Г.С. Митюрич¹, П.А. Хило², А.Н. Сердюков¹

 ¹УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь
²УО «Гомельский государственный технический университет имени П.О. Сухого», Гомель, Беларусь

ФОТОДЕФЛЕКЦИОННЫЙ ОТКЛИК ОТ ПЕРИОДИЧЕСКИ ПОЛЯРИЗОВАННОГО НЕЛИНЕЙНОГО КРИСТАЛЛА, ОБЛУЧАЕМОГО БЕССЕЛЕВЫМ СВЕТОВЫМ ПУЧКОМ

Воздействие мощного лазерного излучения на кристаллические среды позволяет существенно расширить область применения фотоакустических мето-

дов исследования вещества [1–4]. Рассмотрению нелинейных режимов импульсной генерации звука посвящено достаточно большое число публикаций [5–10], однако интерес к практическим вопросам нелинейной фотоакустики не ослабевает.

Нелинейное взаимодействие световых волн в периодически поляризованных структурах, как отмечается в [11, 12], обладает большими потенциальными возможностями для эффективной генерации второй гармоники, а также для реализации параметрических эффектов генерации волн суммарной и разностной частот. Разработке параметрического генератора света на основе веерных периодически поляризованных структур ниобата лития с плавной перестройкой длины волны излучения посвящена работа [13]. Здесь же рассмотрена возможность использования генератора света в лазерном оптико-акустическом газоанализаторе медицинского назначения.

Целью настоящей работы является изучение особенностей фототермическогопреобразования бесселевых световых пучков (БСП) в нелинейных периодически поляризованных кристаллах и установление зависимости величины углов фотодефлекции от теплофизических и диссипативных параметров нелинейной среды и пространственного распределения светового поля.

Рассмотрим нормальное падение амплитудно-модулированного на частоте Ω бесселевого светового пучка на периодически поляризованный нелинейный кристалл, вырезанный перпендикулярно оси третьего порядка [111]. В соответствии с [14] вдоль оси третьего порядка кристаллов кубической симметрии может возникать генерация второй гармоники. Автором [15] исследованы особенности удвоения частоты бесселевых световых пучков при квазисинхронном взаимодействии световых пучков в периодически поляризованных кристаллах. Были рассмотрены кристаллические образцы с идеальной периодической структурой, состоящей из противоположно поляризованных доменов, толщины которых равны когерентной длине, а эффективные коэффициенты нелинейной связи меняют знак при переходе от одной области к другой. В нашем случае предполагается, что волна основной частоты распространяется в области прозрачности кристалла, а амплитудно-модулированное излучение второй гармоники интенсивно поглощается. Ситуация, реализующая, например, в кристаллах типа силленитов, германате висмута, силикате висмута, которые прозрачны для излучения рубинового лазера ($\lambda \approx 0,694$ мкм), но интенсивно поглощают излучение на частоте второй гармоники [16]. Следует отметить, что реализация условий фазового синхронизма в гиротропных кристаллах кубической симметрии возможна, как показано в [14], благодаря явлению естественной или вынужденной (эффект Фарадея) оптической активности кристаллах [15], что ведет к эффективной частоте.

Таким образом, фотоакустический сигнал возникает в кристаллической пространственно поляризованной пластинке вследствие поглощения модулированного по амплитуде бесселевого светового пучка на частоте второй гармоники. Под воздействием пучка света исследуемый неоднородный образец периодически нагревается модулированным излучением, что приводит к возбуждению термоакустических колебаний поверхности, освещаемой поляризационными модами БСП. Это приводит к отклонению зондирующего пучка на угол дефлекции (рассматривается случай трансверсальной геометрии взаимодействия возбуждающего и зондирующего пучков (рисунок 1)), величина которого зависит от термоупругих, нелинейных, оптических и дихроичных свойств исследуемого образца, а также поляризационных и энергетических параметров бесселевых световых пучков.

Рисунок 1 – Схема регистрации фотодефлекционного сигнала; 1 – модулятор; 2 – аксикон; 3 – БСП; 4 – «термическая» линза; 5 –зондирующий луч; 6 – позиционно-чувствительный фотодетектор; 7 – нелинейный периодически поляризованный кристалл; 8 – подложка

Пусть мощный БСП основной частоты распространения вдоль оси третьего порядка [111], совпадающей с осью Oz, электрическое поле которого $E_1(\rho, z)$ задается соотношением:

$$E_1(\rho, z) = A_1(z) J_0(q_1, \rho) e^{ik_{1_z} z}, \qquad (1)$$

где $J_0(q_1,\rho)$ – функция Бесселя первого рода нулевого порядка, $q_1 = k_1 \sin \gamma$ – поперечная составляющая волнового вектора \vec{k}_1 на основной частоте, γ – угол конусности БСП (половинный угол при вершине конуса волновых векторов), $k_{1_z} = \sqrt{k_1^2 - q_1^2}$ – продольная компонента волнового вектора. Из-за квадратичной периодической нелинейности в кристалле формируется область нелинейной поляризуемости на частоте второй гармоники 2 ω , причем на удвоенной частоте происходит интенсивное поглощение.

Электромагнитное поле второй гармоники представим в виде ряда Фурье-Бесселя

$$E_{2}(\rho, z) = \sum_{m=1}^{M} A_{2_{m}}(z) J_{0}(q_{2_{m}}, \rho) e^{ik_{2_{m}}z}, \qquad (2)$$

где q_{2_m} – поперечная компонента волнового вектора \vec{k}_2 на частоте второй гармоники, k_{2_m} – волновое число волны удвоенной гармоники, m = 1, 2, 3 ..., M, M – общее число генерируемых мод, $A_{2_m}(z)$ – амплитуда поля на удвоенной частоте. В соотношении (2) введены нормированные функции Бесселя

$$j_{0}(q_{2_{m}},\rho) = \begin{cases} J_{0}(q_{2_{m}},\rho) \\ \sqrt{\pi}R_{2_{m}}J_{1}(q_{2_{m}},R_{B}) \\ 0, \text{при } \rho \geq R_{B}. \end{cases}$$
(3)

При $\rho = R_B$ и $q_{2_m}R_B = (m-0,25)\pi$ функция Бесселя обращается в нуль, то есть согласно (2), (3) поле $E_2(\rho, z)$ представляет собой разложение по модам цилиндрической области радиусом R_B .

В (3) $J_1(q_{2_m}, R_B) - функция Бесселя первого порядка, <math>R_B = (m\pi - \pi/4)q_{2_m}^{-1} -$ радиус локализованного излучения бесселевого светового пучка. Из (3) также следует условие нормировки

$$2\pi \int_{0}^{R_{B}} J_{0}^{2}(q_{2_{m}},\rho)\rho d\rho = 1.$$
 (4)

Удобство нормировки (4) состоит, в частности, в возможности описания нелинейного взаимодействия в кристаллах единым интегралом перекрытия взаимодействующих мод БСП.

Процесс генерации второй гармоники в поглощающих кристаллах может быть описан системой укороченных уравнений (см., например, [15, 17])

$$\begin{cases} \frac{d \operatorname{E}_{1}(\rho, z)}{dz} = i\sigma_{1} \operatorname{E}_{2}(\rho, z) \operatorname{E}_{1}^{*}(\rho, z) e^{i\Delta k_{z}z}, \\ \frac{d \operatorname{E}_{2}(\rho, z)}{dz} + \delta_{2} \operatorname{E}_{2}(\rho, z) = i\sigma_{2} \operatorname{E}_{1}^{2}(\rho, z) e^{-i\Delta k_{z}z}, \end{cases}$$
(5)

где δ_2 – коэффициент линейного поглощения волны второй гармоники, $\sigma_{1,2} = 2\pi^2 d_Q / (\lambda n_{1,2})$ – коэффициент нелинейной связи волн, $d_Q = 2d_{eff} / (\pi s)$ – перенормированный параметр квадратичной нелинейности, *s* – порядок квазисинхронизма для сред, обладающих периодичностью (в нашем случае *s* = 1), d_{eff} – значение эффективной квадратической нелинейности, $\Delta k_z = k_{2_m} - k_1 - sK$ фазовая расстройка волны для продольных компонент бесселевых световых пучков, $K = 2\pi/\Lambda$, Λ – период доменной структуры.

Представляя поля посредством рядов Фурье, несложно преобразовать систему уравнений (5) для амплитуд взаимодействующих волн в следующем виде:

$$\begin{cases} \frac{dA_1}{dz} = i\sigma_1 A_1^* \sum_m q_m A_{2m} e^{i\Delta k_z z}, \\ \frac{dA_{2m}}{dz} + \delta_2 A_{2m} = i\sigma_2 q_m A_1^2 e^{-i\Delta k_z z}, \end{cases}$$
(6)

где $q_m = 2\pi \int_0^{R_B} J_0^2(q,\rho) J_0(q_{2m},\rho) \rho d\rho$ – интеграл перекрытия взаимодействующих мод. Решение системы уравнений (6) выполним в приближении заданной интенсивности, полагая, что $|A_1|^2 = const$ [16]. В этом случае для амплитуды поля второй гармоники можно получить следующее выражение[18]:

$$A_{2m}(z) = \frac{i\sigma q_m}{p} |A_1|^2 e^{-\frac{\delta_2}{2}z} e^{-i\frac{\Delta k_z z}{r}} \sin pz,$$
(7)
где $p = \sqrt{0.25 q^2 + b^2}, \ b^2 = 2\sigma_1 \sigma_2 |A_1|^2 \sum_m q_m^2.$

Как следует из (7), интенсивность электрического поля на частоте второй гармоники $J_{2\omega} \sim |A_{2m}|^2$, возбужденная бесселевым световым пучком, определяется интегралами перекрытия q_m парциальных световых пучков накачки, а также общим числом M генерируемых мод. Кроме того, амплитуда поля удвоенной гармоники A_{2m} может достаточно сильно затухать, уменьшаясь по экспоненте при увеличении коэффициента поглощения δ_2 , что экспериментально наблюдалось в работе [16] для кристаллов типа силленитов.

Модулированное воздействие излучения второй гармоники на поглощающий, в данном частотном диапазоне, кристалл с регулярной доменной структурой будет приводить к возникновению периодической составляющей температурного поля, изменение которого описывается неоднородным уравнением теплопроводности, см., например, [19]:

$$\nabla^2 T - \frac{1}{\beta_S} \frac{\partial T}{\partial t} = -\frac{1}{2k_S} Q_{2\omega} \left(1 + e^{i\Omega t} \right), \tag{8}$$

где коэффициент температуропроводности β_s связан с коэффициентом теплопроводности соотношением $\beta_s = k_s/(\rho_0 C)$, ρ_0 – плотность, C – удельная теплоемкость, $Q_{2\omega}$ – скорость диссипации энергии бесселевого светового пучка на удвоенной частоте. Выражение для скорости диссипации энергии $Q_{2\omega}$ найдем исходя из материальных уравнений для изотропной поглощающей среды $\mathbf{D} = \varepsilon \mathbf{E}$, $\mathbf{B} = \mu \mathbf{H}$, $\mu = 1$, $\varepsilon = \varepsilon' + i\varepsilon''$, общего соотношения для Q в электродинамике [20] и соотношений (2), (7). Будем иметь:

$$Q_{2\omega} = \frac{\omega}{8\pi} \varepsilon'' \sum_{m=1}^{M} \left| A_{2\omega}^0 \right|^2 J_0(q_{2\omega}, \rho) J_0^*(q_{2\omega}, \rho) e^{-2k_{2\omega}z},$$
(9)

где $A_{2\omega}^0 = p^{-1} \sigma_2 q_m I_0 \exp(-\delta_2 z/2), I_0$ – интенсивность падающей волны.

Как следует из (9), полученное выражение содержит сложную зависимость амплитуды поля от пространственной координаты *z* и интегралов перекрытия взаимодействующих мод. При этом, уравнение теплопроводности (8) принимает трансцендентную форму. Однако, в том случае, когда толщина образца *d* удовлетворяет условию:

$$d = \pm \frac{\pi}{2} n \left(b^2 - \frac{\delta_2^2}{4} \right)^{-1/2}, \quad n = 1, 2, 3, \dots,$$

а также реализовано условие фазового синхронизма $\Delta k_z = 0$, тогда sin $p_z = 1$ и выражение (7) упрощается, что дает возможность получения аналитических решений уравнения теплопроводности. В этом случае величина для $Q_{2\omega}$ примет вид:

$$Q_{2\omega} = A_{2\omega} \exp(-\alpha_{2\omega} z), \tag{10}$$

где $A_{2\omega} = \frac{\omega}{8\pi} \varepsilon'' \sum_{m=1}^{M} \frac{\sigma_2^2}{p^2} q_m^2 I_0 J_0^2 (q_{2\omega}, \rho), \quad \alpha_{2\omega} = 2(\delta_2 + k_{2\omega}) -$ коэффициент оптического

поглощения на частоте второй гармоники.

Из рисунка 2 видно, что скорость диссипации энергии БСП осциллирует и убывает с ростом значения радиальной координаты, что связано с модулирующим действием функции Бесселя.

Рисунок 2 – Зависимость скорости диссипации энергии от радиальной координаты; $1 - для \ \lambda = 0,7$ мкм; $2 - \lambda = 0,6$ мкм

Решение уравнения теплопроводности (8) выполним методом функции Грина [19]. Получим следующее выражение для угла фотодефлекции:

$$\Phi(\rho, z, t) = \frac{\pi^2 w_0}{4n_{eff}} \frac{dn_{eff}}{dT} Q_{2\omega} \int_0^t \frac{(1 + \cos\Omega t)x}{\left[w_0^2 + 8\beta_s(t - \tau)\right]^{3/2}} e^{-\frac{(x^2 + y^2)}{w_0^2 + 8\beta_s(t - \tau)}} e^{-\alpha_{2\omega}^2 \beta_s(t - \tau)} d\tau, \quad (11)$$

где $Q_{2\omega}$ определяется выражением (10), n_{eff} – эффективный показатель преломления среды на частоте второй гармоники, *t* время воздействия БСП.

Выражение (11) показывает, что пространственное распределение температурного поля и амплитуды фотодефлекционного отклика в нелинейных средах сложным образом зависит от диссипативных, геометрических и теплофизических параметров среды, а также энергетически-временных и поляризационных свойств электромагнитной волны.

Рисунок 3 – Зависимость квадрата интеграла перекрытия q_m^2 от номера моды *m* функции Бесселя

Квадрат интеграла перекрытия q_m^2 имеет два максимума при $m = m_1 = 1$ и $m = m_2 = (2q_1R_{Bm})/\pi$, как видно из рисунка 3. Это означает, что наибольший вклад в эффективность генерации второй гармоники вносят две группы мод, локализованные в окрестности обозначенных максимумов. Вблизи указанных m_1 и m_2 происходит наибольшее выделение тепловой энергии и генерация термоупругих волн, при этом амплитуда фотодефлекционного сигнала достигает своего максимального значения.

Литература

1. Mandelis, A. Nonlinear photothermal response in three dimensional geometry. Theoretical model / A. Mandelis [et al.] // J. Appl. Phys. – 1999. – Vol. 85. – P. 1811–1821.

2. Ошурко, В.Б. Термонелинейная лазерная оптоакустическая томография / В. Б. Ошурко // Квантовая электроника. – 2004. – Т. 35. – № 2. – С. 185–190.

3. Gusev, V. Theory of second harmonic thermal-wave generation: one dimensional geometry / V. Gusev, A. Mandelis, R. Bleiss // Int. J. Thermophys. -1993. - Vol. 14. $- N_{2} 2. - P. 321-337.$

4. Мадвалиев, У. Тепловая нелинейность в фотоакустической камере / У. Мадвалиев, Т.Х. Салихов, Д.М. Шарифов // ЖТФ. – 2004. – Т. 74. – № 2. – С. 17–23.

5. Ахманов, С.А. Лазерное возбуждение акустических импульсов: новые возможности в спектроскопии твердого тела, диагностике быстропротекающих процессов и нелинейной акустике / С.А. Ахманов, В.Э. Гусев // УФН. – Т. 162. – № 3. – С. 3–85.

6. Kopylova, D.S. Nonlinear optoacoustic transformation in the system of dielectric substrate liquid / D.S. Kopylova, I.M. Pelivanov // J. Acoust. Soc. Am. $-2011. - Vol. 130. - N_{2} 4. - P. 213-218.$

7. Yelleswarapu, C.S. Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient / C.S. Yelleswarapu, S.R. Kothapalli // Optics Express. – 2010. – Vol. 18. – N_{2} 9. – P. 9020–9025.

8. Blackman, F. Experimental demonstration of multiple pulse nonlinear optoacoustic signal generation and control / F. Blackman, L. Antonolli // Appl. Opt. – 2005. - Vol. 44. - No 1. - P. 103-112.

9. Greogoire, G. Nonlinear photothermal and photoacoustic process for crack detection / G. Greogoire, V. Tournat, V. Gusev // Eur. Phys. J. Special Topics. – 2008. – Vol. 153. – P. 313–315.

10. Митюрич, Г.С. Фотоакустическое преобразование в нелинейных гиротропных кристаллах типа силленита / Г.С. Митюрич // ЖТФ. – 1989. – Т. 59. – Вып. 9. – С. 118–122.

11. Хило, П.А. Генерация бесселевых световых пучков удвоенной частоты в квадратично-нелинейных кристаллахс радиально-поляризованной структурой доменов / П.А. Хило, Е.С. Петрова, Н.А. Хило // Проблемы физики, математики и техники. – 2013. – Т. 15. – № 2. – С. 25–28.

12. Авестисян, Ю.О. Генерация терагерцовых волн при неколлениарном распространении оптических волн в нелинейном, периодически поляризованном кристалле / Ю.О. Авестисян // Известия НАН Армении, Физика. – 2006. – Т. 41. – № 1. – С. 8–14.

13. Колкер, Д.Б. Параметрический генератор света на основе периодических структур ниобата лития с плавной перестройкой длины волны излучения / Д.Б. Колкер [и др.] / Приборы и техника эксперимента. – 2014. – № 1. – С. 85–89.

14. Бокуть, В.Б. Преобразование частоты световых волн в оптически активных средах / Б.В. Бокуть, А.Н. Сердюков // ЖПС.– 1970. – Т. 12. – Вып. 1. – С. 65–71.

15. Хило, П.А. Генерация второй гармоники бесселевыми световыми пучками в условиях квазисинхронизма/ П.А. Хило // ЖПС.– 2000. – Т. 67. – № 5. – С. 595–599.

16. Батог, В.Н. Нелинейные оптические свойства монокристаллов типа силленита // В.Н. Батог [и др.] // Кристаллография. – 1971. – Т. 16. – № 6. – С. 1044–1045.

17. Дмитриев, В.Г. Прикладная нелинейная спектроскопия / В.Г. Дмитриев, Л.В. Тарасов. – М. : Радио и связь, 1982. – 352 с.

18. Mityurich, G.S. Thermooptical sound generation by Bessel light beams in nonlinear crystals / G.S.Mityurich [et al.] // Int. J. Thermophys. $-2011. - Vol. 32. - N_{\text{O}} 4. - P. 844-851.$

19. Mityurich, G.S. Photodeflection spectroscopy of magnetoactive superlattices irradiated by Bessel-Gaussian light beams / G.S.Mityurich, E.V.Chernenok, A.N.Serdyukov // J. Appl. Spect. -2015. - Vol. 82. - N 2 - P. 254-259.

20. Ландау, Л.Д. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. – М.: Наука, 1982. – 624 с.