УДК 666.65:549.632

СТРУКТУРА И СВОЙСТВА КЕРАМИЧЕСКИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ОКСИДА ЦИНКА

А. В. ПАВЛЕНОК, Е. Н. ПОДДЕНЕЖНЫЙ, Н. Е. ДРОБЫШЕВСКАЯ, А. А. БОЙКО

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

А. К. ФЕДОТОВ, А. В. ПАШКЕВИЧ, К. Н. КИРИЛЬЧИК

Учреждение образования «Белорусский государственный университет», г. Минск

Ключевые слова: структура, свойства, керамические композиционные материалы, оксид цинка.

Введение

В рамках приоритетных направлений фундаментальных и прикладных исследований Республики Беларусь на 2016-2020 гг. особое внимание уделяется поиску новых композиционных материалов на основе широкозонных оксидных систем для различных областей радиотехнической и электронной промышленности, исследованию их структуры и свойств, а также наукоемких и экономичных технологий их производства. В связи с этим синтез новых композиционных материалов на основе широкозонных оксидов, а также исследование их структурных, термоэлектрических и других свойств является актуальным [1], [2]. На основе композиционных керамик, содержащих оксиды цинка, легированные активными примесями, а также бинарных систем оксидов ZnO-SiO₂, ZnO-TiO₂ могут быть реализованы эффективные термоэлектрические преобразователи (микрогенераторы, микрокулеры) [3]. Поиски оксидных фаз *n*-типа с высокой добротностью привели к разработке керамических материалов на основе оксида цинка с $ZT \approx 0.65$, что привело к созданию экспериментальных термогенераторов, изготовленных полностью на оксидных термоэлектрических материалах [4]. Как нам представляется, одним из перспективных направлений дальнейших разработок в области создания и исследования керамических материалов системы ZnO-M_xO_v (М – металл), направленных на задачу снижения электрического сопротивления, является поиск легирующих ионов, приводящих к формированию центров с неглубокими энергетическими уровнями, а также новых наноразмерных фаз на границе раздела частиц ZnO в керамическом теле, увеличивающих фононное рассеяние и приводящих к снижению теплопроводности, например – Al₂O₃ [5]. Подобными объектами, резко снижающими теплопроводность и негативно не влияющими на электропроводность, могут быть также искусственно формируемые в объеме керамического тела замкнутые микро- и нанопоры, равномерно распределенные между кристаллитами. Другим прорывным направлением в получении термоэлектрических материалов с высокой добротностью является создание объемных двухфазных композитов, в которых высокопроводящие полупроводниковые микрочастицы распределены равномерно в объеме диэлектрической матрицы с низкой теплопроводностью и имеющие между собой наноразмерные зоны контакта [6]. Одними из таких материалов, по нашему мнению, могут

быть двух- или многофазные керамические композиты состава полупроводниковая фаза/стеклофаза, в частности ZnO/SiO₂, либо бинарные системы ZnO/TiO₂. Способ получения композиционной керамики на основе оксида цинка с добротностью ZT = 0,65 представлен в докладе [6]. Керамика на основе оксида цинка была легирована алюминием и содержала множество искусственно сформированных нанопор с целью увеличения фононного рассеяния и уменьшения теплопроводности. В качестве основы был использован порошок оксида цинка с содержанием основной фазы >99,9 %, в качестве источника ионов алюминия был взят порошок у-A1₂O₃, полученный гидролизом изопропионата алюминия *i*-Al (C₃H₇)₃ чистотой >99,9 %. В статье М. С. Sari, В. Yuksel [7] описан способ приготовления керамики на основе оксида цинка, легированного алюминием и методика определения пористости с использованием визуально-цифрового анализа. Содержание Al₂O₃ в керамическом теле ZnO составляло 0,3 мол. %. Известно, что сопротивление ZnO падает с ростом концентрации оксида алюминия до приблизительно 0,25 %. причем ионы Al замещают ионы Zn в решетке ZnO. Более высокий уровень легирования приводит к росту электросопротивления в связи с меньшим уплотнением керамики, появлением беспорядочно расположенных пор и появлением второй непроводящей фазы $ZnAl_2O_4$ [8]. Система ZnO-TiO₂ интенсивно изучается с точки зрения ее применения как в монолитных объемных, так и в пленочных преобразователях [9]. В системе ZnO-TiO₂ образуются шесть химических соединений различного типа, наиболее хорошо изучены орто- и метатитанат. Ортотитанат цинка Zn₂TiO₄ представляет собой кристаллы в форме правильных октаэдров кубической сингонии (a = 0.846 нм). Zn₂TiO₄ обладает химической и температурной стабильностью до 1550 °С.

Целью настоящей работы является изучение структуры и свойств керамических композиционных материалов на основе оксида цинка, чистых и легированных оксидами алюминия и никеля, полученных методом полусухого прессования с последующим спеканием в воздушной среде.

Экспериментальная часть

1. Получение и свойства керамических композиционных систем на основе оксида цинка, легированного оксидом алюминия

Для получения керамических образцов, легированных оксидом алюминия в качестве цинксодержащего реагента, использовали коммерческий порошок оксида цинка ZnO, квалификации ЧДА, ГОСТ 10262-73, который состоит их игольчатых частиц длиной 0,2-0,5 мкм, средним диаметром 0,05 мкм. В качестве алюминийсодержащего реагента для легирования использовали наноструктурированный оксид алюминия Al₂O₃, полученный в НИЛ ТКН ГГТУ им. П. О. Сухого методом горения азотнокислой соли алюминия в смеси карбамида и гексаметилентетрамина. с последующим прокаливанием при 650 °С в течение 1 ч. Методика приготовления шихты для прессования состоит в тщательном перетирании порошков оксидов с технологической связкой, в роли которой выступает вода. Полусухая смесь загружается в прессформу, уплотняется трамбованием, затем прессуется при давлении 150 кгс/см². Исходный размер сырых прессовок в форме диска: D = 20 мм, толщина – 5 мм, размеры балочек – $10 \times 10 \times 50$ мм³. При повышении усилия пресса выше 150 кгс/см² происходит формирование трещин при спекании и образцы не пригодны для измерений. Далее прессовки подсушиваются на воздухе при комнатной температуре в течение 6-12 ч или в сушильном шкафу при 60 °C 1 ч и затем подвергаются термообработке в муфельной печи по заданной программе (1200 °C, 3 ч). После остывания печи и извлечения образцов (рис. 1) определяют их кажущуюся плотность и относительную пористость. Технологические режимы и параметры полученных образцов сведены в табл. 1.

Рис. 1. Образцы заготовок керамики для механических (слева), физико-химических и электрофизических испытаний (справа)

Таблица 1

Состав шихты	Режимы спекания	Плотность керамики (диски), г/см ³	Плотность керамики (балочки), г/см ³	Примечания
ZnO	1200 °С, 3 ч	4,2	3,7	Средний размер частиц
				ZnO – 0,2–0,5 мкм
ZnO / Al2O3	1200 °С, 3 ч	4,7	3,6	Средний размер частиц
				Al ₂ O ₃ – 0,52 мкм

Режимы спекания и плотность полученных образцов

Отличительной особенностью методики получения наноструктурированного порошка оксида алюминия путем термохимической реакции горения, используемого для легирования оксида цинка, является то, что в качестве восстановителя используется смесь карбамида и гексаметилентетрамина (ГМТА), а в качестве окислителя – азотнокислая соль алюминия (рис. 2).

Рис. 2. Схема синтеза ультрадисперсных порошков оксида алюминия методом горения

Эти ингредиенты растворяются в дистиллированной воде, тщательно перемешиваются и нагреваются в термостойком сосуде (фарфоровой выпарительной чашке). Далее, чашка помещается в термошкаф, где смесь упаривается до состояния геля при температуре 80–130 °C в течение 45 мин. Затем чашка покрывается алюминиевой фольгой, в ней делаются отверстия с площадью 1-5 % от общей площади, она помещается в другую чашку большего диаметра и затем обе ставятся в муфельную печь, нагретую до 350 °C. Под воздействием тепловой энергии испаряется вода, влажный гель превращается в ксерогель (сухой гель) и между компонентами смеси происходит бурная химическая реакция, в результате которой формируется объемный рыхлый порошок прекурсора, который затем подвергается термообработке в муфельной печи при температуре 650 °C в течение 1 ч. Аналогичным образом были получены ультрадисперсные порошки оксида никеля NiO.

Средний размер первичных частиц оксидных порошков можно рассчитать исходя из данных удельной поверхности, условно считая форму частиц сферической [10]:

$$S = \frac{\pi d^2 \cdot 100}{\rho \pi / 6d^3},$$

откуда $d = \frac{600}{\rho S}$, где S – удельная поверхность сферических частиц диаметром d, со-

стоящих из материала плотностью р. Поскольку *S* измеряется в м²/г, d – в нм (10⁻⁹ м), ρ – в г/см³ (для оксида алюминия ρ = 3,9 г/см³), то в формуле для *S* появляется множитель 1000. Зная удельную поверхность материала и его пикнометрическую плотность, представляется возможным определить условный диаметр частиц.

Удельную поверхность порошков определяли методом Брюнауэра–Эммета-Теллера (БЭТ) путем адсорбции аргона при температуре жидкого азота. Рентгенофазовый анализ выполнялся с помощью дифрактометра ДРОН-7 (излучение СиКа, длина волны 0,15496 нм). Измерение удельного сопротивления, термо-ЭДС и температуры проводилось на установке, включающей цифровой мультиметр (источник питания, измеритель тока и напряжения) типа Agilent 3310А. Точность измерения удельного сопротивления – 5 %, а коэффициента Зеебека – 10 %.

Изучение керамических композитов методами сканирующей электронной микроскопии (СЭМ) и рентгеноспектрального анализа проводилось на микроскопе LEO1455VP. Видно, что в процессе получения керамики сформировались глобулы размером несколько микрометров (рис. 3). Между спеченными частицами оксида цинка с размерами 3–5 мкм и оплавленными гранями находятся замкнутые поры с размерами 1–2 мкм (черного цвета).

Рис. 3. СЭМ изображение нелегированной керамики ZnO

На рис. 4 и 5 представлены СЭМ изображения керамики ZnO, легированной оксидом алюминия. Как видно, наряду со светлыми зернами доминирующей фазы, которые имеют размер несколько микрометров, в исследуемом образце присутствуют темные включения – частицы оксида алюминия размером около 10–20 мкм, случайно распределенные в матрице оксида цинка.

Рис. 4. СЭМ изображение керамики ZnO, легированной частицами Al₂O₃

Рис. 5. СЭМ изображение керамики ZnO, легированной частицами Al₂O₃ (увеличенное изображение)

Дифрактограмма, снятая от поверхности нелегированной керамики оксида цинка, демонстрирует наличие хорошо окристаллизованной монофазы ZnO (рис. 6) в соответствии с данными каталога JCPDS-1996 (карточка № 36-1451).

Рис. 6. Дифрактограмма нелегированной керамики ZnO

2. Получение и свойства смешанных систем ZnO–TiO₂, нелегированных и легированных ионами алюминия

Проведено формование дисковых заготовок и спекание керамических образцов, полученных методом полусухого прессования состава ZnO, ZnO–TiO₂, ZnO–TiO₂–Al₂O₃. Заготовки помещаются в муфельную печь на керамическую подставку, где спекаются в воздушной среде при температуре 1200 °C в течение 3-х ч. Остывание образцов происходит с печью до комнатной температуры. Для проведения экспериментов использовали муфельная печь типа СНОЛ 7,2/1300 с максимально допустимой температурой 1300 °C. Для получения керамических образцов оксида цинка, чистых и легированных кремнием и алюминием, в качестве цинксодержащего реагента использовали коммерческий порошок ZnO, квалификации ЧДА, ГОСТ 10262–73, который состоит их игольчатых частиц длиной 0,2–0,5 мкм, средним диаметром 0,05 мкм. В качестве источника ионов алюминия использовали порошкообразный бемит AlOOH.

Режимы термообработки и характеристики образцов сведены в табл. 2.

Таблица 2

Состав шихты, мас. %, диаметр прессформы 20 мм	Режимы спекания	Плотность керамики (диски), г/см ³	Примечания	
100ZnO	1200 °С, 3 ч, воздух	4,67	Цвет белый	
90ZnO : 10TiO ₂	1200 °С, 3 ч, воздух	5,1	Цвет белый	
75ZnO : 25TiO ₂	1200 °С, 3 ч, воздух	4,5	Цвет белый	
50ZnO : 50TiO ₂	1200 °С, 3 ч, воздух	4,5	Цвет желтый	
87ZnO: 10TiO ₂ –3AlOOH	1200 °С, 3 ч, воздух	4,6	Цвет белый	

Режимы спекания и характеристики полученных дисковых керамических образцов системы ZnO : TiO₂

Была изучена также структура и фазовый состав керамических образцов ZnO и смешанных систем ZnO–TiO₂, нелегированных и легированных ионами алюминия с использованием дифрактометрии (рис. 7). Второй предполагаемой фазой на дифрактограммах является оксид титана либо соединение цинка с титаном – ортотитанат цинка Zn₂TiO₄ или метатитанат цинка – ZnTiO₃. Фаза, содержащая алюминий на дифрактограммах, не обнаруживается в связи с малой концентрацией легирующей примеси.

Рис. 7. Рентгенограммы образцов керамики оксида цинка и смеси оксида цинка с диоксидом титана, а также ZnO–TiO₂ : Al

Изучение коэффициента термо-ЭДС (S) полученных керамических образцов показало, что вне зависимости от типа легирующей примеси и уровня легирования исследованные материалы характеризуются достаточно большими значениями $S_{ЭЛС}$ (табл. 3).

Таблица 3

Образец	<i>S</i> _{ЭДС} , мкВ/К	∆ <i>Т</i> , К	<i>Т_x</i> , К	<i>Т</i> г, К	ρ, Ом · м
ZnO 100 %	214–244	12,5–13,5	298-300	310-313	$2,98 \cdot 10^{-1}$
$1. (ZnO)_{97}(Al_2O_3)_3$	213-229	12,7–13,9	300-302	314–316	$1,90 \cdot 10^{-1}$
2. $(ZnO)_{95}(Al_2O_3)_5$	341-352	14,8–14,9	302-302	316-316	$3,19 \cdot 10^{-2}$
$3. (ZnO)_{97}(Al_2O_3)_3$	223–235	13,6–13,8	300-301	314–315	$1,07 \cdot 10^{-1}$
4. (ZnO) _{77,5} (TiO ₂) ₁₉ (Al ₂ O ₃) ₃ (NiO) _{0,5}	243–287	13,6–14,1	299–301	313–314	$2,13 \cdot 10^2$

Термоэлектрические характеристики образцов

Для всех исследованных образцов знак термо-ЭДС соответствует проводимости *n*-типа. Измерения показали, что для нелегированных керамик коэффициент термо-ЭДС лежит в диапазоне 214–244 мкВ/К, для легированных алюминием – в диапазоне 213–235 мкВ/К. Повышение концентрации оксида алюминия до 5 мас. % привело к повышению коэффициента термо-ЭДС до 341–352 мкВ/К.

Заключение

По результатам проведенных исследований получены следующие результаты:

1. Разработан метод синтеза керамики ZnO, легированной ионами алюминия. Проведено формование заготовок и спекание керамических образцов, полученных методом полусухого прессования состава ZnO, ZnO–Al₂O₃, с последующей обработ-кой заготовок в атмосфере воздуха при идентичных температурных и временных режимах (1200 °C, 3 ч). Получены серии экспериментальных образцов керамики в форме балочек и дисков.

2. Определены физико-химические характеристики заготовок и спеченных образцов полученных серий. Значения плотности образцов спеченной керамики составляют ZnO - 3,6-4,7 г/см³; $ZnO-TiO_2$ от 4,5 до 5,1 г/см³, а процент пористости 10–15 %.

3. Изучение структуры и фазового состава керамических образцов ZnO и смешанных систем ZnO–TiO₂, нелегированных и легированных ионами алюминия с использованием дифрактометрии, выявило наличие второй предполагаемой фазы, которой является оксид титана либо соединение цинка с титаном – Zn₂TiO₄ или ZnTiO₃.

4. Показано, что для нелегированных керамик ZnO коэффициент термо-ЭДС (по модулю) лежит в диапазоне 214–244 мкВ/К, для легированных алюминием (3 мас. % Al₂O₃) – в диапазоне 213–235 мкВ/К. Повышение концентрации оксида алюминия до 5 мас. % привело к повышению коэффициента термо-ЭДС до 341–352 мкВ/К. Таким образом, полученные керамические материалы на основе оксида цинка пригодны для создания *n*-ветвей термоэлектрических генераторов.

Литература

- 1. Дмитриев, А. В. Современные тенденции развития физики термоэлектрических материалов / А. В. Дмитриев, И. П. Звягин // Успехи физ. наук. 2010. Т. 180, № 8. С. 821–838.
- Ohtaki, M. Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion / M.Ohtaki, K. Araki, and K. Yamamoto // J Electron. Mater. 2009. Vol. 38. P. 1234–1239.
- Souma, T. Power generation characteristics of oxide thermoelectric modules incorporating nanostructured ZnO sintered materials / T. Souma, M. Ohtaki, K. Ohmishi [et al.] // Proc. of Int. Conf. On Thermoelectrics. – 2007. – P. 38–39.
- Ohtaki, M. High values resulted in the large ZT values for the VFA-added temperature thermoelectric properties of (Znl-xAlx)O / M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai // J Appl. Phys. – 1996. – Vol. 79. – P. 1816–1818.
- Maeda, H. Thermoelectric Properties of ZnO–Al₂O₃ Ceramics / H. Maeda, Y. Nakao, K. Tsuchida and J. Hojo // 17th International Conference on Thermoelectrics. – 1998. – P. 614–617.
- Ohtaki, Michitaka. Enhanced Thermoelectric Performance of Nanostructured ZnO: A possibility of selective phonons scattering and carrier energy filtering by nanovoid structure / Ohtaki, Michitaka and Ryosuke Hayashi / 5th International Conference on Thermoelectrics. – 2006, 6–10 Aug. – 2006. – P. 276–279.
- Sari, M. C. Porosity determination of 0.3 mol% Al₂O₃-added ZnO ceramics by digital image analysis method / M. C. Sari, B. Yuksel // «Image Analysis Method», the 15th European Microscopy Congress (EMC 2012), INGILTERE, 16–21 jul. – 2012.
- Shirouzu, K. Distribution and Solubility Limit of Al in Al2O3-Doped ZnO Sintered Body / K. Shirouzu, T. Ohkusa, M. Hotta [et al.] // J. Ceram. Soc. Japan. – 2007. – № 115. – P. 254–258.
- 9. Dulln, F. H. Phase Equilibria in the System ZnO–TiO₂ / F. H. Dulln, D. E. Rase // Journal of the American Ceramic Society. 1960. Vol. 43, № 3. P. 125–131.
- 10. Размер, морфология и структура частиц нанопорошка диоксида циркония, полученного в гидротермальных условиях / О. В. Альмяшева [и др.] // Наносистемы: физика, химия, математика. 2010. Т. 1, № 1. С. 26–36.

Получено 01.06.2018 г.