РАЗРАБОТКА ИНСТРУМЕНТОВ ДЛЯ ПОВЫШЕНИЯ ТОЧНОСТИ РЕЗЬБ ПРИ ОБРАБОТКЕ НА ТОКАРНЫХ СТАНКАХ

Н. В. Струневская

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель М. И. Михайлов, д-р техн. наук, профессор

Нарезание резьбы — обширная тема в металлообработке с использованием токарных станков. Эта технология применяется больше чем в 40 % работ. От качества резьб зависит прочность соединения разъемных элементов конструкций или механизмов.

Обработку резьбы резанием на токарных станках выполняют резцами, метчиками и плашками. Форма режущих кромок резцов определяется профилем и размерами поперечного сечения нарезаемых резьб. Резьбу нарезают резцами за несколько проходов. После каждого прохода резец отводят в исходное положение. По нониусу ходового винта поперечного движения подачи суппорта устанавливают требуемую глубину резания и повторяют проход. При нарезании резьбы с шагом до 2 мм подача составляет 0,05...0,2 мм на один проход. Если резьбу нарезать одновременно двумя режущими кромками, то образующаяся при этом стружка спутывается и ухудшает качество поверхности резьбы. Поэтому перед рабочим проходом резец следует смещать на 0,1...0,15 мм поочередно вправо или влево, используя перемещение верхнего суппорта, в результате чего обработка ведется только одной режущей кромкой. Число черновых проходов -3...6, а чистовых -3.

Погрешность обработки разделяют на геометрическую, статическую и динамическую.

Рассмотрим влияние геометрической погрешности на точность нарезания резьбы.

Воспользуемся методом преобразования координат номинального профиля резьбы от кинематического профиля [1, с. 167].

Рассмотрим уравнения связи между системами координат номинального профиля резьбы и кинематического профиля, представленные ниже.

Примем значение Z_1 в виде выражения, представленного в формуле

$$Z_1 = kX_1 + b. (1)$$

Тогда получим связь между системами координат, представленную в выражении

$$\begin{cases}
Z_1 = Z \\
X_1 = X \cdot \cos \gamma.
\end{cases}$$
(2)

Подставив выражение (1) в выражение (2), получим выражение

$$Z = kX \cdot \cos \gamma + b = kX \cdot \sqrt{1 - (\sin \gamma)^2} + b = kX \sqrt{1 - \frac{OO_1^2}{X^2}} + b.$$
 (3)

Выразив k и b через параметры детали, получим параметры, необходимые для дальнейшего расчета, позволяющие преобразовать координаты точек резца в координаты образующей поверхности детали, представленные в формулах (4)–(6):

$$X = X_1 \sqrt{1 + \left(\frac{r_1 \cdot \sin \gamma}{\cos \lambda} + Z_1 \cdot \sin \lambda}{X_1}\right)^2}, \text{ MM};$$
 (4)

$$Z = Z_1 \cdot \cos \lambda + P_{\rm B}(\gamma - \gamma_1), \text{ MM}; \tag{5}$$

$$\cos \gamma_1 = \frac{1}{\sqrt{1 + \left(\frac{r_1 \cdot \sin \gamma}{\cos \lambda} + Z_1 \cdot \sin \lambda}{X_1}\right)^2}}, \text{ град,}$$
 (6)

где $P_{\rm B}$ – шаг винта, мм; $r_{\rm 1}$ – текущий радиус заготовки, мм.

Зная из исходных данных высоту профиля винта a, равную 6,5 мм, и угол профиля β , равный 7,5°, нашли значение b, равное 0,856 мм.

Для получения наиболее точной кромки резца произведем расчет для 856 точек с шагом 0,001 по координате Z_1 .

Расчет координат точек кромки резца представлен в формуле (7):

$$X_1 = Z_1 \cdot \tan \alpha + (r \cdot \cos \gamma), \tag{7}$$

где X_1 и Z_1 – координаты кромки резца, мм; r – средний радиус детали, мм.

Перспективные направления совершенствования материалов и технологий 225

Рассчитав зависимости для профиля детали по формулам (4)–(6), с использованием пакета Mathcad 15.0 был построен график номинального профиля от кинематического.

Проанализировав график, можем сказать, что наблюдается невысокое отклонение от линейности, связанное с малым углом профиля β равным 7,5°.

Также проанализируем влияние таких геометрических параметров, как угол λ , угол β , передний угол резца γ и делительный диаметр D профиля винта.

Рассмотрев погрешности при $\lambda=0^\circ$ и $\lambda=6^\circ$ с изменением угла β от 5 до 25°, можем сделать вывод, что с увеличением угла λ на 6° погрешность Δ увеличится в 1,043 раза. При влиянии делительного диаметра D профиля винта с изменением угла β от 5 до 25° можем сделать вывод, что с увеличением делительного диаметра на 10 мм погрешность Δ увеличится в 1,157 раза. Также при угле $\lambda=0$ погрешность Δ меньше в 1,021 раза, нежели при $\lambda\neq0$, при одинаковых диаметрах. А проанализировав влияние изменения переднего угла резца γ , при исходных данных заготовки с изменением угла λ , можем сказать, что при увеличении угла γ на δ ° геометрическая погрешность увеличивается примерно в 2–3 раза. Также при угле $\lambda=0$ погрешность Δ меньше в 1,061 раза, нежели при $\lambda\neq0$, при одинаковых значениях угла γ . Также во всех случаях при увеличении угла λ на δ 0° погрешность δ 0 уменьшается примерно в 0,9 раза.

Литература

1. Арбузов, О. Б. Металлорежущие инструменты : учеб. для вузов / О. Б. Арбузов, Ю. Л. Боровой, Г. Н. Сахаров. — М., 1989.