_{cB}; \tag{1}$$

$$i_{v} = I_{m} \sin(\omega t - \varphi); \tag{2}$$

$$i_{\rm CB} = De^{pt}, \tag{3}$$

где
$$I_m = \frac{E_m}{\sqrt{R^2 + (\omega L)^2}}; \quad \phi = \operatorname{arctg} \frac{\omega L}{R}; \quad p = -\frac{R}{L}.$$

Для определения постоянной интегрирования D воспользуемся тем, что в силу периодичности процесса $i(0) = i(\pi/\omega)$. Тогда из (1)–(3) получаем уравнение

$$I_m \sin(\pi - \varphi) + De^{-\frac{R}{\omega L}\pi} = -I_m \sin \varphi + D,$$

откуда

$$D = \frac{2I_m \sin \varphi}{1 - e^{-\frac{R\pi}{\omega L}}}. (4)$$

Среднее значение тока за полпериода

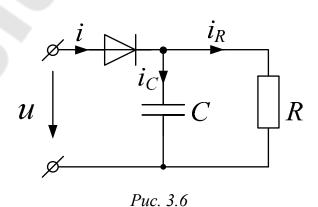
$$I_{\rm cp} = \int_{0}^{\pi} \left(I_m \sin(\omega t - \varphi) + D e^{-\frac{R\pi}{\omega L}\omega t} \right) d(\omega t). \tag{5}$$

После подстановки (4) в (5), получаем:

$$I_{\rm cp} = \frac{2E_m}{\pi R}.$$

Таким образом, среднее значение выпрямленного тока не зависит от индуктивности катушки, величина которой в данном случае влияет только на характер пульсирования этого тока.

3.6. Считая входное напряжение цепи рис. 3.6 синусоидальным, определить мгновенные значения тока через идеальный диод и напряжение на активной нагрузке.



Пока диод открыт, заданная цепь ведет себя как обычная цепь синусоидального тока с параллельным соединением емкости и активного сопротивления:

$$u_R = u_C = u = U_m \sin \omega t; \tag{1}$$

$$i_C = C\frac{du}{dt} = \omega C U_m \cos \omega t, \ i_R = \frac{u}{R} = \frac{U_m}{R} \sin \omega t; \tag{2}$$

$$i = i_R + i_C = U_m (\frac{1}{R} \sin \omega t + \omega C \cos \omega t). \tag{3}$$

Равенства (1)–(3) верны при $t' \le t \le t''$, где t' – момент отпирания; t'' – момент запирания диода. Диод запирается, когда

$$i = 0, \quad \frac{di}{dt} < 0. \tag{4}$$

Объединяя (3) и (4), для определения момента t'' получаем уравнение

$$\frac{1}{R}\sin\omega t'' + \omega C\cos\omega t'' = 0, (5)$$

имеющее решение

$$t'' = -\frac{1}{\omega} \operatorname{arctg}(\omega RC). \tag{6}$$

При t > t'' конденсатор разряжается. Состояние цепи при этом описывается уравнениями

$$u_R = u_C; (7)$$

$$RC\frac{du_C}{dt} + u_C = 0; (8)$$

$$u_C = u_{C_{v}} + u_{C_{CR}}, (9)$$

где

$$u_{C_{y}} = 0, \quad u_{C_{CB}} = De^{p(t-t'')},$$
 (10)
$$p = -\frac{1}{RC}.$$

Постоянная интегрирования D определяется из начального условия (второй закон коммутации):

$$u_C|_{t=t''-0} = u_C|_{t=t''+0}. (11)$$

Поскольку при $t \le t''$ напряжение на емкости равнялось входному напряжению, условие (11) дает: $U_m \sin \omega t'' = D$. Окончательно получаем: при $t'' \le t \le T - t'$ (где $T = 2\pi/\omega$):

$$u_C = [U_m \sin \omega t''] e^{p(t-t'')}; \tag{12}$$

$$i = 0, \quad i_C = -i_R = pCU_m \sin \omega t'' e^{p(t-t'')}.$$
 (13)

Теперь определим момент времени t'. Благодаря T-периодичности процесса на основании второго закона коммутации для заданной цепи имеем равенство

$$u_C|_{t=t'-0} = u_C|_{t=t'+0} = u_C|_{t=t'+T-0} = u_C|_{t=t'+T+0}.$$
 (14)

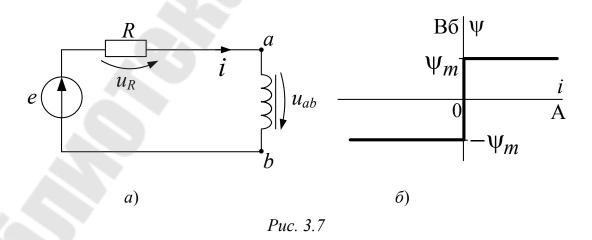
Подставляя (1) и (12) в вытекающее из (14) равенство

$$u_C|_{t=t'+0} = u_C|_{t=t'+T-0},$$

получаем для определения момента t' трансцендентное уравнение

$$\sin \omega t' = \sin \omega t'' e^{p(t'+T-t'')}.$$

3.7. В цепи рис. 3.7, a нелинейная катушка имеет вебер-амперную характеристику, показанную на рис. 3.7, δ . Определить зависимости тока и напряжения на участке ab от времени при $e=E_m\sin\omega t$, $R=\mathrm{const.}$



Состояние заданной цепи определяется уравнением

$$u_R + u_{ab} = e$$

ИЛИ

$$Ri + \frac{d\Psi}{dt} = E_m \sin \omega t. \tag{1}$$

Условимся считать, что к началу отсчета времени (t = -0)

$$\Psi = -\Psi_m \,. \tag{2}$$

Во время перемагничивания, т. е. при изменении Ψ от $-\Psi_m$ до Ψ_m ,

$$i = 0$$
.

Следовательно [см. (1)], во время перемагничивания $(0 \le t \le t_{\Pi})$

$$\frac{d\Psi}{dt} = E_m \sin \omega t. \tag{3}$$

Из (3) находим: при $0 \le t \le t_{\Pi}$

$$\Psi = -\frac{E_m}{\omega}\cos\omega t + a. \tag{4}$$

Для определения постоянной интегрирования a воспользуемся начальным условием. Подставляя (4) в (2), получаем:

$$a = \frac{E_m}{\omega} + \Psi_m$$
.

Следовательно, при $0 \le t \le t_{\rm n}$:

$$\Psi(t) = \frac{E_m}{\omega} (1 - \cos \omega t) - \Psi_m; \quad u_{ab} = E_m \sin \omega t.$$

При этом время перемагничивания $t_{\rm II}$ определяется уравнением

$$\Psi(t_{\pi}) = \Psi_m$$

т. е.

$$\Psi_m = \frac{E_m}{\omega} (1 - \cos \omega t_{\pi}) - \Psi_m,$$

откуда

$$t_{\rm m} = \frac{1}{\omega} \arccos \left(1 - \frac{2\Psi_m \omega}{E_m} \right).$$

При
$$t_{\Pi} \le t \le \frac{\pi}{\omega}$$
:

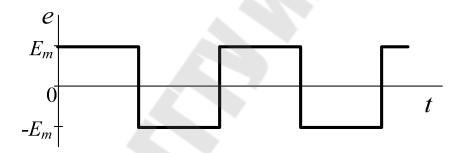
$$\Psi(t) = \Psi_m, \quad u_{ab} = \frac{d\Psi}{dt} = 0,$$

откуда согласно (1)

$$Ri = E_m \sin \omega t$$
.

При $\frac{\pi}{\omega} < t \le \frac{\pi}{\omega} + t_{\scriptscriptstyle \Pi}$ происходит обратное перемагничивание.

3.8. Решить предыдущую задачу, считая, что источник ЭДС дает напряжение не синусоидальной, а прямоугольной формы (рис. 3.8).



Puc. 3.8

Решение

Воспользуемся базовыми соотношениями решения предыдущей задачи. Вместо (3) будем иметь: во время перемагничивания

$$i = 0$$
, $\Psi = E_m t - \Psi_m$,

откуда при $0 \le t \le t_{\Pi}$

$$\Psi = E_m t + a'. \tag{1'}$$

Подставляя (1') в начальное условие (2), находим постоянную интегрирования: $a' = -\Psi_m$. Следовательно, во время перемагничивания

$$\Psi = E_m t - \Psi_m$$
.

Время перемагничивания t_{Π} определяется уравнением

$$\Psi = E_m t_{\Pi} - \Psi_m,$$

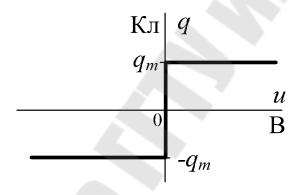
откуда

$$t_{\Pi} = \frac{2\Psi_m}{E_m}.$$

После окончания перемагничивания $\left(t_{\Pi} \leq t \leq \frac{T}{2}\right)$:

$$\Psi = \Psi_m$$
, $u_{ab} = \frac{d\Psi}{dt} = 0$, $i = \frac{E_m}{R}$.

3.9. В цепи рис. 3.7, *а* нелинейную катушку заменили нелинейной емкостью, кулон-вольтная характеристика которой показана на рис. 3.9. Определить зависимости тока и напряжения на участке *ab* от времени.



Puc. 3.9

Решение

Состояние заданной цепи определяется уравнением

$$u_R + u_{ab} = e$$

ИЛИ

$$Ri + u_{ab} = R\frac{dq}{dt} + u_{ab} = E_m \sin \omega t. \tag{1}$$

Условимся считать, что к началу отсчета времени (t = -0)

$$q = -q_m. (2)$$

Во время перезаряда, т. е. при изменении q от $-q_m$ до q_m ,

$$u_{ab}=0.$$

Следовательно [см. (1)], во время перезаряда $(0 \le t \le t_{\Pi})$

$$i = \frac{E_m}{R} \sin \omega t. \tag{3}$$

Из (3) находим: при $0 \le t \le t_{\pi}$

$$q = \int idt = -\frac{E_m}{\omega R} \cos \omega t + a. \tag{4}$$

Подставляя (4) в (2), можно определить постоянную интегрирования a:

$$a = -q_m + \frac{E_m}{\omega R}.$$

Таким образом, при $0 \le t \le t_{\Pi}$

$$q(t) = \frac{E_m}{\omega R} (1 - \cos \omega t) - q_m. \tag{5}$$

Время перезаряда t_{Π} определяется уравнением

$$q_m = \frac{E_m}{\omega R} (1 - \cos \omega t_{\pi}) - q_m,$$

откуда

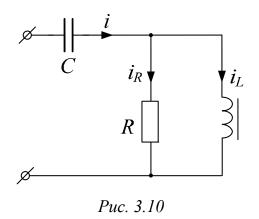
$$t_{\rm II} = \frac{1}{\omega} \arccos\left(1 - \frac{2q_m \omega R}{E_m}\right).$$

При $t_{_{\Pi}} \leq t \leq \frac{\pi}{\omega}$ конденсатор сохраняет неизменный заряд $q=q_m,$ поэтому

$$i = 0$$
, $u_{ab} = E_m \sin \omega t$.

При $\frac{\pi}{\omega} < t \le \frac{\pi}{\omega} + t_{\scriptscriptstyle \Pi}$ происходит обратный перезаряд емкости.

3.10. В цепи рис. 3.10 протекает ток $i = 0,1\sin 10^4 t$, R = 100 Ом. Вебер-амперная характеристика катушки показана на рис. 3.7, δ . Определить режим работы цепи при $\Psi_m = 0,85$ мВб.



Решение

Полагаем, что к началу отсчета времени (t = -0)

$$\Psi = -\Psi_m. \tag{1}$$

Во время перемагничивания

$$i_L = 0$$
, $i = i_R$, $u_L = Ri_R = \frac{d\Psi}{dt}$,

откуда

$$\Psi = R \int i dt = 10 \int \sin 10^4 t dt = -10^{-3} \cos 10^4 t + \Psi_0.$$
 (2)

Используя начальное условие (1), находим:

$$\Psi_0 = -\Psi_m. \tag{3}$$

Из (2) и (3) следует, что значение $\Psi = \Psi_m$ достигается за время $t = t_{\Pi}$, являющееся корнем уравнения

$$\Psi_m = 10^{-3} (1 - \cos 10^4 t_{\Pi}) - \Psi_m.$$

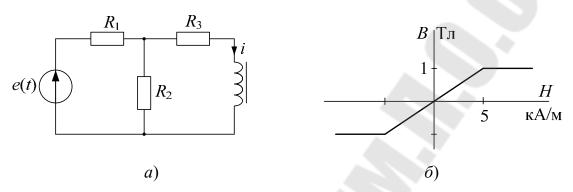
Отсюда время перемагничивания

$$t_{\text{II}} = \frac{1}{10^4} \arccos(1 - 2 \cdot 10^3 \, \Psi_m) = 37.5 \,\text{MKC}.$$

После перемагничивания до окончания полупериода ($t_{\Pi} \le t \le 314$ мкс)

$$\Psi = \Psi_m, \quad \frac{d\Psi}{dt} = 0, \quad u_L = 0, \quad i = i_L.$$

3.11. Нелинейная цепь на рис. 3.11.1, a подключена к источнику напряжения $u(t) = 230\cos 5000t$, В. Катушка имеет w = 100 витков, площадь сечения ее сердечника $S = 10^{-4}$ м², а длина его средней линии l = 20 см. Кривая намагничивания материала сердечника показана на рис. 3.11.1, δ . Найти мгновенное значение тока катушки, если $R_1 = R_2 = 50$ Ом, $R_3 = 2,5$ Ом.



Puc. 3.11.1

Решение

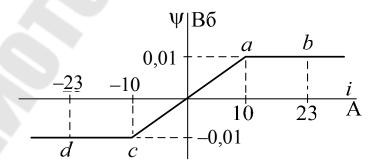
По закону полного тока

$$i = \frac{Hl}{w} = \frac{H \cdot 20 \cdot 10^{-2}}{100} = 2 \cdot 10^{-3} \cdot H, \text{ A}.$$
 (1)

Из рис. 3.11, δ видно, что максимальное потокосцепление катушки

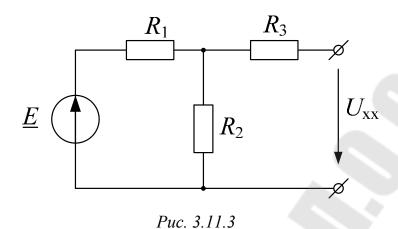
$$\Psi_{\text{max}} = wSB_{\text{max}} = 100 \cdot 10^{-4} \cdot 1 = 0,01 \text{ B}6$$

достигается при $H \ge 5$ кА/м. Согласно (1), это соответствует току $i \ge 10$ А. Следовательно, вебер-амперная характеристика катушки имеет вид, показанный на рис. 3.11.2.



Puc. 3.11.2

Дальнейший расчет проведем методом эквивалентного генератора. Схема замещения эквивалентного источника представлена на рис. 3.11.3.



.

Эта схема имеет следующие характеристики:

$$\underline{E}_{r_m} = U_{xx_m} = \frac{\underline{E}_m R_2}{R_1 + R_2} = \frac{230 \cdot 5}{5 + 5} = 115 \text{ B};$$

$$R_{\Gamma} = \frac{R_1 R_2}{R_1 + R_2} + R_3 = \frac{5 \cdot 5}{5 + 5} + 2,5 = 5 \text{ Om.}$$

Токораспределение нелинейной катушки подчиняется уравнению

$$\frac{d\Psi}{dt} + R_{\Gamma}i = e_{\Gamma}. \tag{2}$$

ВбАХ катушки (рис. 3.11.2) является кусочно-линейной, что позволяет применить аппроксимацию

$$\Psi = \Psi_0 + L'i, \tag{3}$$

где L' – эквивалентная линейная индуктивность. С учетом (3) уравнение (2) приобретает вид:

$$L'\frac{di}{dt} + R_{\Gamma}i = E_{\Gamma m}\cos\omega t, \tag{4}$$

где $\omega = 5000$ рад/с. В области значений $-10A \le i \le 10A$

$$L' = \frac{0.01}{10} = 1 \text{ M}\Gamma\text{H},$$
 (5)

а в области насыщения $(|i| \ge 10 \text{ A})$

$$L' = 0. (6)$$

Подставляя (6) в (4), сразу находим, что при насыщении в катушке протекает ток

$$i = \frac{E_{\Gamma_m} \cos \omega t}{R_{\Gamma}} = \frac{115 \cos \omega t}{5} = 23 \cos \omega t, \text{ A.}$$
 (7)

Пусть в момент t=0 катушка находилась в состоянии насыщения: $\Psi(0)=0,01$ Вб. Согласно (7), ток в катушке в этот момент времени имел амплитудное значение: $i(t=0)=I_m=23\,$ А. Следовательно, при t>0 происходит уменьшение тока катушки, изменяющегося по закону (7) до тех пор, пока не будет достигнуто значение $i=10\,$ А. Длительность t_1 этого процесса определяется уравнением

$$\omega t_1 = \pi - \arccos \frac{10}{23},$$

откуда $t_1 = 0,4$ мс.

В момент $t = t_1$ скачком изменяется эквивалентная линейная индуктивность [ср. (5) и (6)], что равносильно коммутации при $t = t_1$. Следовательно, ток i имеет установившуюся и свободную составляющие:

$$i = i_{\rm v} + i_{\rm cr},\tag{8}$$

$$\underline{I}_{m_{y}} = \frac{\underline{E}_{\Gamma_{m}}}{R_{\Gamma} + j\omega L'} = \frac{115e^{j90^{\circ}}}{5 + j5000 \cdot 10^{-3}} = 16.3e^{j45^{\circ}}, \text{ A};$$

$$i_{y} = 16.3\sin(\omega t + 45^{\circ}), A;$$
 (9)

$$i_{cB} = De^{p(t-t_1)},$$
 (10)

где р – корень характеристического уравнения

$$pL' + R_{\Gamma} = 0, \tag{11}$$

D — постоянная интегрирования, определяемая начальным условием

$$i|_{t=t_1} = 10 \text{ A.}$$
 (12)

Уравнение (11) имеет решение p = -5000 с⁻¹. Подставляя это значение в формулу (10), с учетом (8), (9) и (12) получаем для определения величины D уравнение

$$16.3\sin(\omega t_1 + 45^\circ) + D = 10$$
,

откуда D = 4,32 A. В итоге вне области насыщения

$$i = 16.3\sin(\omega t + 45^{\circ}) + 4.32e^{-5000(t-t_1)}, A.$$
 (13)

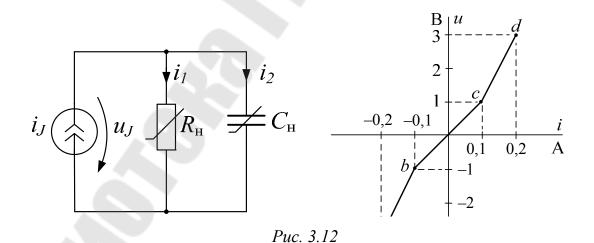
Изменяясь по закону (13), ток достигает значения i = -10 А в момент времени $t = t_2$, определяемый уравнением

$$16.3\sin(\omega t_2 + 45^\circ) + 4.32e^{-5000(t_2 - t_1)} = -10 \text{ A}.$$

Решая это уравнение, находим $t_2 = 0.585$ мс.

При $t > t_2$ ток изменяется от значения i = -10 А до значения i = -23 А, а затем обратно до значения i = -10 А, следуя закону (8) и повторяя на отрицательной ветви ВбАХ катушке процессы, рассмотренные выше на ее положительной ветви.

3.12. В цепи рис. 3.12, a нелинейный резистор имеет кусочнолинейную ВАХ, показанную на рис. 3.12, δ , а нелинейная емкость – ступенчатую КВХ, показанную на рис. 3.9 ($q_m = 10$ мкКл). Найти мгновенные значения $i_1(t)$ и $i_2(t)$, если $i_J(t) = 0.18\sin 13000t$, А.



Решение

Полагаем, что к началу отсчета времени

$$q = -q_m = -10 \text{ мкКл.} \tag{1}$$

Во время перезаряда емкости $(0 \le t \le t_{\Pi})$:

$$u_J = 0, \quad i_1 = 0, \quad i_2 = i_J,$$
 (2)

поэтому зависимость заряда от времени выражается в виде

$$q = \int_{0}^{t} i_{J} dt = 0.18 \int_{0}^{t} \sin 1300t dt = 13.85(1 - \cos 1300t) + q_{0}, \text{ мкКл.}$$
 (3)

Возвращаясь к начальному условию (1), находим постоянную интегрирования: $q_0 = q_m$. Следовательно, во время перезаряда

$$q = 3.85 - 18.85 \cos 1300t$$
, мкКл. (4)

Перезаряд происходит за время $t_{\rm m}$, являющееся корнем уравнения

$$q(t_{\Pi})=q_m,$$

которое в нашем случае имеет вид [см. (4)]:

$$10 = 3.85 - 13.85 \cos 13000t_{\pi}$$

Отсюда $t_{\Pi} = 157$ мкс.

При $157 \le t \le 241,5\,$ мкс (т. е. до окончания положительного полупериода колебаний тока источника) конденсатор остается заряженным $(q=q_m)$, поэтому

$$i_2 = \frac{dq}{dt} = 0, \quad i_1 = i_J.$$

Таким образом, токораспределение заданной цепи целиком определяется нелинейной емкостью. Нелинейность активного сопротивления влияет только на величину межузлового напряжения u_J , которое отлично от нуля тогда, когда емкость не перезаряжается.

В момент окончания перезаряда емкости ($t = t_{\pi}$)

$$i_1 = 0.18 \sin 117^\circ = 0.16 \text{ A} > 0.1 \text{ A}$$

(см. рис. 3.12, δ). Следовательно, в начальный момент времени после завершения перезаряда емкости зависимость напряжения на нелинейном резисторе (т. е. межузлового напряжения) от тока i_1 определяется участком cd заданной BAX, согласно которой

$$u_J(i_1) = -1 + R'i_1, (5)$$

где

$$R' = \frac{3-1}{0,2-0,1} = 20 \text{ Om}$$

— эквивалентное нелинейное сопротивление, соответствующее участку cd BAX нелинейного резистора. Зависимость (5) сохраняет силу до тех пор, пока $i_J \ge 0,1$ А при $t > t_{\pi}$. Это означает, что

$$u_J = -1 + 3.6 \sin 13000t$$
, B (6)

при $t_{\Pi} \le t \le t'$, где t' является корнем уравнения

$$i_J(t') = 0,1$$
 А при $\frac{di_J}{dt} < 0$.

Решая это уравнение, находим: t' = 196 мкс.

При t > 196 мкс ток источника продолжает убывать, так что рабочая точка ВАХ нелинейного резистора переходит на участок bc. На этом участке

$$u_J(i_1) = R''i_1, \tag{7}$$

где

$$R'' = \frac{1}{0,1} = 10$$
 Om.

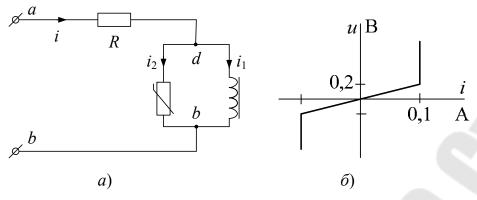
Зависимость (7) соблюдается при $t' \le t \le t''$, где t'' – время начала обратного перезаряда емкости. Момент t'' определяется из уравнения

$$i_J(t'') = 0$$
 при $\frac{di_J}{dt} < 0$.

Решая это уравнение, находим: $t'' = 241,6\,$ мкс. Таким образом, при $196 \le t \le 241,6\,$ мкс

$$u_J(t) = 1.8 \sin 13000t$$
, B.

3.13. В цепи рис. 3.13, a R = 3 Ом, u_{ab} = $\sin 150\pi t$, В. Нелинейный резистор имеет симметричную кусочно-линейную ВАХ, показана на рис. 3.13, δ , а нелинейная катушка имеет ВбАХ, показана на рис. 3.7, δ (Ψ_m = 1 мВб). Рассчитать токи в цепи.



Puc. 3.13

К началу отсчета времени (t = -0)

$$\Psi = -\Psi_m, \quad i = i_2.$$

При этом на начальной стадии процесса нелинейный резистор эквивалентен линейному сопротивлению

$$R_2 = \frac{0.2}{0.1} = 2$$
 OM,

соответственно, цепь в целом ведет себя как последовательное соединение линейных резисторов R и R_2 , так что

$$i = i_2 = \frac{u_{ab}}{R + R_2} = 0.2 \sin 150 \pi t$$
, B; (1)

$$u_{db} = R_2 i_2 = 0.4 \sin 150 \pi t$$
, B. (2)

Вместо (2) можно записать:

$$\frac{d\Psi}{dt} = 0.4\sin 150\pi t,$$

откуда

$$\Psi = -\frac{0.4}{150\pi} \cos 150\pi t + a.$$

Постоянную интегрирования a определим из начального условия $\Psi|_{t=0} = -\Psi_m$. В итоге имеем:

$$\Psi(t) = \frac{0.4}{150\pi} (1 - \cos 150\pi t) - \Psi_m. \tag{3}$$

Если потокосцепление катушки изменяется со временем по закону (3), то пороговое значение $\Psi = \Psi_m$ достигается за время \widetilde{t}_{Π} , являющееся корнем уравнения

$$\Psi_m = \frac{0.4}{150\pi} \left(1 - \cos 150\pi \, \widetilde{t}_{\Pi} \right) - \Psi_m. \tag{4}$$

Однако результаты (1)–(4) получены для случая, когда в заданной цепи вместо нелинейного резистора действует линейное активное сопротивление $R_2=2$ Ом, что справедливо только при $|u_{db}| \leq 0,2$ В (см. рис. $3.13, \delta$), т. е. при $0 \leq t \leq t'$, где t' — корень уравнения $0,2=0,4\sin 150\pi t'$. В нашем случае $t'=1,11 \,\mathrm{Mc} < \widetilde{t}_\Pi$, поэтому при $t' \leq t \leq t_\Pi$ (где t_Π — истинное время перемагничивания):

$$i = i_2 = 0.1 \text{ A}, \ u_{db} = u_{ab} - Ri = \sin 150\pi t - 0.3.$$
 (6)

Поскольку при $0 \le t \le t'$ напряжение на катушке изменяется по закону (2), а при $t' \le t \le t_{\Pi}$ – по закону (6), для определения времени перемагничивания t_{Π} имеем уравнение

$$\int_{0}^{t'} 0.4\sin 150\pi t \, dt + \int_{t'}^{t_{\Pi}} (\sin 150\pi t - 0.3) \, dt = 2\Psi_{m}.$$

Решая его, находим: $t_{\Pi} = 4,44\,$ мс.

3.14. ВАХ нелинейного активного сопротивления для мгновенных значений задана выражением $i = au + bu^3$. Получить ВАХ элемента для амплитудных и для действующих значений.

Решение

Применим метод гармонической линеаризации, полагая

$$u(t) = U_m \sin(\omega t + \psi_u). \tag{1}$$

Подставляя (1) в заданную ВАХ, получим:

$$i = aU_m \sin(\omega t + \psi_u) + bU_m^3 \sin^3(\omega t + \psi_u). \tag{2}$$

Воспользовавшись равенством

$$\sin^3\alpha = \frac{3\sin\alpha - \sin 3\alpha}{4},$$

вместо (2) получим:

$$i = aU_m \sin(\omega t + \psi_u) + \frac{bU_m^3}{4} \left[3\sin(\omega t + \psi_u) - \sin[3(\omega t + \psi_u)] \right]. \tag{3}$$

В соответствии с методом гармонической линеаризации в полученном выражении (3) следует удержать только основную (первую) гармонику, так что

$$i \approx aU_m \sin(\omega t + \psi_u) + \frac{3bU_m^3}{4} \sin(\omega t + \psi_u) =$$

$$= \left[a + \frac{3bU_m^2}{4} \right] U_m \sin(\omega t + \psi_u). \tag{4}$$

Если теперь по аналогии с (1) формально записать

$$i = I_m \sin(\omega t + \psi_u), \tag{5}$$

то после сопоставления (4) и (5) получим:

$$I_m = \left[a + \frac{3bU_m^2}{4} \right] U_m. \tag{6}$$

Равенство (6) представляет собой искомую ВАХ для амплитудных значений. Чтобы получить ВАХ для действующих значений, учтем, что

$$I = \frac{I_m}{\sqrt{2}}, \quad U = \frac{U_m}{\sqrt{2}}.$$

Подставляя эти равенства в ВАХ для амплитудных значений, получаем ВАХ для действующих значений:

$$I = aU + \frac{3}{4}b(\sqrt{2}U)^3 = aU + \frac{3}{2}bU^3.$$
 (7)

3.15. ВбАХ нелинейной индуктивности для мгновенных значений задана выражением $i = a\Psi + b\Psi^3$. Найти ВАХ этой индуктивности для амплитудных и действующих значений.

Решение

Применим метод гармонической линеаризации, полагая

$$u(t) = U_m \sin(\omega t + \psi_u). \tag{1}$$

Воспользовавшись законом электромагнитной индукции

$$u = \frac{d\Psi}{dt}$$
,

из (1) находим, что мгновенное значение потокосцепления катушки выражается равенством

$$\Psi = \frac{-U_m}{\omega} \cos \omega t = \frac{U_m}{\omega} \sin(\omega t - 90^\circ). \tag{2}$$

Подставляя (2) в заданную ВбАХ, получим:

$$i = \frac{aU_m}{\omega} \sin(\omega t - 90^\circ) + \frac{bU_m^3}{\omega^3} \sin^3(\omega t - 90^\circ) \approx$$

$$\approx \left[a + \frac{3bU_m^2}{4\omega^2} \right] \frac{U_m}{\omega} \sin(\omega t - 90^\circ). \tag{3}$$

Из (3) следует, что ВАХ для амплитудных значений выражается равенством

$$I_m = \frac{U_m}{\omega} \left[a + \frac{3bU_m^2}{4\omega^2} \right]. \tag{4}$$

Используя (4), находим ВАХ для действующих значений:

$$I = \frac{U}{\omega} \left[a + \frac{3bU^2}{2\omega^2} \right]. \tag{5}$$

3.16. КВХ нелинейной емкости для мгновенных значений задана выражением $u = aq + bq^3$. Найти ВАХ этой емкости для действующих значений.

Решение

Воспользуемся методом эквивалентных синусоид, полагая

$$q = q_m \sin(\omega t + \psi_q). \tag{1}$$

Подставив (1) в заданную КВХ, получим:

$$u = \left(a + \frac{3bq_m^3}{4}\right)q_m\sin(\omega t + \psi_q) - \frac{bq_m^3}{4}\sin[3(\omega t + \psi_q)]. \tag{2}$$

Эквивалентными считаются синусоиды с равными действующими значениями, следовательно, в рассматриваемом случае

$$U_{m} = \sqrt{q_{m}^{2} \left(a + \frac{3bq_{m}^{2}}{4}\right)^{2} + \left(\frac{bq_{m}^{3}}{4}\right)^{2}}.$$
 (3)

Равенство (3) выражает КВХ заданной емкости для амплитудных значений. Для действующих значений из (3) получаем:

$$U = \sqrt{q^2 \left(a + \frac{3bq^2}{4}\right)^2 + \left(\frac{bq^3}{4}\right)^2}.$$
 (4)

Поскольку ток, протекающий через емкость, равен i = dq/dt, амплитудные значения тока и заряда емкости связаны равенством

$$q_m = \frac{I_m}{\omega}. (5)$$

Подставив (5) в формулу (3), получим ВАХ емкости для амплитудных значений:

$$U_{m} = \sqrt{\frac{I_{m}^{2}}{\omega^{2}} \left(a + \frac{3bI_{m}^{2}}{4\omega^{2}} \right)^{2} + \left(\frac{bI_{m}^{3}}{4\omega^{3}} \right)^{2}}.$$
 (6)

Для действующих значений из (6) получаем:

$$U = \sqrt{\frac{I^2}{\omega^2} \left(a + \frac{3bI^2}{2\omega^2} \right)^2 + \left(\frac{bI^3}{2\omega^3} \right)^2}.$$
 (7)

Последнее выражение можно также получить из равенства (4), если учесть, что действующие значения заряда и тока взаимосвязаны так же, как и амплитудные значения [ср. (5)]: $q = I/\omega$.

3.17. ВАХ нелинейного резистора задана выражением $u_R(i) = a_1 i + a_2 i^3$. Определить эквивалентное линейное сопротивление R_9 .

Решение

При токе $i = I_m \sin \omega t$ напряжение на заданном резисторе

$$u_R(i) = a_1 I_m \sin \omega t + a_2 I_m^3 \sin^3 \omega t = (a_1 I_m + \frac{3a_2}{4} I_m^3) \sin \omega t - \frac{a_2}{4} I_m^3 \sin 3\omega t.$$

Приравняв амплитуду первой гармоники в этом выражении к $R_{\scriptscriptstyle 3}I_m$, найдем эквивалентное линейное сопротивление:

$$R_9 = a_1 + \frac{3a_2}{4}I_m^2.$$

3.18. Нелинейная катушка индуктивности имеет веберамперную характеристику $\Psi(i) = b_1 i - b_2 i^3$. Определить эквивалентную линейную индуктивность L_3 .

Решение

При токе $i=I_m\sin\omega t$ потокосцепление катушки

$$\Psi(i) = \left(b_1 I_m - \frac{3b_2 I_m^3}{4}\right) \sin \omega t + \frac{b_2 I_m^3}{4} \sin 3\omega t.$$

Тогда при пренебрежении тепловыми потерями напряжение на зажимах катушки

$$u_L = \frac{d\Psi}{dt} = \omega \left(b_1 I_m - \frac{3b_2 I_m^3}{4} \right) \cos \omega t + \frac{3\omega b_2 I_m^3}{4} \cos 3\omega t.$$

Приравняв амплитуду первой гармоники в последнем выражении к $\omega L_{_{3}}I_{_{m}}$, найдем эквивалентную линейную индуктивность:

$$L_{9} = b_{1} - \frac{3b_{2}}{4}I_{m}^{2}.$$

3.19. Нелинейная емкость имеет кулон-вольтную характеристику $u_C = h_1 q + h_2 q^3$. Определить емкость C_3 эквивалентного линейного конденсатора.

Решение

При токе $i = I_m \sin \omega t$ заряд емкости

$$q = \int idt = -\frac{I_m}{\omega}\cos\omega t,$$

следовательно, напряжение на емкости

$$u_C = -\left(\frac{h_1}{\omega}I_m + \frac{3h_2}{4\omega^3}I_m^3\right)\cos\omega t - \frac{h_2I_m^3}{4m^3}\cos3\omega t.$$

Приравняв амплитуду первой гармоники в полученном выражении к $\frac{1}{\omega C_{\circ}}I_{m}$, находим:

$$C_{3} = \frac{1}{h_{1} + \frac{3h_{2}I_{m}^{2}}{4\omega^{2}}}.$$

3.20. Цепь состоит из последовательно соединенных нелинейного резистора, нелинейной катушки индуктивности и линейного конденсатора. На входе цепи действует синусоидальное напряжение $u = U_m \sin \omega t$. Определить резонансную частоту цепи, если нелинейные элементы имеют характеристики, приведенные в задачах 3.17 и 3.18.

Решение

Заменим нелинейные элементы эквивалентными линейными элементами: сопротивлением

$$R_9 = a_1 + \frac{3a_2}{4}I_m^2$$

и индуктивностью

$$L_{9} = b_1 - \frac{3b_2 I_m^2}{4}$$

(см. решения задач 3.17 и 3.18). В линеаризованной цепи протекает ток

$$i = I_m \sin(\omega t - \varphi),$$

где

$$I_{m} = \frac{U_{m}}{\sqrt{\left(a_{1} + \frac{3a_{2}}{4}I_{m}^{2}\right)^{2} + \left(\omega b_{1} - \omega \frac{3b_{2}}{4}I_{m}^{2} - \frac{1}{\omega C}\right)^{2}}},$$

$$\phi = \arctan \frac{\omega L_{3} - \frac{1}{\omega C}}{R_{3}}.$$
(1)

Так как активное сопротивление и индуктивность эквивалентной цепи зависят от I_m , то и фаза ϕ зависит от I_m . Резонансная частота такой цепи приближенно равна

$$\omega \approx \frac{1}{\sqrt{L_{9}C}} = \frac{1}{2\pi\sqrt{C\left(b_{1} - \frac{3b_{2}}{4}I_{m}^{2}\right)}}$$

и также зависит от амплитуды тока I_m , которая, в свою очередь, зависит от амплитуды приложенного напряжения U_m [см. уравнение (1)].

3.21. Найти зависимость i(t) и показание прибора в цепи рис. 3.3.1, a, если нелинейный элемент имеет BAX $u(i) = ai + bi^3 = 20i + 150i^3$, $e(t) = 220 \sin \omega t$, B, R = 20 Ом.

Решение

1 способ (Метод гармонического баланса)

Состояние заданной цепи определяется уравнением

$$Ri + u(i) = e$$

ИЛИ

$$Ri + ai + bi^3 = e. (1)$$

В цепи действует источник синусоидального напряжения, а заданная ВАХ нелинейного элемента содержит первую и третью степени. Поэтому искомый ток i будет содержать первую и третью гармоники (сравните решение задачи 3.14):

$$i(t) = I_{(1)_m} \sin(\omega t + \psi_{(1)}) + I_{(3)_m} \sin(3\omega t + \psi_{(3)}), \tag{2}$$

где амплитуды $I_{(1)_m}$, $I_{(3)_m}$ и начальные фазы $\psi_{(1)}$, $\psi_{(3)}$ гармонических составляющих искомого тока заранее неизвестны. Для их определения выражение (2) подставляем в равенство (1) и получаем уравнение

$$\begin{split} & \left[(112,5I_{(1)_{m}}^{3} + 225I_{(1)_{m}}I_{(3)_{m}}^{2} + 40I_{(1)_{m}})\cos\psi_{(1)} - 112,5I_{(1)_{m}}^{2}I_{(3)_{m}}\cos(\psi_{(3)} - 2\psi_{(1)}) \right] \sin\omega t + \\ & + \left[(112,5I_{(1)_{m}}^{3} + 225I_{(1)_{m}}I_{(3)_{m}}^{2} + 40I_{(1)_{m}})\sin\psi_{(1)} - 112,5I_{(1)_{m}}^{2}I_{(3)_{m}}\sin(\psi_{(3)} - 2\psi_{(1)}) \right] \cos\omega t + \\ & + \left[(112,5I_{(3)_{m}}^{3} + 225I_{(1)_{m}}^{2}I_{(3)_{m}} + 40I_{(3)_{m}})\cos\psi_{(3)} - 37,5I_{(1)_{m}}^{3}\cos3\psi_{(1)} \right] \sin3\omega t + \\ & + \left[(112,5I_{(3)_{m}}^{3} + 225I_{(1)_{m}}^{2}I_{(3)_{m}} + 40I_{(3)_{m}})\sin\psi_{(3)} - 37,5I_{(1)_{m}}^{3}\sin3\psi_{(1)} \right] \cos3\omega t = \\ & = E_{m}\sin\omega t + 0\cos\omega t + 0\sin3\omega t + 0\cos3\omega t. \end{split}$$

В соответствии с требованием гармонического баланса приравниваем коэффициенты при одинаковых гармонических составляющих в левой и в правой частях этого уравнения. Получаем систему уравнений:

По условию $\psi_e = 0$, а нагрузка в заданной цепи чисто активная, поэтому можно сразу записать: $\psi_{(1)} = 0$, $\psi_{(3)} = 0$. Тогда в записанной системе четырех уравнений остается два уравнения:

$$112,5I_{(1)_{m}}^{3} + 225I_{(1)_{m}}I_{(3)_{m}}^{2} + 40I_{(1)_{m}} - 112,5I_{(1)_{m}}^{2}I_{(3)_{m}} = 220;$$

$$112,5I_{(3)_{m}}^{3} + 225I_{(1)_{m}}^{2}I_{(3)_{m}} + 40I_{(3)_{m}} - 37,5I_{(1)_{m}}^{3} = 0.$$

Приближенные значения корней этих уравнений:

$$I_{(1)_m} \approx 1,195 \text{ A}, I_{(3)_m} \approx 0,173 \text{ A}.$$

Следовательно,

$$i(t) \approx 1,195 \sin \omega t + 0,173 \sin 3\omega t$$
, A;

$$I_{\rm A} \approx \sqrt{\left(\frac{I_{(1)_m}}{\sqrt{2}}\right)^2 + \left(\frac{I_{(3)_m}}{\sqrt{2}}\right)^2} = \sqrt{\left(\frac{1,195}{\sqrt{2}}\right)^2 + \left(\frac{0,173}{\sqrt{2}}\right)^2} = 0,854 {
m A}.$$

2 способ (Метод гармонической линеаризации)

Отправной точкой расчета служит предположение, что

$$i(t) = I_m \sin(\omega t + \psi_i), \tag{3}$$

где амплитуда I_m и начальная фаза ψ_i пока неизвестны [сравните (2)]. Подставляя (3) в уравнение (1), получаем:

$$(R+a)I_m \sin(\omega t + \psi_i) + bI_m^3 \sin^3(\omega t + \psi_i) =$$

$$= (R+a)I_m \sin(\omega t + \psi_i) + 0.75bI_m^3 \sin(\omega t + \psi_i) - 0.25bI_m^3 \sin 3(\omega t + \psi_i) =$$

$$= E_m \sin \omega t.$$

В соответствии с исходным предположением (3) в этом уравнении учитываем только первую гармонику, для которой составляем уравнение гармонического баланса:

$$\left((R+a)I_m + 0.75bI_m^3 \right) \sin \omega t = E_m \sin \omega t. \tag{4}$$

При этом благодаря чисто активной нагрузке можно считать, что $\psi_e = \psi_i = 0$.

От уравнения (4) переходим к уравнению

$$0.75I_m^3 + (R+a)I_m = E_m,$$

ИЛИ

$$112,5I_m^3 + 40I_m - 220 = 0.$$

Это уравнение имеет приближенное решение $I_m \approx 1,16\,$ A, следовательно,

$$i(t) \approx 1,16 \sin \omega t$$
, A; $I_A \approx \frac{1,16}{\sqrt{2}} = 0,82$ A.

3 способ (Метод эквивалентных синусоид)

Искомому несинусоидальному току заданной цепи формально сопоставим эквивалентный ток с амплитудой

$$I_m = \frac{E_m}{R + R_2(I_m)} \,. \tag{5}$$

Для определения $R_{_3}(I_m)$ необходима BAX нелинейного элемента для амплитуд тока и напряжения, т. е. зависимость $U_m(I_m)$. Воспользуемся заданной BAX

$$u(i) = ai + bi^3, (6)$$

считая при этом, что i(t) определяется зависимостью (3), а u(t) – аналогичной зависимостью

$$u(t) = U_m \sin(\omega t + \psi_u). \tag{7}$$

Подставляя (3) и (7) в (6), получаем:

$$U_{m} \sin(\omega t + \psi_{u}) = aI_{m} \sin(\omega t + \psi_{i}) + bI_{m}^{3} \sin^{3}(\omega t + \psi_{i}) =$$

$$= aI_{m} \sin(\omega t + \psi_{i}) + 0.75bI_{m}^{3} \sin(\omega t + \psi_{i}) - 0.25bI_{m}^{3} \sin 3(\omega t + \psi_{i}) =$$

$$= (aI_{m} + 0.75bI_{m}^{3}) \sin(\omega t + \psi_{i}) - 0.25bI_{m}^{3} \sin 3(\omega t + \psi_{i}) =$$

$$= \sqrt{(aI_{m} + 0.75bI_{m}^{3})^{2} + (0.25bI_{m}^{3})^{2}} \sin(\omega t + \psi_{u}).$$

Следовательно,

$$U_m = \sqrt{\left(aI_m + 0.75bI_m^3\right)^2 + \left(0.25bI_m^3\right)^2}.$$

Отсюда

$$R_{s}(I_{m}) = \frac{U_{m}}{I_{m}} = \sqrt{\left(a + 0.75bI_{m}^{2}\right)^{2} + \left(0.25bI_{m}^{2}\right)^{2}}.$$

Возвращаясь к выражению (5), получаем уравнение

$$I_{m} = \frac{E_{m}}{R + \sqrt{\left(a + 0.75bI_{m}^{2}\right)^{2} + \left(0.25bI_{m}^{2}\right)^{2}}},$$

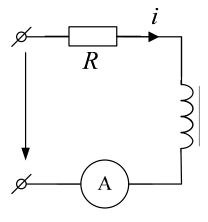
которое после подстановки численных значений принимает вид:

$$I_m = \frac{220}{20 + \sqrt{(20 + 0.75 \cdot 150I_m^2)^2 + (0.25 \cdot 150I_m^2)^2}}.$$

Решая это уравнение, находим: $I_m \approx 1,14\,$ А. Следовательно,

$$i(t) \approx 1,14 \sin \omega t$$
; $I_A \approx \frac{I_m}{\sqrt{2}} = \frac{1,14}{\sqrt{2}} = 0,806$ A.

3.22. В цепи рис. 3.22 нелинейная катушка имеет вебер-амперную характеристику $i(\Psi) = a\Psi + b\Psi^3$, где a = 50 А/Вб, $b = 4 \cdot 10^7$ А/Вб³. Найти зависимость i(t) и показание амперметра при R = 50 Ом, $u(t) = 127\sqrt{2}\sin 10^4 t$, В.



Puc. 3.22

Решение

1 способ (Метод гармонической линеаризации)

В любой момент времени состояние заданной цепи определяется уравнением

$$Ri + \frac{d\Psi}{dt} = u(t). \tag{1}$$

В соответствии с методом гармонической линеаризации полагаем

$$\Psi(t) = \Psi_m \sin(\omega t + \alpha), \tag{2}$$

где $\omega = 10^4$ рад/с. Подставляя (2) в (1), получаем:

$$Ra\Psi + Rb\Psi^{3} + \frac{d\Psi}{dt} =$$

$$= Ra\Psi_{m} \sin(\omega t + \alpha) + Rb\Psi_{m}^{3} \sin^{3}(\omega t + \alpha) + \omega\Psi_{m} \cos(\omega t + \alpha) =$$

$$= (Ra\Psi_{m} + 0.75Rb\Psi_{m}^{3}) \sin(\omega t + \alpha) - 0.25Rb\Psi_{m}^{3} \sin 3(\omega t + \alpha) +$$

$$+ \omega\Psi_{m} \cos(\omega t + \alpha) == U_{m} \sin \omega t.$$

Формально обозначив $\Theta = \omega t + \alpha$, получим:

$$(a\Psi_m + 0.75b\Psi_m^3)R\sin\Theta - 0.25Rb\Psi_m^3\sin3\Theta + + \omega\Psi_m\cos\Theta = U_m\sin(\Theta - \alpha),$$

ИЛИ

$$(a\Psi_m + 0.75b\Psi_m^3)R\sin\Theta + \omega\Psi_m\cos\Theta - 0.25Rb\Psi_m^3\sin3\Theta =$$

$$= U_m\cos\alpha\sin\Theta - U_m\sin\alpha\cos\Theta. \tag{4}$$

Учитывая только вклад первой гармоники, от уравнения (4) переходим к уравнению

$$(a\Psi_m + 0.75b\Psi_m^3)R\sin\Theta + \omega\Psi_m\cos\Theta =$$

$$= U_m\cos\alpha\sin\Theta - U_m\sin\alpha\cos\Theta. \tag{5}$$

Приравнивая в (5) слагаемые с одинаковыми функциями переменной Θ (гармонический баланс), получаем систему уравнений

$$\begin{pmatrix} a\Psi_m + 0.75b\Psi_m^3 \end{pmatrix} R = U_m \cos \alpha;
\omega \Psi_m = -U_m \sin \alpha.$$
(6)

Решая ее, находим: $\Psi_m = 4,76 \cdot 10^{-3}$ Вб; $\alpha = -15,33^\circ$. Таким образом,

$$\Psi(t) = 4.76 \cdot 10^{-3} \sin(\omega t - 15.33^{\circ})$$
 B6.

Следовательно,

$$i(t) = a\Psi(t) + b(\Psi(t))^{3} =$$

$$= a\Psi_{m} \sin(\omega t + \alpha) + 0.75b\Psi_{m}^{3} \sin(\omega t + \alpha) - 0.25b\Psi_{m}^{3} \sin(3(\omega t + \alpha)) =$$

$$= 3.47 \sin(\omega t - 15.33^{\circ}) - 1.08 \sin(3\omega t - 46^{\circ}) =$$

$$= 3.47 \sin(\omega t - 15.33^{\circ}) + 1.08 \sin(3\omega t + 134^{\circ}), A;$$

$$I_{A} \approx \sqrt{\left(\frac{3.47}{\sqrt{2}}\right)^{2} + \left(\frac{1.08}{\sqrt{2}}\right)^{2}} = 2.57 A.$$

2 способ (Метод эквивалентных синусоид)

Запишем для заданной цепи закон Ома в комплексном виде:

$$\underline{I}_{m} = \frac{\underline{U}_{m}}{\underline{Z}} = \frac{\underline{U}_{m}}{R + j\omega L(\Psi_{m})} = \frac{U_{m}}{\sqrt{R^{2} + [\omega L(\Psi_{m})]^{2}}} e^{-j\phi}.$$
 (7)

В соответствии с методом эквивалентных синусоид полагаем, что $\Psi(t)$ определяется равенством (2), а искомый ток

$$i(t) = I_m \sin(\omega t + \psi_i).$$

Тогда согласно заданной вебер-амперной характеристике

$$I_{m} \sin(\omega t + \psi_{i}) =$$

$$= a\Psi_{m} \sin(\omega t + \alpha) + b\Psi_{m}^{3} \sin^{3}(\omega t + \alpha) =$$

$$= a\Psi_{m} \sin(\omega t + \alpha) + 0.75b\Psi_{m}^{3} \sin^{3}(\omega t + \alpha) - 0.25b\Psi_{m}^{3} \sin 3(\omega t + \alpha) =$$

$$= \left(a\Psi_{m} + 0.75b\Psi_{m}^{3}\right) \sin(\omega t + \alpha) - 0.25b\Psi_{m}^{3} \sin 3(\omega t + \alpha) =$$

$$= \sqrt{\left(a\Psi_{m} + 0.75b\Psi_{m}^{3}\right)^{2} + \left(0.25b\Psi_{m}^{3}\right)^{2}} \sin(\omega t + \alpha).$$

Из полученного равенства следует, что

$$I_m = \sqrt{\left(a\Psi_m + 0.75b\Psi_m^3\right)^2 + \left(0.25b\Psi_m^3\right)^2}.$$
 (8)

Отсюда

$$L_{3}(\Psi_{m}) = \frac{\Psi_{m}}{I_{m}} = \frac{1}{\sqrt{0.625b^{2}\Psi_{m}^{4} + 1.5ab\Psi_{m}^{2} + a^{2}}}.$$
 (9)

Подставляя это равенство в (7), получаем:

$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + \frac{\omega^{2}}{0.625b^{2}\Psi_{m}^{4} + 1.5ab\Psi_{m}^{2} + a^{2}}}}.$$
 (10)

Приравнивая правые части равенств (8) и (10), получаем уравнение

$$\Psi_m \sqrt{0.625b^2 R^2 \Psi_m^4 + 1.5abR^2 \Psi_m^2 + (R^2 a^2 + \omega^2)} = U_m,$$

имеющее приближенное решение $\Psi_m \approx 4,68 \cdot 10^{-3}$ Вб. Подставляя это значение в выражение (9), получаем:

$$L_9 = \frac{1}{\sqrt{0,625b^2(4,68\cdot10^{-3})^4 + 1,5ab(4,68\cdot10^{-3})^2 + a^2}} = 1,35\cdot10^{-3} \text{ }\Gamma\text{H}.$$

Тогда

$$\alpha = -\arctan\frac{\omega L}{R} = -\arctan\frac{10^4 \cdot 1,35 \cdot 10^{-3}}{50} = -15,1^{\circ}.$$

Следовательно,

$$\Psi(t) \approx 4.68 \cdot 10^{-3} \sin(\omega t - 15.1^{\circ}), \text{ B6.}$$
 (11)

Подставляя выражение (11) в заданную вебер-амперную характеристику и сохраняя в полученном выражении только первую гармонику, окончательно получаем:

$$i(t) \approx 3,46 \sin(\omega t - 15,1^{\circ}), A; I_A \approx \frac{3,46}{\sqrt{2}} = 2,45 A.$$

3 способ (Метод последовательных приближений)

Подставим заданную зависимость $i = (\Psi)$ в уравнение (1) и перенесем в правую часть полученного уравнения нелинейное слагаемое:

$$u - \frac{d\Psi}{dt} - aR\Psi = bR\Psi^3. \tag{12}$$

Определим нулевое (линейное) приближение $\Psi^{(0)}$. Для этого в исходном нелинейном уравнении (12) отбросим нелинейное слагаемое, т. е. предварительно решим уравнение

$$u - \frac{d\Psi}{dt} - aR\Psi = 0. ag{13}$$

Линейное уравнение (13) можно решать символическим методом. Имеем:

$$\Psi_m^{(0)} = \frac{\underline{U}_m}{aR + j\omega} = \frac{127\sqrt{2}}{50 \cdot 50 + j10^4} = 17,4e^{-j76^\circ}$$
 мВб,

так что нулевое приближение потокосцепления

$$Ψ^{(0)} = 17.4 \sin(10^4 t - 76^\circ), \text{ мB6}.$$
 (14)

Чтобы получить первое приближение, подставим полученное выражение (14) в правую часть уравнения (12). Получим:

$$\frac{d\Psi}{dt} + aR\Psi =$$

$$= U_m \sin \omega t - \frac{3}{4} bR(\Psi_m^{(0)})^3 \sin(\omega t - \theta) + \frac{1}{4} bR(\Psi_m^{(0)})^3 \sin[3(\omega t - \theta)], \quad (15)$$

где $\theta = 76^{\circ}$. Уравнение (15) можно рассматривать как уравнение состояния линейной цепи при полигармоническом внешнем воздейст-

вии (в данном случае в линеаризованной цепи действуют первая и третья гармоники). Вклад каждой из гармоник потокосцепления можно рассчитать символическим методом.

Для первой гармоники из уравнения (15) получаем:

$$(aR + j\omega)\underline{\Psi}_{(1)_m} = \underline{U}_m - \frac{3}{4}bR(\Psi_m^{(0)})^3 e^{-j\theta}. \tag{16}$$

После подстановки численных значений из уравнения (16) находим:

$$\underline{\Psi}_{(1)m} = 4,76e^{-15,4^{\circ}} \text{ MB6},$$

$$\underline{U_{L}}_{(1)m} = j\omega\underline{\Psi}_{(1)m} = 47,6e^{j74,6^{\circ}} \text{ B},$$

$$u_{L(1)} = 47,6\sin(\omega t + 74,6^{\circ}), \text{ B}.$$

Для третьей гармоники уравнение (15) дает:

$$(aR + j3\omega)\underline{\Psi}_{(3)_m} = \frac{1}{4}bR(\Psi_m^{(0)})^3 e^{-j3\theta}.$$

Отсюда

$$\underline{\Psi}_{(3)_{m}} = 1,775e^{j134,2^{\circ}} \text{ MB6},$$

$$\underline{U_{L}}_{(3)_{m}} = j3\omega\underline{\Psi}_{(3)_{m}} = 53,5e^{-j135,8^{\circ}} \text{ B},$$

$$u_{L}_{(3)} = 53,5\sin(\omega t - 135,8^{\circ}), \text{ B}.$$

Искомый ток можно определить по закону Ома: для мгновенных значений

$$i = \frac{u - u_L}{R},$$

либо для гармонических составляющих в символическом виде:

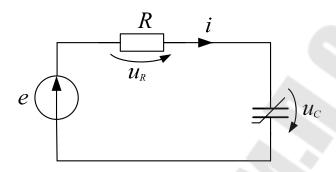
$$\underline{I}_{(1)_m} = \frac{\underline{U}_m - \underline{U}_{L(1)_m}}{R}$$
, w $\underline{I}_{(3)_m} = \frac{-\underline{U}_{L(3)_m}}{R}$.

Окончательно получаем:

$$i = 3.5 \sin(\omega t - 15.4^{\circ}) + 1.07 \sin(3\omega t + 134.2^{\circ}), A;$$

$$I_A \approx \sqrt{\left(\frac{3.5}{\sqrt{2}}\right)^2 + \left(\frac{1.07}{\sqrt{2}}\right)^2} = 2.588 \text{ A}.$$

3.23. В цепи рис. 3.23 R = 50 Ом, $e(t) = 200 \sin 500t$, В. Кулонвольтная характеристика нелинейной емкости выражается равенством $u_C(q) = 10^3 q^3$, где $[u_C] = B$, [q] =Кл. Рассчитать $u_C(t)$.



Puc. 3.23

Решение

1 способ (Метод гармонической линеаризации)

В любой момент времени состояние цепи определяется уравнением

$$Ri + u_C = e \tag{1}$$

или

$$R\frac{dq}{dt} + aq^3 = e\,, (2)$$

где $a=10^{10}~{\rm B/K}{\rm n}^3$. Полагаем, что заряд емкости изменяется со временем по закону

$$q(t) = Q_m \sin(\omega t + \psi_a), \tag{3}$$

где $\omega = 500$ рад/с. Тогда

$$\frac{dq}{dt} = \omega Q_m \cos(\omega t + \psi_q) = \omega Q_m (\cos \omega t \cos \psi_q - \sin \omega t \sin \psi_q); \qquad (4)$$

$$q^{3} = Q_{m}^{3} \sin^{3}(\omega t + \psi_{q}) = \frac{Q_{m}^{3}}{4} (3\sin(\omega t + \psi_{q}) - \sin[3(\omega t + \psi_{q})]).$$
 (5)

В соответствии с методом гармонической линеаризации учитываем только первую гармонику, поэтому вместо (5) в уравнение (2) подставляем выражение

$$q^3 \approx \frac{3Q_m^3}{4}\sin(\omega t + \psi_q). \tag{6}$$

Используя (2), (4) и (6), получаем уравнение

$$(0.75aQ_m^3\cos\psi_q + R\omega Q_m\sin\psi_q)\sin\omega t +$$

$$+ (R\omega Q_m \cos \psi_q + 0.75aQ_m^3 \sin \psi_q) \cos \omega t = E_m \sin \omega t,$$

где $E_m = 200 \, \text{B}$. Приравнивая множители, находящиеся в левой и в правой частях при $\sin \omega t$ и $\cos \omega t$, получаем систему уравнений

$$\begin{cases}
0.75aQ_m^3\cos\psi_q + R\omega Q_m\sin\psi_q = E_m, \\
R\omega Q_m\cos\psi_q + 0.75aQ_m^3\sin\psi_q = 0.
\end{cases}$$
(7)

Решая полученную систему уравнений, находим:

$$Q_m = 2,93 \,\mathrm{MK}$$
л, $\psi_q = -21,19^\circ$.

Следовательно,

$$q = 2,93 \sin(\omega t - 21,19^{\circ})$$
, мКл.

Тогда

$$u_C = 10^{10} (2.93 \cdot 10^{-3})^3 \sin^3(\omega t - 21.19^\circ) \approx 188.65 \sin(500t - 21.19^\circ), B.$$

2 способ (Метод эквивалентных синусоид)

Подставляя выражение (3) в заданную КВХ, получаем:

$$u_C = aQ_m^3 \sin^3(\omega t + \psi_q) =$$

$$= 0.75aQ_m^3 \sin(\omega t + \psi_q) - 0.25aQ_m^3 \sin[3(\omega t + \psi_q)]. \tag{8}$$

Исходя из (8), обозначим:

$$U_{C_{(1)m}} = 0.75aQ_m^3$$
, $U_{C_{(3)m}} = 0.25aQ_m^3$

Тогда амплитуда эквивалентной синусоиды

$$U_{C_m} = \sqrt{U_{C_{(1)m}}^2 + U_{C_{(3)m}}^2} = aQ_m^3 \sqrt{0.75^2 + 0.25^2} = 0.79aQ_m^3.$$
 (9)

Соответствующая эквивалентная емкость

$$C_9 = \frac{Q_m}{U_{C_m}} = \frac{Q_m}{0.79Q_m^3} = 1.266(aQ_m^2)^{-1}.$$

По второму закону Кирхгофа

$$U_{C_m} = \frac{E_m}{\sqrt{R^2 + \frac{1}{\omega^2 C_2^2}}} \cdot \frac{1}{\omega C_3} = \frac{E_m}{\sqrt{R^2 + \frac{0.625a^2 Q_m^4}{\omega^2}}} \cdot \frac{0.79a Q_m^2}{\omega}.$$
 (10)

Приравнивая правые части уравнения (9) и (10), после формальных преобразований получаем уравнение

$$0,625a^2Q_m^6 + \omega^2 R^2 Q_m^2 - E_m^2 = 0,$$

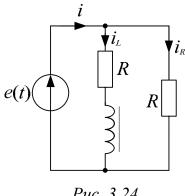
имеющее корень $Q_m = 2,88\,$ мКл. Подставляя это значение в формулу (10), находим $U_{C_m}=186,\!87~{
m B.}$ По условию $\psi_e=0.$ Следовательно, эквивалентная синусоида тока имеет начальную фазу

$$\psi_i = \operatorname{arctg} \frac{1}{R\omega C_3} = 69,13^\circ.$$

Тогда эквивалентная синусоида напряжения на емкости имеет начальную фазу $\psi_u = \psi_i - 90^\circ = -20,87^\circ$. В итоге имеем:

$$u_C = 186,87\sin(500t - 20,87^\circ)$$
, B.

3.24. Определить 3.24, цепи рис. если $e(t) = 8\sin(1000t + 60^{\circ}), R = 100 \text{ Ом, BбAX катушки для мгновенных}$ Ψ значений потокосцепления И тока i_L имеет ВИД $i_L(\Psi) = 0.55\Psi + 0.909 \cdot 10^4 \Psi^3$, A.



Puc. 3.24

Решение

1 способ (Метод гармонического баланса)

По законам Кирхгофа:

$$i = i_L + i_R = a\Psi + b\Psi^3 + \frac{e}{R}; \tag{1}$$

$$e = Ri_L + u_L = R(a\Psi + b\Psi^3) + \frac{d\Psi}{dt}.$$
 (2)

Периодическое решение уравнения (2) будем искать в виде ряда

$$\Psi = \Psi_1 \sin \omega t + \Psi_2 \cos \omega t + \Psi_3 \sin 3\omega t + \Psi_4 \cos 3\omega t + \dots, \tag{3}$$

в котором мы ограничимся первыми четырьмя членами. Для подстановки предварительно находим:

$$\begin{split} \frac{d\Psi}{dt} &= \omega \Psi_1 \cos \omega t - \omega \Psi_2 \sin \omega t + 3\omega \Psi_3 \cos 3\omega t - 3\omega \Psi_4 \sin 3\omega t; \\ \Psi^3 &\approx \left(\frac{3}{4} \left(\Psi_1^3 - \Psi_1^2 \Psi_3 + \Psi_1 \Psi_2^2 + \Psi_2^2 \Psi_3\right) + \frac{3}{2} \left(\Psi_1 \Psi_2 \Psi_4 + \Psi_1 \Psi_3^2 + \Psi_1 \Psi_4^2\right)\right) \sin \omega t + \\ &+ \left(\frac{3}{4} \left(\Psi_2^3 + \Psi_1^2 \Psi_2 - \Psi_1^2 \Psi_4 + \Psi_2^2 \Psi_4\right) + \frac{3}{2} \left(\Psi_1 \Psi_2 \Psi_3 + \Psi_2 \Psi_3^2 + \Psi_2 \Psi_4^2\right)\right) \cos \omega t + \\ &+ \left(-\frac{1}{4} \Psi_1^3 + \frac{3}{4} \Psi_3^2 + \frac{3}{2} \Psi_1^2 \Psi_3 + \frac{3}{2} \Psi_2^2 \Psi_3 + \frac{3}{2} \Psi_3 \Psi_4^2\right) \sin 3\omega t + \\ &+ \left(\frac{1}{4} \Psi_2^3 + \frac{3}{4} \Psi_4^3 + \frac{3}{2} \Psi_1^2 \Psi_4 + \frac{3}{2} \Psi_2^2 \Psi_4 + \frac{3}{2} \Psi_3^2 \Psi_4\right) \cos 3\omega t. \end{split}$$

Здесь, как и в предполагаемом решении, учтены только первая и третья гармоники.

Подставляем выражения для Ψ , $\frac{d\Psi}{dt}$ и Ψ^3 в уравнение (2) и осуществляем гармонический баланс, т. е. последовательно приравниваем полиномы при $\sin \omega t$, $\cos \omega t$, $\sin 3\omega t$, $\cos 3\omega t$ в левой и в правой частях уравнения. Получаем систему алгебраических уравнений для определения неизвестных амплитуд Ψ_1 , Ψ_2 , Ψ_3 , Ψ_4 :

$$\begin{cases} -\omega\Psi_{2} + aR\Psi_{1} + bR\left(\frac{3}{4}\Psi_{1}^{3} + \frac{3}{2}\Psi_{1}\Psi_{2}\Psi_{4} - \frac{3}{4}\Psi_{1}^{2}\Psi_{3} + \frac{3}{4}\Psi_{1}\Psi_{2}^{2} + \frac{3}{4}\Psi_{2}^{2}\Psi_{3} + \frac{3}{2}\Psi_{1}\Psi_{3}^{2} + \frac{3}{2}\Psi_{1}\Psi_{3}^{2} + \frac{3}{2}\Psi_{1}\Psi_{4}^{2}\right) = E_{m}\cos\psi_{e}; \\ \omega\Psi_{1} + aR\Psi_{2} + bR\left(\frac{3}{4}\Psi_{2}^{3} + \frac{3}{2}\Psi_{1}\Psi_{2}\Psi_{3} + \frac{3}{4}\Psi_{1}^{2}\Psi_{2} - \frac{3}{4}\Psi_{1}^{2}\Psi_{4} + \frac{3}{4}\Psi_{2}^{2}\Psi_{4} + \frac{3}{4}\Psi_{2}^{2}\Psi_{4} + \frac{3}{4}\Psi_{2}^{2}\Psi_{3}^{2} + \frac{3}{2}\Psi_{2}\Psi_{3}^{2} + \frac{3}{2}\Psi_{2}\Psi_{4}^{2}\right) = E_{m}\sin\psi_{e}; \\ -\omega\Psi_{4} + aR\Psi_{3} + bR\left(-\frac{1}{4}\Psi_{1}^{3} + \frac{3}{4}\Psi_{3}^{3} + \frac{3}{2}\Psi_{1}^{2}\Psi_{3} + \frac{3}{2}\Psi_{2}^{2}\Psi_{3} + \frac{3}{2}\Psi_{3}\Psi_{4}^{2}\right) = 0; \\ 3\omega\Psi_{3} + aR\Psi_{4} + bR\left(\frac{1}{4}\Psi_{2}^{3} + \frac{3}{4}\Psi_{3}^{4} + \frac{3}{2}\Psi_{1}^{2}\Psi_{4} + \frac{3}{2}\Psi_{2}^{2}\Psi_{4} + \frac{3}{2}\Psi_{3}^{2}\Psi_{4}\right) = 0. \end{cases}$$

Здесь a=0.55 А/Вб; $b=0.909\cdot 10^4$ А/Вб³. Решая эту систему уравнений и подставляя в (3) найденные значения Ψ_1 , Ψ_2 , Ψ_3 и Ψ_4 , находим:

$$\Psi = 0,0036 \sin 1000t - 0,0038 \cos 1000t + 1,05 \cdot 10^{-6} \sin 3000t - 0,95 \cdot 10^{-6} \cos 3000t = 0,0052 \sin(1000t - 46^{\circ}30') + 1,416 \cdot 10^{-6} \sin(3000t - 42^{\circ}06'), \text{ B6}.$$

Используя (1), с точностью до третьей гармоники получаем:

$$i = 0.55 \left[0.0052 \sin(1000t - 46^{\circ}30') + 1.416 \cdot 10^{-6} \sin(3000t - 42^{\circ}06') \right] +$$

$$+ 0.909 \cdot 10^{4} \cdot \left[0.0052 \sin(1000t - 46^{\circ}30') + 1.416 \sin(3000t - 42^{\circ}06') \right]^{3} +$$

$$+ \frac{1}{100} \cdot 8 \sin(1000t + 60^{\circ}) \approx 0.08 \sin(1000t + 57^{\circ}) +$$

$$+ 0.0277 \cdot 10^{-6} \sin(3000t - 140^{\circ}30'), A.$$

2 способ (Метод гармонической линеаризации)

Будем искать решение уравнения (2) в виде

$$\Psi = \Psi_1 \sin \omega t + \Psi_2 \cos \omega t.$$

Для подстановки этого предполагаемого решения в дифференциальное уравнение (2) предварительно находим:

$$\frac{d\Psi}{dt} = \omega \Psi_1 \cos \omega t - \omega \Psi_2 \sin \omega t;;$$

$$\Psi^3 = \Psi_1^3 \sin^3 \omega t + 3\Psi_1^2 \Psi_2 \sin^2 \omega t \cos \omega t + 3\Psi_1 \Psi_2^2 \sin \omega t \cos^2 \omega t +$$

$$+ \Psi_2^3 \cos^3 \omega t = \frac{3}{4} \Psi_1^3 \sin \omega t - \frac{1}{4} \Psi_1^3 \sin 3\omega t + \frac{3}{2} \Psi_1^2 \Psi_2 \cos \omega t -$$

$$- \frac{3}{2} \Psi_1^2 \Psi_2 \cos 2\omega t \cos t + \frac{3}{2} \Psi_1 \Psi_2^2 \sin \omega t + \frac{3}{2} \Psi_1 \Psi_2^2 \sin \omega t \cos 2\omega t +$$

$$+ \frac{3}{4} \Psi_2^3 \cos \omega t + \frac{1}{4} \Psi_2^3 \cos 3\omega t \approx \left(\frac{3}{4} \Psi_1^3 + \frac{3}{2} \Psi_1 \Psi_2^2 - \frac{3}{2} \Psi_1 \Psi_2^2\right) \sin \omega t +$$

$$+ \left(\frac{3}{4} \Psi_2^3 + \frac{3}{2} \Psi_1^2 \Psi_2 - \frac{3}{2} \Psi_1^2 \Psi_2\right) \cos \omega t = \frac{3}{4} \Psi_1^3 \sin \omega t + \frac{3}{4} \Psi_2^3 \cos \omega t.$$

Поскольку при расчете учитывается только первая гармоника, в выражении для Ψ^3 отброшены слагаемые от высших гармоник.

Подстановка в уравнение (2) дает:

$$\omega \Psi_1 \cos \omega t - \omega \Psi_2 \sin \omega t + Ra \Psi_1 \sin \omega t + Ra \Psi_2 \cos \omega t + Rb \frac{3}{4} \Psi_1^3 \sin \omega t + Rb \frac{3}{4} \Psi_2^3 \cos \omega t = E_m \sin(\omega t + \psi_e),$$

где $\psi_e = 60^\circ$. Приводим подобные слагаемые с синусными и косинусными составляющими:

$$\left(aR\Psi_1 + \frac{3}{4}bR\Psi_1^3 - \omega\Psi_2\right)\sin\omega t + \left(aR\Psi_2 + \frac{3}{4}bR\Psi_2^3 + \omega\Psi_1\right)\cos\omega t =$$

$$= \left(E_m\cos\psi_e\right)\sin\omega t + \left(E_m\sin\psi_e\right)\cos\omega t.$$

Требование гармонического баланса дает:

$$\begin{cases} aR\Psi_1 + \frac{3}{4}bR\Psi_1^3 - \omega\Psi_2 = E_m \cos \psi_e; \\ aR\Psi_2 + \frac{3}{4}bR\Psi_2^3 + \omega\Psi_1 = E_m \sin \psi_e. \end{cases}$$

Подставим численные значения и преобразуем полученную систему алгебраических уравнений к виду

$$\begin{cases} \Psi_2 = 682\Psi_1^3 + 0,055\Psi_1 - 0,004, \\ \Psi_1 = -682\Psi_2^3 - 0,055\Psi_2 + 0,00346. \end{cases}$$

Эта система уравнений имеет решение $\Psi_1 = 0{,}0036$ Вб; $\Psi_2 = -0{,}0038$ Вб. Следовательно,

$$\Psi = 0.0036 \sin 1000t - 0.0038 \cos 1000t = 0.0052 \sin (1000t - 46.5^{\circ}), B6;$$

$$i = 0.55 \cdot 0.0052 \sin(1000t - 46.5^{\circ}) + 0.909 \cdot 10^{4} \cdot (0.0052)^{3} \sin^{3}(1000t - 46.5^{\circ}) + \frac{1}{100} \cdot 8\sin(1000t + 60^{\circ}) \approx 0.077 \sin(1000t + 38.1^{\circ}), \text{ A}.$$

3.25. Определить общий ток в цепи рис. 3.24 методом эквивалентных синусоид, если нелинейная катушка имеет вебер-амперную характеристику $i_L(\Psi) = 0.55\Psi + 1.36 \cdot 10^4 \, \Psi^3$, A.

Решение

Выразим комплекс действующего значения тока источника:

$$\underline{I} = \underline{I}_R + \underline{I}_L = \frac{\underline{E}}{R} + \frac{\underline{E}}{R + j\omega L_3} = \underline{E} \frac{2R + j\omega L_3}{R(R + j\omega L_3)}.$$

С помощью заданной ВбАХ найдем эквивалентную линейную индуктивность:

$$L_{9} = \frac{\Psi}{I} = \frac{\Psi}{0.55\Psi + 1.36 \cdot 10^{4} \Psi^{3}} = \frac{1}{0.55 + 1.36 \cdot 10^{4} \Psi^{2}}.$$

Потокосцепление определим из уравнения

$$E = \sqrt{U_R^2 + U_L^2} = \sqrt{(I_L R)^2 + (\omega \Psi)^2} = \frac{8}{\sqrt{2}},$$

которое после подстановки численных значений можно привести к виду

$$1,85 \cdot 10^8 \Psi^6 + 1,01 \cdot 10^6 \Psi^4 + 0,302 \Psi^2 = 32.$$

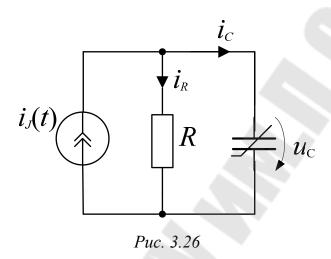
Полученное уравнение имеет решение $\Psi = 0.06$ Вб. Отсюда

$$L_9 = \frac{1}{0,55 + 1,36 \cdot 10^4 (0,06)^3} = 0,287 \text{ }\Gamma\text{H}.$$

Комплекс действующего значения искомого тока

$$\underline{I} = \frac{8}{\sqrt{2}} e^{j60^{\circ}} \frac{2 \cdot 100 + j1000 \cdot 0,287}{100(100 + j1000 \cdot 0,287)} = 0,065 e^{j44^{\circ}10'}, \text{ A.}$$

3.26. Найти $u_C(t)$ в цепи рис. 3.26, если $i_J(t) = 10\sin 500t$, А, R = 100 Ом, а нелинейная емкость имеет кулон-вольтную характеристику $u_C = 10^8 \, q^3$.



Решение

1 способ (Метод гармонической линеаризации)

Состояние цепи определяется уравнением

$$i_R + i_C = i_I(t)$$

ИЛИ

$$\frac{u_C}{R} + \frac{dq}{dt} = J_m \sin \omega t, \tag{1}$$

где $J_m=10\,$ А, $\omega=500\,$ рад/с. Подставляя в (1) заданную кулон-вольтную характеристику, получаем:

$$\frac{aq^3}{R} + \frac{dq}{dt} = J_m \sin \omega t, \tag{2}$$

где $a = 10^8$ В/К π^3 . Полагаем

$$q(t) = Q_m \sin(\omega t + \psi_q). \tag{3}$$

Подставляя (3) в (2), получаем уравнение

$$\frac{a}{R} \left(Q_m^3 \sin^3(\omega t + \psi_q) \right) + \omega Q_m \cos(\omega t + \psi_q) = J_m \sin \omega t$$

ИЛИ

$$0.75 \frac{a}{R} Q_m^3 \sin(\omega t + \psi_q) - 0.25 \frac{a}{R} Q_m^3 \sin 3(\omega t + \psi_q) + + \omega Q_m \cos(\omega t + \psi_q) = J_m \sin \omega t.$$

В полученном уравнении следует отбросить слагаемые, соответствующие высшим гармоникам, т. е. перейти к уравнению

$$0.75 \frac{a}{R} Q_m^3 \sin(\omega t + \psi_q) + \omega Q_m \cos(\omega t + \psi_q) = J_m \sin \omega t. \tag{4}$$

Для удобства составления гармонического баланса обозначим $\Theta = \omega t + \psi_q$. Тогда уравнение (4) примет вид:

$$0.75 \frac{a}{R} Q_m^3 \sin \Theta + \omega Q_m \cos \Theta =$$

$$= J_m \sin(\Theta - \psi_q) = J_m \cos \psi_q \sin \Theta - J_m \sin \psi_q \cos \Theta. \tag{5}$$

Требование гармонического баланса дает систему уравнений

$$0.75 \frac{a}{R} Q_m^3 = J_m \cos \psi_q,$$

$$\omega Q_m = -J_m \sin \psi_q,$$

которая имеет решение $Q_m = 1.8 \cdot 10^{-2} \text{ Kл}; \ \psi_q = -64^{\circ}$. Следовательно,

$$q(t) = 1.8 \cdot 10^{-2} \sin(\omega t - 64^{\circ}), \text{ Kл};$$

$$u_C = 10^8 q^3 = 10^8 Q_m^3 \cdot 0.75 \sin(\omega t + \psi_q) + 0.25 \cdot 10^8 Q_m^3 \sin 3(\omega t + \psi_q) =$$

$$\approx 10^8 (1.8 \cdot 10^{-2})^3 \cdot 0.75 \sin(\omega t + \psi_q) = 437.4 \sin(500t - 64^{\circ}), \text{ B}.$$

2 способ (Метод эквивалентных синусоид)

Полагаем, что q(t) выражается зависимостью вида (3), а $u_C(t)$ – аналогичной зависимостью

$$u_C = U_{C_m} \sin(\omega t + \psi_u). \tag{6}$$

Подставив (3) и (6) в заданную кулон-вольтную характеристику, получим:

$$U_{C_m} \sin(\omega t + \psi_u) = 0.75 \cdot aQ_m^3 \sin(\omega t + \psi_q) - 0.25 \cdot aQ_m^3 \sin 3(\omega t + \psi_q) =$$

$$= \sqrt{(0.75 \cdot aQ_m^3)^2 + (0.25 \cdot aQ_m^3)^2} \sin(\omega t + \psi_u).$$

Отсюда следует, что

$$U_{C_m} = aQ_m^3 \sqrt{0.75^2 + 0.25^2} = 0.79aQ_m^3. \tag{7}$$

Равенство (7) выражает кулон-вольтную характеристику нелинейной емкости для амплитуд. Используя (7), находим эквивалентную емкость:

$$C_{3}(Q_{m}) = \frac{Q_{m}}{U_{C_{m}}(Q_{m})} = \frac{Q_{m}}{0.79aQ_{m}^{3}} = \frac{1,266}{aQ_{m}^{2}}.$$
 (8)

Амплитуды эквивалентных синусоид в заданной цепи удовлетворяют равенству

$$\underline{U}_{C_m} = \underline{J}_m \frac{R \frac{-j}{\omega C_3}}{R - \frac{j}{\omega C_3}},\tag{9}$$

откуда

$$U_{C_m}\sqrt{1+\left(R\omega C_3\right)^2}=RJ_m. \tag{10}$$

Подставляя (8) в (10), получаем уравнение

$$0.625 \cdot 10^{10} Q_m^6 + 0.25 \cdot 10^4 Q_m^2 - 1 = 0,$$

имеющее корень $Q_m = 1,786 \cdot 10^{-2}$ Кл. Подставляя это значение в (8), находим эквивалентную емкость:

$$C_9 = \frac{1,266}{10^8 (1,786 \cdot 10^{-2})^2} = 39,7 \cdot 10^{-6} \Phi,$$

$$X_C = \frac{1}{\omega C_9} = \frac{1}{500 \cdot 39,7 \cdot 10^{-6}} = 50,4 \text{ Om.}$$

Возвращаясь к равенству (9), получаем:

$$\underline{U}_{C_m} = 10e^{j0^{\circ}} \frac{100 \cdot 50, 4e^{-j90^{\circ}}}{100 - 50, 4e^{-j90^{\circ}}} = 450e^{-j63, 25^{\circ}} \text{ B.}$$

Следовательно,

$$u_C \approx 450 \sin(\omega t - 63.25^{\circ}), B.$$

3.27. Катушка со стальным сердечником, подключенная к промышленной сети с напряжением 220 В, имеет w = 800 витков. Площадь сечения ее сердечника S = 10 см², средняя длина l = 40 см, а кривая намагничивания сердечника определяется уравнением $H = 200B + 600B^3$. Найти мгновенное и действующее значения тока катушки.

Решение

Напряжение на зажимах катушки с пренебрежимыми активными потерями в любой момент времени определяется законом электромагнитной индукции

$$u_L = \frac{d\Psi}{dt}$$
,

откуда мгновенное значение потокосцепления

$$\Psi(t) = \int u_L dt = \int u_m \sin \omega t dt = -\frac{U_m}{\omega} \cos \omega t = \frac{U_m}{\omega} \sin(\omega t - 90^\circ).$$

Магнитная индукция в сердечнике

$$B = \frac{\Phi}{S} = \frac{\Psi}{wS},$$

следовательно,

$$B(t) = \frac{U_m}{wS\omega} \sin \omega t = \frac{220\sqrt{2}}{800 \cdot 10 \cdot 10^{-4} \cdot 2\pi \cdot 50} = 1,24 \sin \omega t, \text{ Tm.}$$
 (1)

Напряженность магнитного поля

$$H = wi/l. (2)$$

Сопоставляя равенство (2) с заданным уравнением кривой намагничивания сердечника, находим:

$$i = \frac{200l}{w}B + \frac{600l}{w}B^3 = \frac{200 \cdot 0.4}{800}B + \frac{600 \cdot 0.4}{800}B^3 = 0.1B + 0.3B^3.$$
 (3)

Подставляя (1) в (3), получаем:

 $i = 0.1 \cdot 1.24 \sin \omega t + 0.3 \cdot 1.24^{3} \cdot 0.75 \sin \omega t - 0.3 \cdot 0.25 \cdot 1.24^{3} \sin 3\omega t =$ $= 0.124 \sin \omega t + 0.429 \sin \omega t - 0.143 \sin 3\omega t = 0.553 \sin \omega t - 0.143 \sin 3\omega t, A.$

Отсюда действующее значение тока

$$I = \sqrt{\left(\frac{0,553}{\sqrt{2}}\right)^2 + \left(\frac{0,143}{\sqrt{2}}\right)^2} = 0,404 \text{ A}.$$

$$i = -0.075 \cdot 1.36^3 \sin 3\omega t = -0.189 \sin 3\omega t$$
, A, $I = \frac{0.189}{\sqrt{2}} = 0.133$ A.

3.28. Катушка со стальным сердечником подключена к источнику ЭДС $e=E_m\cos\omega t$, $E_m=40\,$ B, $\omega=2\cdot10^4\,$ рад/с. Найти ток в катушке с учетом постоянного подмагничивания, если вебер-амперная характеристика катушки $i_L=30\Psi+100^4\Psi^2+4\cdot10^6\Psi^3$, где $[i_L]=A$, $\Psi=B$ б.

Решение

Для определения тока в катушке предварительно вычислим потокосцепление

$$\Psi = \int edt = \int E_m \cos \omega t dt = \Psi_0 + \frac{E_m}{\omega} \sin \omega t = \Psi_0 + \Psi_m \sin \omega t, \qquad (1)$$

где

$$\Psi_m = \frac{E_m}{\omega} \sin \omega t = 2 \cdot 10^{-3} \text{ Bf.}$$

Постоянная интегрирования Ψ_0 , учитывающая постоянное подмагничивание, определяется из требования отсутствия у тока катушки постоянной составляющей. Подставив выражение для $\Psi(t)$ [формула (1)] в заданную вебер-амперную характеристику катушки, получим:

$$i_{L} = (4 \cdot 10^{6} \, \Psi_{0}^{3} + 10^{4} \, \Psi_{0}^{2} + 54 \, \Psi_{0} + 2 \cdot 10^{-2}) + + (2, 4 \cdot 10^{4} \, \Psi_{0}^{2} + 40 \, \Psi_{0} + 8, 4 \cdot 10^{-2}) \sin \omega t - - (24 \, \Psi_{0} + 2 \cdot 10^{-2}) \cos 2\omega t - 8 \cdot 10^{-3} \sin 3\omega t.$$
 (2)

Требование отсутствия у тока постоянной составляющей дает уравнение

$$4 \cdot 10^6 \, \Psi_0^3 + 10^4 \, \Psi_0^2 + 54 \, \Psi_0 + 2 \cdot 10^{-2} = 0$$

ИЛИ

$$\Psi_0^3 + 2.5 \cdot 10^{-3} \Psi_0^2 + 13.5 \cdot 10^{-6} \Psi_0 + 5 \cdot 10^{-9} = 0.$$
 (3)

В общем случае кубическое уравнение

$$x^3 + 3px + 2q = 0 (4)$$

имеет один действительный корень

$$x = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}.$$

Уравнение вида

$$y^3 + ay^2 + by + c = 0$$

введением новой переменной

$$x = y + a/3$$

приводится к виду (4), где

$$2q = \frac{2}{27}a^3 - \frac{1}{3}ab + c; \quad 3p = b - \frac{1}{3}a^2.$$

В нашем случае замена

$$x = \Psi_0 + 8.33 \cdot 10^{-4}$$

приводит уравнение (3) к виду (4), где

$$p = 3.81 \cdot 10^{-6}$$
; $q = -2.55 \cdot 10^{-9}$.

Таким образом, получаем уравнение

$$x^3 + 11,42 \cdot 10^{-6} x - 5,1 \cdot 10^{-9} = 0$$

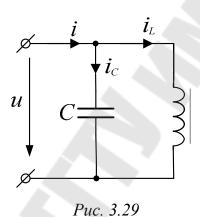
имеющее корень $x = 4, 4 \cdot 10^{-4}$. Тогда

$$\Psi_0 = x - 8.33 \cdot 10^{-4} = -3.93 \cdot 10^{-4} \text{ B6}.$$

Подставив Ψ_0 в выражение (2), найдем ток:

$$i_L = 72 \cdot 10^{-3} \sin \omega t - 10.6 \cdot 10^{-3} \cos 2\omega t - 8 \cdot 10^{-3} \sin 3\omega t$$
, A.

3.29. В цепи рис. 3.29 нелинейная катушка имеет w = 800 витков. Кривая намагничивания ее сердечника задается уравнением $H = 100B + 250B^3$, длина сердечника l = 0,5 м, площадь его сечения S = 10 см². Определить действующее значение входного напряжения промышленной частоты, при котором в цепи наступает резонанс первых гармоник, если C = 5 мкФ.



Решение

Магнитная индукция в сердечнике

$$B = \frac{\Phi}{S} = \frac{\Psi}{wS} = \frac{\Psi}{800 \cdot 10 \cdot 10^{-4}} = 1,25\Psi.$$
 (1)

Напряженность магнитного поля

$$H = \frac{w}{l}i_L = \frac{800}{0.5}i_L = 1600i_L. \tag{2}$$

Подставляя (1) и (2) в заданную условием зависимость H(B), получаем:

$$1600i_L = 100 \cdot 1,25\Psi + 250(1,25\Psi)^3, \tag{3}$$

откуда

$$i_L = 0.078\Psi + 0.3\Psi^3$$
.

В заданной цепи резонансу (на первой гармонике) соответствует

$$i_{(1)} = i_{C_{(1)}} + i_{L_{(1)}} = 0. (4)$$

При напряжении $u = U_m \sin(\omega t + \psi_u)$ потокосцепление $\Psi(t) = \int u dt$ нелинейной катушки в заданной цепи заведомо синусоидально:

$$\Psi = \Psi_m \sin \omega t. \tag{5}$$

При этом начальную фазу потокосцепления можно принять нулевой. Подставляя (5) в (3), получаем:

$$i_{L} = 0.078\Psi_{m} \sin \omega t + 0.3 \cdot 0.78\Psi_{m}^{3} \sin \omega t - 0.25 \cdot 0.3\Psi_{m}^{3} \sin 3\omega t =$$

$$= (0.078\Psi_{m} + 0.225\Psi_{m}^{3}) \sin \omega t - 0.075\Psi_{m}^{3} \sin 3\omega t;$$
(6)

$$i_C = C\frac{du}{dt} = C\frac{d^2\Psi}{dt^2} = C\frac{d^2}{dt^2} \left[\Psi_m \sin \omega t \right] = C\frac{d}{dt} \left[\omega \Psi_m \cos \omega t \right] =$$

$$= -C\omega^2 \Psi_m \sin \omega t = -5 \cdot 10^{-6} (2\pi \cdot 50)^2 \Psi_m \sin \omega t = -0.493 \Psi_m \sin \omega t.$$
 (7)

Подставляя (6) и (7) в условие резонанса (4) [последнее слагаемое в правой части равенства (6) при этом отбрасываем], получаем:

$$(0.078\Psi_m + 0.225\Psi_m^3)\sin\omega t - 0.493\Psi_m\sin\omega t = 0.$$

Решая это уравнение, находим: $\Psi_m = 1,36$ Вб. Следовательно,

$$\Psi_m = 1.36 \sin \omega t$$
, B6.

Поскольку

$$u = \frac{d\Psi}{dt} = \omega \Psi_m \cos \omega t,$$

искомое действующее значение напряжения равно

$$U = \frac{U_m}{\sqrt{2}} = \frac{\omega \Psi_m}{\sqrt{2}} = \frac{2\pi \cdot 50 \cdot 1{,}36}{\sqrt{2}} = 302 \text{ B}.$$

Подставляя найденное значение Ψ_m в равенства (6) и (7), находим мгновенные и действующие значения токов цепи при резонансе:

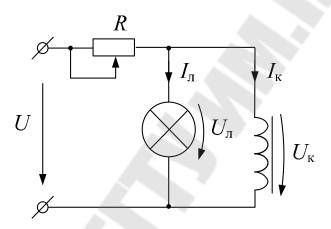
$$i_L = (0.078 \cdot 1.36 + 0.75 \cdot 0.3 \cdot 1.36^3) \sin \omega t - 0.25 \cdot 0.31.36^3 \sin 3\omega t =$$

$$= 0.672 \sin \omega t - 0.189 \sin 3\omega t,$$

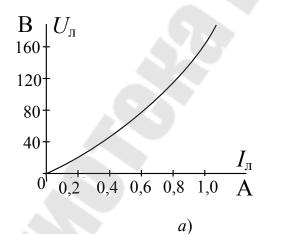
$$I_L = \sqrt{\left(\frac{0.672}{\sqrt{2}}\right)^2 + \left(\frac{0.189}{\sqrt{2}}\right)^2} = 0.494 \text{ A};$$

$$i_C = -0.493 \cdot 1.36 \sin \omega t = -0.67 \sin \omega t$$
, A, $I_C = \frac{0.67}{\sqrt{2}} = 0.474$ A.

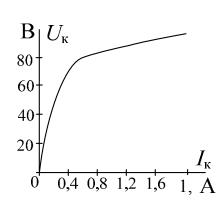
3.30. Входное напряжение цепи рис. 3.30.1 равно 200 В. Вольтамперные характеристики лампы накаливания и катушки с сердечником, полученные для действующих значений, представлены соответственно на рис. 3.30.2, *а* и 3.30.2, *б*. Определить сопротивление реостата, при котором лампа будет потреблять номинальную мощность, равную 50 Вт.



Puc. 3.30.1



Puc. 3.30.2



 δ

Решение

Анализируя ВАХ лампы, выбираем на ней точку, соответствующую номинальному режиму лампы: значение $P = U_{_{\Pi}}I_{_{\Pi}} = 50~$ Вт реализуется при

$$U_{\pi} \approx 80.5 \text{ B}, \quad I_{\pi} \approx 0.62 \text{ A}.$$

Напряжение на лампе является межузловым и совпадает с напряжением на нелинейной катушке. По заданной ВАХ катушки определяем действующее значение ее тока, соответствующее значению $U_{_{\rm I}}=U_{_{\rm K}}=80,5\,$ В: $I_{_{\rm K}}=0,66\,$ А. Тогда, считая фазу межузлового напряжения нулевой, на основании первого закона Кирхгофа будем иметь:

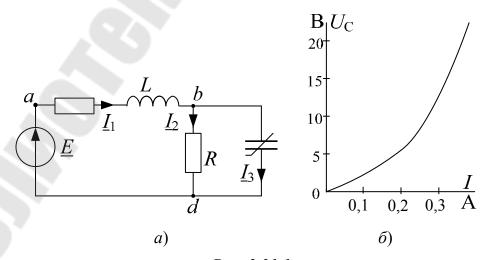
$$\underline{I} = 0.62 + 0.66e^{-j90^{\circ}} = 0.9e^{-j46.8^{\circ}} \text{ A}.$$

Входное напряжение

$$\underline{U} = \underline{U}_R + \underline{U}_{\pi} = R \cdot 0.9e^{-j46.8^{\circ}} + 80.5 = 200e^{j\psi},$$

где ψ — начальная фаза входного напряжения. Решая это уравнение, находим: $R=160~{\rm Om}.$

3.31. На входе цепи рис. 3.31.1, a действует ЭДС $e=28,28\sin(10^3t+30^\circ)$, $R_1=30$ Ом, $R_2=100$ Ом, L=30 мГн. Известна ВАХ нелинейной емкости для действующих значений (рис. 3.31, δ). Рассчитать токи в цепи, определить активную мощность источника, а также найти величину индуктивности $L_{\rm p}$, при которой в цепи возникает резонанс.



Puc. 3.31.1

Решение

При наличии ВАХ для действующих значений расчет проводим в символическом виде для комплексов действующих значений. Для заданной цепи расчетные уравнения, составленные на основании законов Кирхгофа, имеют вид:

$$\underline{I}_1 = \underline{I}_2 + \underline{I}_3; \tag{1}$$

$$\underline{U}_{bd} = R_2 \underline{I}_2; \tag{2}$$

$$\underline{U}_{ad} = \underline{U}_{bd} + (R_1 + j\omega L)\underline{I}_1. \tag{3}$$

В ходе расчета по действующим значениям строят вольт-амперные и фазо-амперные характеристики цепи. В рассматриваемом случае расчет выполняется в следующем порядке.

Вначале определяется эквивалентная характеристика межузлового участка цепи. Произвольно выберем значение $I_3=0,18\,$ А. По заданной ВАХ нелинейной емкости определяем соответствующее напряжение: $U_{bd}(I_3)=5\,$ В. Начальную фазу какого-либо тока или напряжения можно принять нулевой. Условимся считать нулевой начальную фазу напряжения U_{bd} : $\psi_{u_{bd}}=0$, т. е. $\underline{U}_{bd}=5e^{j0^\circ}$ В. Тогда $\underline{I}_3=0,18e^{j90^\circ}$ А. Далее из уравнения (2) находим:

$$\underline{I}_2 = \frac{\underline{U}_{bd}}{R_2} = \frac{5}{100} = 0.05 \text{ A}.$$

Общий ток [уравнение (1)]:

$$I_1 = 0.05 + j0.18 = 0.187e^{j74.5^{\circ}}$$
 A.

Входное напряжение [уравнение (3)]:

$$\underline{U}_{ad} = 5 + (30 + j10^3 \cdot 30 \cdot 10^{-3}) \cdot 0.187e^{j74.5^{\circ}} = 6.97e^{j80.8^{\circ}} \text{ B}.$$

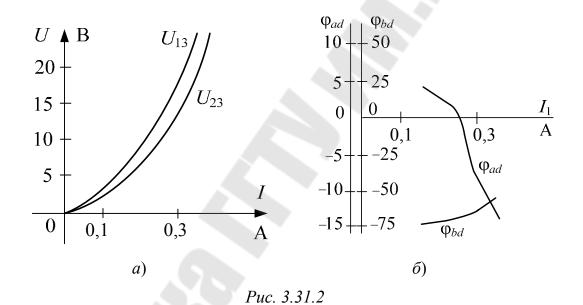
Результаты расчета заносим в табл. 1.

Далее повторяем ту же последовательность действий, рассчитывая U_{ad} для других произвольно выбранных значений тока нелинейного элемента. В качестве иллюстрации в табл. 1 приведены результаты четырех циклов расчета.

<u>I</u> ₃ ,A	$\underline{U}_{bd}, \mathrm{B}$	<u>I</u> ₂ , A	$\underline{I}_1 = I_1 e^{j \Psi i_1}$		$\varphi_{bd} = \psi_{\mathcal{U}_{bd}} - \psi_{i_1}$	$\underline{U}_{ad} = U$	$V_{ad}e^{j\psi_{uad}}$		
			<i>I</i> ₁ , A	$\psi_{i_1}, ^{\circ}$	tou tu _{bd} ti	U_{ad} , B	$\psi_{u_{ad}}$, o	1 u 1 u ad 1 1 ₁	
j0,18	5	0,05	0,187	74,5	-74,5	6,97	80,8	6,4	
j0,25	10	0,1	0,27	68,2	-68,2	11,85	62,3	-2,3	
j0,29	15	0,15	0,326	62,6	-62,6	17,7	50,5	-12,0	
j0,34	20	0,2	0,39	59,5	-59,5	22,5	45,2	-14,3	

Предварительные результаты расчета.

Вольт-амперные и фазо-амперные характеристики цепи представлены на рис. 3.31.2, a, δ .



ФАХ $\phi_{ad}(I_1)$ пересекает ось токов $(\phi_{ad}=0)$ при $I_1=I_{1p}=0.25$ А. Согласно входной ВАХ $U_{ad}(I_1)$ это соответствует действующему значению входного напряжения $U_{ad\,p}=11$ В. Следовательно, уменьшив входное напряжение заданной цепи до 11 В, можно достичь резонансного режима.

Чтобы рассчитать рабочий режим цепи, решаем графически уравнение

$$\underline{U}_{ad} = \underline{E}$$
.

По входной ВАХ $U_{ad}(I_1)$ определяем: напряжению $U_{ad}=20~{\rm B}$ соответствует ток $I_1=0,35~{\rm A}.$ Согласно ФАХ $\phi_{ad}(I_1)$ току $I_1=0,35~{\rm A}.$ соответствует сдвиг фаз $\phi_{ad}=-13^{\circ}.$ Следовательно, в рабочем режиме ток \underline{I}_1 имеет начальную фазу

$$\psi_{i_1} = \psi_e - \varphi_{ad} = 30^{\circ} - (-13^{\circ}) = 43^{\circ},$$

т. е.

$$\underline{I}_1 = 0.35e^{j43^{\circ}} \text{ A}.$$

По ВАХ $\underline{U}_{bd}(I_1)$ определяем: в рабочем режиме (при I_1 = 0,35 A) \underline{U}_{bd} = 17 В, при этом фазовый сдвиг ϕ_{bd} согласно ФАХ $\phi_{bd}(I_1)$ равен – 61°. Следовательно, напряжение \underline{U}_{bd} имеет начальную фазу

$$\psi_{u_{bd}} = \varphi_{bd} + \psi_{i_1} = -61^{\circ} + 43^{\circ} = -18^{\circ},$$

т. е.

$$\underline{U}_{bd} = 17e^{-j18^{\circ}}$$
 B.

Согласно заданной ВАХ емкости при U_{bd} = 17 В ток I_3 равен 0,32 А. Начальная фаза этого тока

$$\psi_{i_3} = \psi_{u_{bd}} + 90^\circ = -18^\circ + 90^\circ = 72^\circ,$$

следовательно,

$$\underline{I}_3 = 0.32e^{j72^{\circ}}$$
 A.

Активная мощность источника

$$P = EI_1 \cos \varphi_{ad} = 20 \cdot 0.35 \cos(-13^\circ) = 6.82 \text{ Bt.}$$

Теперь определим значение $L_{\rm p}$. Наряду с упоминавшимся выше условием $\phi_{ad}=0$ резонансу в заданной цепи соответствует равенство реактивных составляющих напряжений \underline{U}_{ab} и \underline{U}_{bd} :

$$\left(\underline{U}_{ab}\right)_{p} = \left(\underline{U}_{bd}\right)_{p}.\tag{4}$$

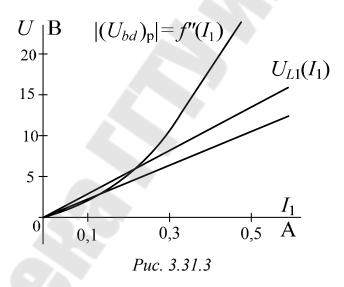
Зависимость $(\underline{U}_{ab})_p = f'(I_1)$ является линейной:

$$\left(\underline{U}_{ab}\right)_{\mathbf{p}} = \omega L I_1. \tag{5}$$

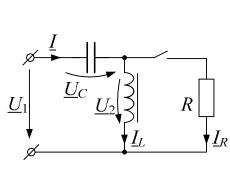
Зависимость $\left(\underline{U}_{bd}\right)_{\rm p}=f''(I_1)$ может быть построена с учетом соотношения

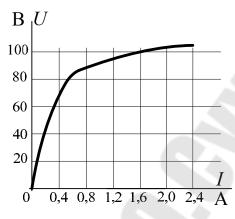
$$\left(\underline{U}_{bd}\right)_{p} = \underline{U}_{bd} \sin \varphi_{bd}$$

на основании данных, занесенных в табл. 1. Согласно (4) резонансу соответствует пересечение (в предельном случае – касание) указанных зависимостей f'(I) и f''(I). Построив на одной координатной плоскости (I_1, U) зависимость $(\underline{U}_{bd})_p = f''(I_1)$ и набор прямолинейных зависимостей $(\underline{U}_{ab})_p = f'(I)$, отвечающих различным значениям L [см. формулу (5)], находим, что резонанс имеет место при $L \ge 20$ мГн (см. рис. 3.31.3).



3.32. При холостом ходе феррорезонансного стабилизатора (рис. 3.32.1) напряжение на его выходных зажимах равно 105 В. Определить, как изменится выходное напряжение стабилизатора после подключения к нему нагрузки с сопротивлением R = 100 Ом, если $X_C = 80$ Ом, а нелинейная катушка имеет ВАХ, представленную на рис. 3.32.2.





Puc. 3.32.1

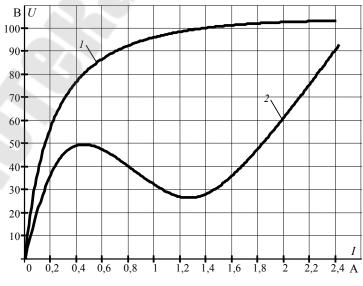
Puc. 3.32.2

Решение

Если пренебречь высшими гармониками и активными потерями в катушке, то состояние заданной цепи в любой момент времени можно определить следующим уравнением, записанным в символьном виде:

$$\underline{U}_C + \underline{U}_2 = \underline{U}_1. \tag{1}$$

По заданной ВАХ катушки определяем, что напряжению U_2 = 105 В в цепи холостого хода соответствует ток I = 2,4 А. Входное напряжение цепи неизвестно, поэтому вначале по уравнению (1) построим ВАХ цепи в режиме холостого хода (ключ разомкнут). Полученная характеристика представлена на рис. рис. 3.32.3 (кривая I). С ее помощью находим, что на входе цепи действует напряжение U_1 = 80 В.



Puc. 3.32.3

Если ключ замкнут, то уравнение (1) необходимо дополнить уравнением

$$I = \underline{I}_L + \underline{I}_R, \tag{2}$$

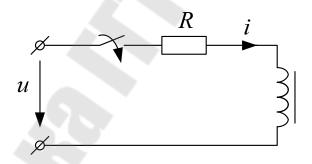
где

$$\underline{I}_R = \frac{U_2}{R}.\tag{3}$$

ВАХ нагруженного стабилизатора, построенная на основании уравнений (1)–(3), представлена на рис. 3.32.3 (кривая 2). По этой ВАХ для входного напряжения U_1 = 80 В находим ток I = 2,25 A, после чего напряжение U_2 можно рассчитать по формуле

$$\underline{U}_2 = \underline{U}_1 - jX_C\underline{I}$$
.

3.33. Цепь на рис. 3.33 подключается к источнику синусоидального напряжения с частотой f = 400 Гц. Действующее значение напряжения U = 1200 В, вебер-амперная характеристика катушки аппроксимирована зависимостью $i = k\Psi^5$, где k = 1,5 А/Вб 5 . Определить потокосцепление катушки методом условной линеаризации, если R = 500 Ом.



Puc. 3.33

Решение

Состояние цепи определяется уравнением

$$\frac{d\Psi}{dt} + Rk\Psi^5 = U_m \sin \omega t. \tag{1}$$

В нашем случае $U_m = 1200\sqrt{2} = 1697$ В, $\omega = 2\pi f = 2513$ рад/с. Для определении границ рабочего участка характеристики будем считать $u_L = u$. Тогда рабочий участок задается пределами изменения потокоспепления и тока

$$-\Psi_m \leq \Psi \leq \Psi_m$$
, $-i_{\max} \leq i \leq i_{\max}$,

где

$$\Psi_m = \frac{U}{4,44f} = 0,676 \text{ Bf}, \quad i_{\text{max}} = k\Psi_m^5 = 0,21 \text{ A}.$$

Соответствующая эквивалентная индуктивность

$$L_{_{9}} = \frac{\Psi_{m}}{i_{\text{max}}} = 3{,}39 \text{ }\Gamma\text{H}.$$

Следуя методу условной линеаризации, вместо уравнения (1) решаем уравнение

$$\frac{d\Psi}{dt} + \frac{R}{L_{_{2K}}}\Psi = U_m \sin \omega t. \tag{2}$$

Это уравнение имеет решение

$$\Psi = \Psi_{\rm v} + \Psi_{\rm cB} = \Psi_{\rm v} + De^{pt},$$

где

$$\Psi_{y_m} = L_3 I_m = \frac{L_3 U_m}{\sqrt{R^2 + (\omega L_3)^2}} = 0,675 \text{ B6};$$

$$p = \frac{-R}{L_3} = -157 \text{ c}^{-1};$$

$$\Psi_y = \Psi_{y_m} \sin(\omega t - \varphi);$$

$$\varphi = \arctan\left(\frac{\omega L_3}{R}\right) = 86^{\circ} 25'.$$

Учитывая, что

$$\Psi(0) = \Psi_{y_m} \sin(\psi_u - \varphi) + D = 0,$$

находим:

$$D = -\Psi_{y_m} \sin(\psi_u - \varphi) = 0.673.$$

Следовательно,

$$\Psi = 0.675 \sin(\omega t - \varphi) + 0.673 e^{-157t}$$
 B6.

Приложение

Кривые намагничивания электротехнических сталей

Марка стали;	Н, А/см												
магнитная индукция	0	0,2	0,4	1	1,4	1,8	2,4	4	6	8	10	12	14
1211;													
В, Тл	0	0,03	0,11	0,53	0,73	0,90	1,10	1,23	1,32	1,38	1,42	1,45	1,48
1512;													
В, Тл	0	0,11	0,35	0,73	0,87	0,96	1,06	1,16	1,25	1,32	1,37	1,40	1,44

Содержание

1. Нелинейные электрические цепи постоянного тока	3
2. Нелинейные магнитные цепи постоянного тока	11
3. Нелинейные электрические цепи переменного тока	14
Приложение	76

Учебное издание

Шабловский Ярослав Олегович

нелинейные электрические цепи

Практикум по решению задач по дисциплине «Теоретические основы электротехники» для студентов специальности 1-53 01 05 «Автоматизированные электроприводы» дневной и заочной форм обучения

Электронный аналог печатного издания

 Редактор
 Н. Г. Мансурова

 Компьютерная верстка
 Н. Б. Козловская

Подписано в печать 14.09.18. Формат 60х84/₁₆. Бумага офсетная. Гарнитура «Таймс». Ризография. Усл. печ. л. 4,65. Уч.-изд. л. 4,87. Изд. № 41. http://www.gstu.by

Издатель и полиграфическое исполнение Гомельский государственный технический университет имени П. О. Сухого. Свидетельство о гос. регистрации в качестве издателя печатных изданий за № 1/273 от 04.04.2014 г. пр. Октября, 48, 246746, г. Гомель