МЕТОДИКА АНАЛИЗА НАГРУЖЕНИЯ ДВИГАТЕЛЯ СТЕНДА, ИМИТИТИРУЮЩЕГО РАБОТУ ПОДЪЕМНО-НАВЕСНОГО УСТРОЙСТВА УНИВЕРСАЛЬНОГО ЭНЕРГЕТИЧЕСКОГО СРЕДСТВА

В. Б. ПОПОВ

Гомельский государственный технический университет им. П. О. Сухого, г. Гомель

Комплектация стенда, имитирующего работу подъемно-навесного устройства (ПНУ) УЭС-350, состоящего из гидропривода и механизма навески (МН), связанного в трех точках с имитатором

(грузом) навесной машины представлена на рисунке 1. Источник энергии для привода гидронасоса в стационарных условиях — электродвигатель, потребляемая мощность которого за время подъема НМ существенно меняется. При эксплуатации стенда в производственных условиях силы полезного сопротивления могут изменяться в значительных пределах, что должно учитываться во избежание нарушения режима функционирования ПНУ.

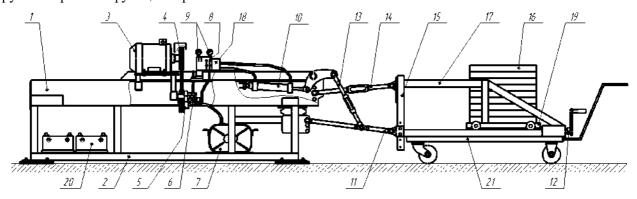


Рисунок 1 — Общий вид стенда, имитирующего работу подъемно-навесного устройства универсального энергетического средства УЭС-350 «Полесье»:

1 – рама УЭС-350; 2 – рама опорная; 3 – электродвигатель; 4 – клиноременная передача; 5 – ролик натяжной; 6 – насос шестеренный; 7 – бак; 8 – пульт управления; 9 – манометры; 10 – гидроцилиндр; 11 – рычаг нижний; 12 – рукоять; 13 – раскос; 14 – верхняя тяга; 15 – стойка; 16 – груз; 17 – направляющая; 18 – гидрораспределитель; 19 – тележка; 20 – аккумулятор; 21 – тележка грузовая

Для выбора электродвигателя необходимо определить режим его нагружения, задавшись весом груза 16 (см. рисунок 1) и выполнив расчет выходных параметров ПНУ. Следует определить максимальное давление на поршень гидроцилиндра и сравнить его с максимальным давлением, создаваемым гидронасосом. Используя установленные параметры гидронасоса, определяют крутящий момент на его валу. По вычисленному крутящему моменту и соотношению оборотов электродвигателя и гидронасоса определяется мощность электродвигателя, вал которого соединен с валом гидронасоса через клиноременную передачу. Геометрические, кинематические и силовые выходные параметры МН рассчитываются на математической модели, сформированной для плоской схемыналога МН (рисунок 2).

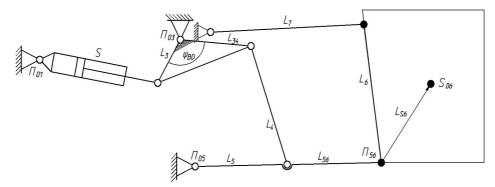


Рисунок 2 – Схема кинематическая механизма навески УЭС-350

Приведенная к поршню гидроцилиндра (ГЦ) нагрузка $F_{\rm np}(S)$ состоит из полезной составляющей F(S), а также приведенных сил трения ($F_{\rm np}^{\rm np}$) и инерции ($F_{\rm ин}^{\rm np}$), причем полезная нагрузка пропорциональна передаточному числу МН $I_{S6}(S)$:

$$F_{\rm np}(S) = F(S) + F_{\rm ин}^{\rm np}(S) + F_{\rm rp}^{\rm np}(S), \ F(S) = P_6 I_{S6}(S), \tag{1}$$

где S – обобщенная координата МН; P_6 – вес груза.

Максимальная движущая сила, развиваемая на штоке ГЦ для преодоления приведенной к ГЦ нагрузки, определяется по выражению

$$F_{\text{IIIT}}^{\text{max}} = p_{\text{гII}}^{\text{max}} F_{\text{c}}, \ p_{\text{гII}}^{\text{max}} = p_{\text{IIK}} - (\Delta p_{\text{др}} + \Delta p_{\text{гM}}),$$
 (2)

где $F_{\rm c}$ — площадь поршня ГЦ; $p_{\rm rq}^{\rm max}$ — максимальное давление в ГЦ; $p_{\rm nk}$ — давление настройки предохранительного клапана гидропривода; $\Delta p_{\rm дp}$ — потери давления на дросселе в магистрали слива; $\Delta p_{\rm rm}$ — потери давления в магистрали.

Максимальное давление в ГЦ ограничено настройкой предохранительного клапана и потерями давления в гидроприводе. Грузоподъемность ПНУ определяется по формуле

$$G_{S} = \frac{p_{2}^{\max} F_{H} - \left[F_{\text{ин}}^{\text{пр}} + F_{\text{тр}}^{\text{пр}}\right]}{I_{S}^{\max}},\tag{3}$$

где $G_{S6}(S)$ — грузоподъемность ПНУ, соответствующая расположению центра тяжести веса груза; p_2^{\max} — максимально возможное давление в гидроцилиндре МН, $F_{\text{ин}}^{\text{пр}}$, $F_{\text{тр}}^{\text{пр}}$ — соответственно приведенные силы инерции и трения; F_H — суммарная площадь поршней рабочих гидроцилиндров.

Как следует из выражения (3), грузоподъемность ПНУ – это интегральный показатель, зависящий одновременно от параметров гидропривода, механизма навески, веса груза и его расположения относительно оси подвеса.

Результаты расчета выходных параметров ПНУ УЭС-350, агрегатируемого с имитатором комбайна КНК-500, выполненные на сформированной функциональной математической модели, представлены в таблице 1.

Таблица 1 – Выходные параметры ПНУ УЭС-350

S	$Y_{56}(S)$	$X_{S6}(S)$	$Y_{S6}(S)$	$\varphi_6(S)$	$\varphi_3'(S)$	$I_S(S)$	$R_{34}(S)$	F(S)	$p_2(S)$	$G_{S6}(S)$
M				град	1/м	-	кН		МПа	кН
0,571	_	_	_	_	_	_	_	_	_	_
0,596	0,320	2,447	0,571	90,019	4,844	3,291	52,798	157,931	14,313	62,05
0,621	0,404	2,468	0,652	89,869	4,425	3,210	52,019	154,092	13,963	63,597
0,646	0,486	2,480	0,732	89,780	4,175	3,164	51,349	151,849	13,760	64,536
0,671	0,566	2,486	0,810	89,741	4,022	3,135	50,754	150,490	13,637	65,118
0,696	0,644	2,485	0,889	89,746	3,935	3,118	50,214	149,658	13,561	65,480
0,721	0,720	2,478	0,966	89,794	3,896	3,107	49,720	149,159	13,516	65,699
0,746	0,796	2,466	1,044	89,884	3,896	3,102	49,270	148,884	13,491	65,821
0,771	0,870	2,447	1,121	90,021	3,932	3,100	48,866	148,779	13,482	65,867
0,796	0,944	2,423	1,199	90,209	4,003	3,101	48,518	148,833	13,487	65,843
0,821	1,016	2,392	1,277	90,459	4,112	3,106	48,245	149,086	13,509	65,732

Подсоединение навесного кормоуборочного комбайна КНК-500 выполняется, когда высота оси подвеса (Y_{56}) составляет 0,33 м, что соответствует S = 0,599 м.

Заложенные в проекте стенда параметры ПНУ УЭС-350 позволяют проводить исследования для всех навесных машин, включая наиболее энергоёмкий процесс перевода из рабочего в транспортное положение комбайна КНК-500.

Представленная методика анализа процесса подъема НМ и определения грузоподъемности ПНУ УЭС-350 позволяет оценить характеристики нагружения электродвигателя и для других навесных машин с УЭС, имеющими идентичные по структуре подъемно-навесные устройства.