ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ПРОГРАММЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ЖЕЛЕЗНОДОРОЖНЫХ УЗЛОВ

А. В. Дробов

Учреждение образования «Белорусский государственный университет транспорта», г. Гомель

Научный руководитель В. Н. Галушко

Любая система электроснабжения представляет собой совокупность из *т* источников питания и *п* потребителей, произвольно соединенных между собой. Чаще всего для схемы соединения потребителей с источниками не характерна наивысшая из возможных вероятность безотказной работы и минимальное время восстановления повреждения. Поэтому при проектировании новых систем электроснабжения актуальна задача выбора такой схемы соединения, параметры которой минимизируют экономические потери от неплановых отказов, отличаются наивысшей вероятностью безотказной работы электроснабжения и обеспечивают требуемое техническими параметрами качество энергии.

Поставленная таким образом задача является типичной задачей математического программирования и может быть решена одним из методов поиска экстремальных значений целевой функции. В качестве такого метода можно предложить метод случайного поиска.

Для определения наиболее эффективных вариантов схем электроснабжения нетяговых потребителей железнодорожного транспорта разработаны имитационные модели (ИМ), учитывающие приведенные затраты, надежность и качество электроэнергии.

Целью создания ИМ для электрических сетей железнодорожных узлов дистанций электроснабжения с помощью метода статистических испытаний или метода Монте-Карло на основании матрицы возможных электрических связей между трансформаторными подстанциями является определение рационального варианта электрических связей между трансформаторными подстанциями и распределительными устройствами (источниками питания и потребителями).

Имитационное моделирование электрических сетей железнодорожных узлов реализовано в виде web-приложения, которое не требует установки на компьютер заказчика объемного программного обеспечения. Его обновление происходит автоматически, при этом обеспечивается высокая мобильность приложения везде, где есть доступ в интернет. Алгоритм ИМ предписывает последовательно выполнить ряд действий:

Внесение исходных данных. На этом этапе вносятся три параметра:

- координаты точек расположения источника питания (ИП), распределительных устройств трансформаторных подстанций (РУ) и трансформаторных подстанций (ТП) $(x_i, y_i, i = \overline{1, n})$;
- сведения о всех ТП: номер или название ТП; $P_{\rm p}$ расчетная активная нагрузка потребителя; соѕ $\phi_{\rm p}$ расчетный коэффициент мощности; категории потребителей; $T_{\rm m}$ число часов использования максимума нагрузки в год; $U_{\rm hom}$ напряжение первичной обмотки трансформаторов; $k_{\rm p}$ коэффициент формы графика нагрузки участка сети. По умолчанию программа продолжает названия ТП, присваивая подстанции номер i+1, при этом возможно редактирование.

На рис. 1 представлена реализация однолинейной упрощенной схемы электросети для фидера № 502 от ПС «Мясокомбинат» витебской дистанции электроснабжения [1].

Внесите исходные данные

	Число генерируен	енерируемых результатов Число лучших результатов			отатов	
	1000			1		
	✓ Учитывать капитальные з	атраты на строительство				
	Координаты источ	ника питания				
	X			Y		
		0			0	
	Параметры потребит	елей				
NΩ	Название	T _M , ч	К-во Т-ов		x	
16	P _P , кВт	cos φ _P	U _{HOM}	кВ	Υ	
	Витебск-Заболотинка	6178,956	1	¥ %	1	
	42,29	0,833958	10			214
		In detacon of the	55.53	10		A-141111
	гктп-19	5425,727				154
			1	V		154
	ГКТП-19	5425,727 0,9496		¥		154
			1	83		

Рис. 1. Пример внесения исходных данных и визуализации в программе ИМ УЗЛОВ

Отображение и заполнение матрицы связи между ТП и РУ. Данная процедура позволяет сформировать матрицу всех возможных соединений между ТП и РУ с учетом ограничений для генерирования различных вариантов методом статистических испытаний. Главная диагональ не используется, а выбор ТП или РУ разыгрывается с помощью генератора случайных чисел. Данную матрицу легко редактировать, активируя или убирая соответствующие символы связей между ТП или РУ.

Web-приложение дает возможность рассчитать кратчайшие расстояния между всеми объектами по формуле $l_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$, а также с помощью (визу-

ального, графического?) редактора изменять расстояния в соответствии с существующими ограничениями. При необходимости определения кратчайшего расстояния между объектами с учетом ограничений на местности используется дополнительная программа LOGR.

Следующий шаг – выбор трансформаторов ТП и нагрузки на высокой стороне. В первую очередь осуществляется выбор номинальной мощности трансформаторов на основании следующих условий:

- для однотрансформаторных подстанций: $S_{\text{\tiny H.T}} \geq S_{\text{\tiny p}}, S_{\text{\tiny p}} = \sqrt{P_{\text{\tiny p}}^{\ 2} + Q_{\text{\tiny p}}^{\ 2}};$
- для двухтрансформаторных подстанций: $2S_{\text{н.т}} \ge S_{\text{p}}$, $1,4S_{\text{н.т}} = S_{\text{p}} S_{\text{откл}}$, ($S_{\text{откл}}$ мощность потребителей III категории, которые могут быть отключены при возникновении аварийного режима).

Таблицы стандартных полных мощностей трансформаторов соответствуют номенклатуре выпускаемых и имеющихся в технологическом запасе отделений дистанций электроснабжения. При необходимости можно изменить значение номинальной мощности трансформатора в таблице текущих результатов расчетов (рис. 3) или пополнить/изменить содержание таблиц стандартных полных мощностей выбираемых трансформаторов.

Затем рассчитываются коэффициенты загрузки трансформаторов в нормальном и аварийном режимах, а также определяются нагрузки ($P_{\rm p}^{\rm B.H}$, $Q_{\rm p}^{\rm B.H}$, $S_{\rm p}^{\rm B.H}$) на высокой стороне за счет потерь в трансформаторах ТП.

Мощности трансформаторов

Nº	ИП	Р _Р , кВт	Q _P , квар	S _P , KB*A	S _{HT} , κB*A	k ^{Hopm} 3	k ^{aB} ₃
0	Витебск-Заболотинка	42.29	27.98	50.71	63.00	0.80	0.00
1	ГКТП-19	4.66	1.54	4.91	25.00	0.20	0.00
2	ТП-17(СШ1)	99.24	32.76	104.51	160.00	0.65	0.00
3	ГКТП-22	2.10	0.69	2.21	25.00	0.09	0.00
4	ТП-16	34.93	11.52	36.78	40.00	0.92	0.00
5	TП-11	1.23	0.41	1.30	25.00	0.05	0.00
6	ТП-10(Т1)	45.08	14.87	47.47	63.00	0.75	0.00
7	ТП-10(T2)	63.07	20.80	66.41	100.00	0.66	0.00
8	ТП-6(СШ2)	111.28	36.73	117.18	160.00	0.73	0.00

Рис. 2. Пример выбора номинальной мощности трансформаторов

Технико-экономический расчет первого варианта организации электроснабжения. Технико-экономический расчет и сохранение результатов первого варианта организации электроснабжения осуществляется по критерию приведенных затрат $\mathbf{3}_1 = p_{_{\mathrm{H}}}\mathbf{K}_1 + \mathbf{M}_1$ с учетом капитальных затрат на сооружение сети и издержек на эксплуатацию.

Программа ИМ УЗЛОВ может быть использована для разработки наиболее эффективных схем электроснабжения как проектируемых предприятий железнодорожной отрасли, так и существующих, не предполагающих капитальные затраты на сооружение сети (K=0).

Литература

. Дробов, А. В. Результаты программы имитационного моделирования нетяговой системы электроснабжения витебской и барановичской дистанции электроснабжения / А. В. Дробов // Агротехника и энергообеспечение. – 2016. – № 4 (13), т. 1. – С. 76–83.