ЭНЕРГЕТИКА

УДК 62-83:534.647:004.855.5:004.93'11

ПРОСТРАНСТВО ПРИЗНАКОВ РАЗРЕЖЕННОЙ ВЕЙВЛЕТНОЙ ДЕКОМПОЗИЦИИ СИГНАЛОВ ВИБРАЦИИ ДЛЯ ЗАДАЧ МАШИННОГО ОБУЧЕНИЯ

Ю. П. АСЛАМОВ, И. Г. ДАВЫДОВ

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники», г. Минск

Ключевые слова: вибродиагностика, разреженная декомпозиция, вейвлет, пространство признаков, машинное обучение.

Введение

Автоматические системы вибрационной диагностики позволяют существенно продлить ресурс промышленного оборудования и тем самым повысить эффективность функционирования производственных предприятий. Повышение достоверности работы подобных систем достигается за счет непрерывной разработки новых методов и подходов оценки технического состояния оборудования.

Современная практика применения вибрационной диагностики для оценки технического состояния роторного оборудования, работающего в квазистационарном режиме, базируется на методах анализа спектра вибрации и спектра огибающей высокочастотной вибрации [1], [2]. Однако указанные методы имеют ряд недостатков, а именно:

1) требуется максимально полная кинематическая схема оборудования с указанием точных параметров его элементов;

2) достоверность диагностики напрямую связана с точностью определения частоты вращения ротора (рабочего колеса);

3) параметры некоторых элементов оборудования, например, подшипников качения, могут изменяться в процессе длительной эксплуатации или при смене режима работы оборудования [3], что уменьшает достоверность диагностической модели.

С одной стороны, для решения обозначенных проблем требуется набор вспомогательных методов, таких, как алгоритмы слежения за частотой и передискретизации сигналов [4], методы уточнения частоты [5], алгоритмы статистической оценки параметров элементов и др. С другой стороны – решением является анализ сигналов в частотно-временной или временной областях (анализ формы сигналов вибрации), свободных от указанных недостатков.

Ранее авторами был представлен алгоритм разреженной декомпозиции сигналов [6] на базе избыточного вейвлетного словаря [7], позволяющий описать временную форму сигналов вибрации в компактном виде. Сформированное на основе данного метода пространство признаков является предметом исследования.

Цель работы – оценка возможности применения пространства признаков разреженной вейвлетной декомпозиции в задачах машинного обучения. В частности, в работе рассмотрен случай различения вибрационных сигналов подшипников качения и зубчатых передач на базе пространства признаков разреженной вейвлетной декомпозиции с применением машины на опорных векторах.

Теоретический анализ

Разреженная вейвлетная декомпозиция [6] представляет собой итерационную процедуру разложения вибрационного сигнала x(t) в окрестности некоторой частоты f_0 по набору базисных функций [7], в качестве которых используются семейства вейвлетов *MEXH*, *MEXP*, *MORL*, *SINP* [8], [9]. Результатом работы алгоритма является так называемое разреженное представление сигнала X и спектр базисных функций W^{BF} (БФ-спектр).

Разреженное представление X характеризует сигнал наборами из четырех коэффициентов $\{f_0, \psi_m, c_m, \tau_m\}_{m \in \mathbb{N}}$, где f_0 – центральная частота; ψ_m – тип базисной функции; c_m и τ_m – амплитудный коэффициент и временное положение базисной функции ψ_m , соответственно.

В свою очередь, БФ-спектр W^{BF} описывает распределение энергии сигнала по базисным функциям Ψ словаря $\mathcal{D} = \{\mathcal{D}^{MEXH}, \mathcal{D}^{MEXP}, \mathcal{D}^{MORL}, \mathcal{D}^{SINP}\}$ [7]. На рис. 1, *a*, *б* приведены примеры БФ-спектров вибрационных сигналов подшипника качения 6213 с дефектом наружного кольца ($f_0 = 5,2$ кГц) и зубчатой передачи – с дефектом шестерни ($f_0 = 1$ кГц). На рис. 1 имеются следующие обозначения: N – вейвлет *MEXH* (*Mexican Hat*); m – вейвлеты семейства *MEXP* [8]; g – вейвлеты семейства *MORL* [8], [9]; s – вейвлеты семейства *SINP* [9]. Увеличение порядкового номера вейвлетов от 1 до 10 соответствует кратному увеличению длины их эффективного носителя [7].

Рис. 1. Спектры базисных функций сигналов вибрации: *а* – подшипник качения; *б* – зубчатая передача

Как представлено на рис. 1, *a*, наибольшим вкладом в энергетику вибрационного сигнала для неисправного подшипника качения обладают базисные вейвлет-функции семейства *MEXP* (m_1-m_3), что указывает на наличие в сигнале большого количества ударных экспоненциальных импульсов. В свою очередь, в БФ-спектре вибрационного сигнала для дефектной зубчатой передачи (рис. 1, *б*) преобладают вейвлеты семейств *MORL* (g_{10}) и *SINP* (s_{10}) с большой длиной эффективного носителя, что указывает на большой вклад в энергетику сигнала амплитудно-модулированных колебаний.

БФ-спектр является основой для формирования пространства признаков разреженной вейвлетной декомпозиции. Одним из главных его недостатков является эффект «растекания спектра», при котором на воздействие фиксированной формы откликаются одновременно две и более соседних базисных функций [9]. Причиной этому может являться неравномерный результирующий отклик словаря \mathcal{D} по всей длине шкалы коэффициентов формы *FF* базисных функций [7], [9] или флуктуации формы анализируемого вибрационного сигнала.

Для устранения указанного недостатка производится «свертка» БФ-спектра, при которой базисные функции группируются по длине эффективного носителя в соответствии с их индексами в несколько классов (0, I, II, III и IV) по следующему правилу:

1) свертка I рода: $\{N\} \rightarrow 0; \{1\} \rightarrow I; \{2, 3\} \rightarrow II; \{4, 5, 6\} \rightarrow III; \{7, 8, 9, 10\} \rightarrow IV.$

2) свертка II рода: $\{N\} \rightarrow 0; \{1, 2\} \rightarrow I; \{3, 4, 5\} \rightarrow II; \{6, 7, 8, 9, 10\} \rightarrow III.$

Также могут быть рассчитаны БФ-спектры, описывающие распределение энергии сигнала в окрестности частоты f_0 по семействам базисных функций (N - MEXH; M - MEXP; G - MORL; S - SINP) и по длинам их эффективного носителя (0, I, II, III, IV). Сформированные таким образом БФ-спектры для сигналов дефектного подшипника качения и дефектной зубчатой передачи представлены на рис. 2. При этом были введены следующие обозначения:

- -BFS оригинальный БФ-спектр (рис. 1, *a*, *б*);
- *BFS-C-*I свертка БФ-спектра I рода (рис. 2, *a*);
- -BFS-C-II свертка БФ-спектра II рода (рис. 2, б);
- *BFS-F* БФ-спектр семейств базисных функций (рис. 2, в);
- *BFS-L*-I БФ-спектр длин базисных функций I рода (рис. 2, *г*);
- $-BFS-L-II БФ-спектр длин базисных функций II рода (рис. 2, <math>\partial$).

Рис. 2. Спектры базисных функций сигналов вибрации: *1* – подшипник качения; 2 – зубчатая передача; *a* – *BFS-C-I*; *б* – *BFS-C-II*; *в* – *BFS-F*; *г* – *BFS-L-I*; *д* – *BFS-L-II*

Таким образом, наиболее детальное описание временной формы вибрационного сигнала обеспечивает оригинальный БФ-спектр (рис. 1). В то же время рассчитанные на его основе подпространства (рис. 2) имеют более интегральный характер, однако в меньшей степени подвержены эффекту «растекания спектра». Для анализа свойств сформированных пространств признаков и оценки возможности их применения в задачах машинного обучения необходимо проведение эксперимента.

Методика эксперимента

Целью эксперимента является оценка возможности различения сигналов вибрации подшипников качения и зубчатых передач на основе пространства признаков разреженной вейвлетной декомпозиции.

Для проведения эксперимента были использованы наборы следующих данных: *High* Speed Gearbox Dataset (режим доступа: *http://data-acoustics.com/measurements/gear-faults/*) и *High* Speed Bearing Dataset (режим доступа: *http://data-acoustics.com/ measurements/bearing-faults/*), полученные с коробки передач ветрогенератора. Указанные наборы данных содержат сигналы вибрации как дефектных зубчатых передач, так и зубчатых передач в нормальном состоянии.

Также было сформировано два набора данных *Bearing 6213 OR Dataset* и *Bearing 6213 Norm/OR*, снятых с подшипника качения 6213 в нормальном и дефектном состоянии при различных скоростях его вращения (от 600 до 900 об/мин). Чувствительность используемого при этом датчика вибрации *B*&*R* составляла s = 100 мB/g; частота дискретизации *Fs* = 96 кГц.

Формирование пространства признаков разреженной вейвлетной декомпозиции происходило по следующему алгоритму:

1. Проводилась оценка значимых частот сигнала $f = f_1 \dots f_k$, в окрестности которых сосредоточена значительная часть энергии (энергетический вклад > 5 %), на основе алгоритма разреженной декомпозиции скейлограммы.

2. Осуществлялась разреженная декомпозиция сигналов вибрации в окрестности выделенных частот f и оценивалась эффективность декомпозиции ξ [6].

3. Пространства признаков формировались только для тех частот f, эффективность декомпозиции в окрестности которых превышает пороговое значение $\xi_0 = 50$ %.

В результате описанной процедуры было сформировано 208 наборов БФспектров: 120 – для подшипников качения и 88 – для зубчатых передач. Отношение обучающей и тестовой выборок составляло 4 : 1, таким образом для тестирования было использовано 42 набора БФ-спектров.

В качестве классификатора была выбрана машина на опорных векторах (MOB) и ее реализация *libSVM* (режим доступа: *https://www.csie.ntu.edu.tw/~cjlin/libsvm*). Было рассмотрено три типа ядер MOB: линейное (*linear*); радиальное (*radial*) и полиномиальное (*polynomial*) [10]. Классификация вибрационных сигналов проводилась на основе восьми комбинаций пространств информативных признаков (табл. 1), при этом не применялись алгоритмы уменьшения их размерности (*feature selection*). Символом «+» в табл. 1 обозначены пространства признаков, входящие в пронумерованные композиции.

Таблица 1

Комбинации	пространств	признаков
------------	-------------	-----------

Номер	Модификации спектра базисных функций						
комбинаций пространств признаков	BFS	BFS-C-I	BFS-C-II	BFS-F	BFS-L-I	BFS-L-II	
1	+	-	_	_	_	_	
2	_	_	_	+	-	-	
3	+	_	_	+	_	_	
4	_	+	+	_	_	_	
5	_	+	+	+	_	_	
6	+	+	+	+	_	_	
7	_	+	+	+	+	+	
8	+	+	+	+	+	+	

Оценка качества классификации сигналов вибрации подшипников качения и зубчатых передач проводилась в терминах [12]:

1. Чувствительность *TPR* (recall или true positive rate):

$$recall = TPR = \frac{TP}{P} = \frac{TP}{TP + FN},$$

где *TP* (*true positive*) – количество истинно положительных решений (верно идентифицированных образцов); P – количество положительных (идентифицированных) образцов; *FN* (*false negative*) – количество ложноотрицательных решений (ложно отклоненных образцов).

2. Специфичность TNR (specificity или true negative rate):

specificity =
$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP}$$
,

где TN (true negative) – количество ложноположительных решений (ложно идентифицированных образцы); N – количество отрицательных (отклоненных) образцов; FP (false positive) – количество истинно отрицательных решений (верно отклоненных образцов).

3. Точность *PPV* (precision или positive predictive value):

$$precision = PPV = \frac{TP}{TP + FP}.$$

4. Общая точность классификации ACC (accuracy):

$$accuracy = ACC = \frac{TP + TN}{TP + FP + FN + TN}$$
.

5. Гармоническое среднее (или *F*1-мера):

$$F1 = \frac{2TP}{2TP + FP + FN}.$$

Результаты и их обсуждение

Результаты классификации наборов тестовых данных на основе сформированных пространств признаков (табл. 1) для различных типов ядерных функций МОВ представлены в табл. 2. При этом для повышения достоверности классификации сигналов подшипников качения и зубчатых передач эксперимент повторялся 20 раз, а в табл. 2 занесены медианные значения параметров качества *ACC*, *TPR*, *TNR*, *PPV* и *F*1. Серым цветом в табл. 2 выделены лучшие результаты для каждого типа используемой функции ядра МОВ.

Таблица 2

Номер комбинации									
пространств	ACC	TPR	TNR	PPV	F1				
признаков									
Linear									
1	0,845	0,827	0,921	0,947	0,874				
2	0,821	0,921	0,735	0,812	0,857				
3	0,857	0,828	0,933	0,950	0,878				
4	0,893	0,888	0,941	0,959	0,916				
5	0,881	0,870	0,881	0,907	0,891				
6	0,857	0,833	0,889	0,926	0,875				
7	0,893	0,885	0,882	0,912	0,900				
8	0,881	0,848	0,944	0,952	0,899				
Radial									
1	0,869	0,873	0,773	0,954	0,845				
2	0,887	0,866	0,819	0,896	0,857				
3	0,884	0,807	0,703	1,000	0,857				
4	0,935	0,917	0,878	1,000	0,929				
5	0,917	0,871	0,786	1,000	0,905				
6	0,876	0,844	0,655	1,000	0,821				
7	0,933	0,908	0,774	1,000	0,905				
8	0,895	0,878	0,833	0,963	0,869				
Polynomial									
1	0,952	0,964	1,000	1,000	0,957				
2	0,762	0,952	0,657	0,800	0,817				
3	0,952	0,982	0,944	0,959	0,961				
4	0,929	0,980	0,944	0,958	0,933				
5	0,929	0,947	0,950	0,961	0,937				
6	0,964	1,000	0,974	0,982	0,972				
7	0,929	0,955	0,939	0,957	0,933				
8	0,952	0,962	0,935	0,965	0,962				

Результаты классификации сигналов подшипников качения и зубчатых передач

В результате проведенных экспериментов был сделан вывод, что сигналы вибрации подшипников качения и зубчатых передач в пространстве признаков разреженной вейвлетной декомпозиции являются *линейно разделимыми*. Данный вывод был сделан на том основании, что точность классификации указанных вибрационных сигналов в пространствах признаков № 4 и 7 с применением линейного ядра МОВ составила ACC = 0,893. Иными словами, алгоритм разреженной вейвлетной декомпозиции линеаризует пространство признаков для описания временной формы вибрационных сигналов.

Наилучшие результаты классификации вибрационных сигналов были получены с применением полиномиального ядра МОВ. При этом для пространства признаков № 6

54

точность классификации в среднем имеет близкое к единице значение: ACC = 0,964; TPR = 1; TNR = 0,974.

Лучшим пространством признаков, обеспечивающим в среднем наиболее высокую точность классификации для различных типов ядерных функций МОВ, является пространство признаков № 4 (*BFS-C-I* + *BFS-C-II*). В среднем точность классификации на его основе составила ACC = 0,919.

Наименьшую точность классификации для всех типов ядер МОВ имеет пространство признаков № 2, сформированное на базе *BFS-F*, при этом среднее значение точности классификации для него составляет ACC = 0,823. Однако ввиду низкой размерности указанного пространства признаков на его основе может быть построен классификатор для грубой интегральной оценки формы сигналов вибрации.

Заключение

Рассмотрены пространства признаков разреженной декомпозиции сигналов вибрации по избыточному вейвлетному словарю для задач машинного обучения. Приведены результаты классификации вибрационных сигналов подшипников качения и зубчатых передач на базе машины на опорных векторах. Показано, что пространство признаков разреженной вейвлетной декомпозиции позволяет различать вибрационные сигналы указанных элементов с применением линейных классификаторов. Наибольшая точность классификации (ACC = 0,974) рассмотренных в данном исследовании вибрационных сигналов была достигнута при использовании полиномиального ядра машины на опорных векторах.

Литература

- 1. Барков, А. В. Вибрационная диагностика машин и оборудования. Анализ вибрации : учеб. пособие / А. В. Барков, Н. А. Баркова. СПб. : СПбГМТУ, 2004. 156 с.
- 2. Абрамов, И. Л. Вибродиагностика энергетического оборудования : учеб. пособие по дисциплине «Диагностика в теплоэнергетике» / И. Л. Абрамов. Кемерово : КузГТУ, 2011. 80 с.
- An experimental based assessment of the deviation of the bearing characteristic frequencies / P. Pennacchi [et al.] // Proceedings of 6th international conference acoustical and vibratory surveillance methods and diagnostic techniques, Compiegne, France, 24–26 oct 2011. Compiegne, 2011.
- 4. Eltabach, M. Rotating machine speed estimation using vibration statistical approach / M. Eltabach, G. Govaert // 1st World Congress of Condition Monitoring, London, United Kingdom, 13–16 June 2017. – London, 2017. – P. 263–271.
- 5. Алгоритмы уточнения частоты вращения вала в задачах вибродиагностики роторного оборудования / Ю. П. Асламов [и др.] // Вестн. Полоц. гос. ун-та. Сер. В. Промышленность. Прикладные науки. 2017. № 11. С. 51–58.
- 6. Разреженная вейвлетная декомпозиция в задачах вибродиагностики роторного оборудования / Ю. П. Асламов [и др.] // Докл. Белорус. гос. ун-та информатики и радиоэлектроники. 2017. № 8. С. 91–98.
- 7. Асламов, Ю. П. Избыточный вейвлетный словарь для разреженной декомпозиции сигналов вибрации / Ю. П. Асламов, И. Г. Давыдов / Вестн. Полоц. гос. ун-та. Сер. С. 2018. № 4. С. 86–94.
- Асламов, Ю. П. Вейвлет-функция для диагностики подшипников качения / Ю. П. Асламов, И. Г. Давыдов / Вестн. Полоц. гос. ун-та. Сер. В. Промышленность. Прикладные науки. – 2018. – № 11. – С. 14–22.

- 9. Вейвлет-функции для диагностики зубчатых передач / Ю. П. Асламов [и др.] // Вестн. Полоц. гос. ун-та. Серия В. 2018. № 3. С. 38–46.
- Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. 1st Edition / J. Shawe-Taylor. – Cambridge University, 2000. – 198 p.
- Powers, D. From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation / D. Powers // Journal of Machine Learning Technologies. – 2011. – 2 (1). – P. 37–63.

Получено 30.08.2018 г.

56