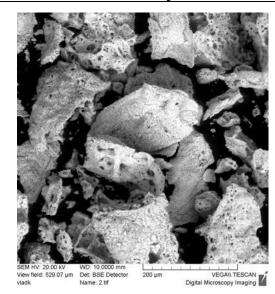
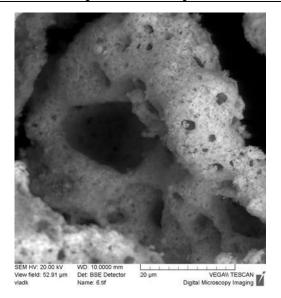
ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ПОРОШКОВ ОКСИДА ИТТРИЯ, АКТИВИРОВАННОГО ИОНАМИ ТЕРБИЯ Y_2O_3 : TB^{3+} (ЗЕЛЕНЫЙ ЛЮМИНОФОР)

О. В. Давыдова, Н. Е. Дробышевская, В. Н. Шиленкова

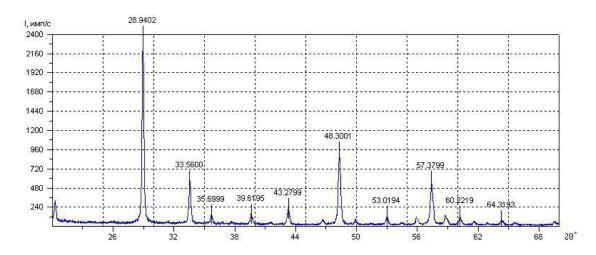
Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель О. В. Давыдова


Введение. Оксидные люминофоры в последнее десятилетие привлекают повышенное внимание ученых и разработчиков оптических и оптоэлектронных приборов различных классов и назначений. Они применяются в конструкциях плоских автоэмиссионных экранов (Field Emission Display – FED), экранах цветного телевидения высокого разрешения, для маркировки и контроля товаров и продуктов [1].

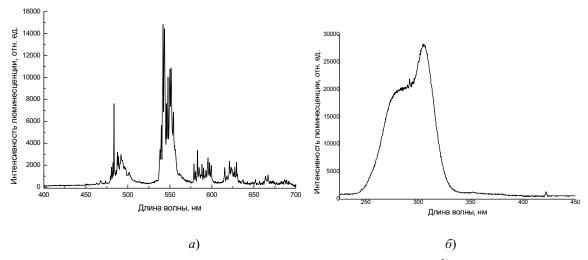

Оксид иттрия является подходящей матрицей для введения легирующих ионов ввиду наличия большой ширины запрещенной зоны (5.8 эВ), высокого значения диэлектрической проницаемости, высокой термической и химической стабильности, а также прозрачности для видимого излучения. Производится в форме белого порошка (плотность равна $5,046~\text{г/cm}^3$) с $T_{\text{пл}} = 2417~\text{°C}$ или бесцветных диамагнитных кристаллов [2].

Экспериментальная часть. Для получения наноструктурированных порошков оксида иттрия с эффектом люминесценции в зеленой области спектра Y_2O_3 : Tb^{3+} проводили процесс термохимического синтеза (горения) солей $Y(NO_3)_3$ и $Tb(NO_3)_3$ с использованием смеси карбамида и гексаметилентетрамина (ГМТА) при температуре поджига 350 °C и температуре прокаливания 650 °C (1 ч) в муфельной печи в условиях слабоокислительной среды.

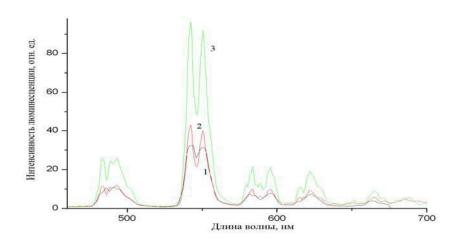

Изучены структурные, морфологические и спектрально-люминесцентные характеристики порошков $Y_2O_3: Tb^{3+}$.

Из рассмотрения СЭМ-изображений полученных порошков (рис. 1) можно видеть, что образцы представляют собой рыхлые образования в виде агломератов неправильной формы с поперечными размерами до 200 мкм с разветвленной поверхностью, пронизанные сквозными порами. Агломерированные порошки легко разрушаются небольшими механическими усилиями, хорошо диспергируются в водно-спиртовых средах, органических лаках и расплавах полимеров.

Puc. 1. СЭМ-изображение образцов Y_2O_3 : Tb, полученных горением азотнокислых солей в смеси карбамида и ГМТА при различном увеличении



Puc. 2. Дифрактограмма образцов Y_2O_3 : Tb^{3+} , полученных при горении в карбамиде и ГМТА с прокаливанием прекурсора при температуре 650 °C


Рентгенофазовый анализ образцов Y_2O_3 : Tb^{3+} , проведенный после прокаливания прекурсора, полученного при горении в карбамиде и ГМТА при температуре 650 °C, подтвердил наличие кристаллической монофазы оксида иттрия в соответствии с данными каталога JCPDS−1996 (карточка № 43-1036) (рис. 2). Других фаз в составе полученных образцов не обнаружено.

Анализ спектров люминесценции Y_2O_3 : Tb^{3+} выявил сложную картину мульти-полосной люминесценции, обусловленной взаимодействием кристаллического поля решетки Y_2O_3 и возбужденных состояний основного мультиплета иона Tb^{3+} . При фотовозбуждении на $\lambda_{воз6} = 305$ нм наблюдались четыре наиболее интенсивные группы линий: в сине-зеленой (479,2–506,2 нм); зеленой (537,0–563,4 нм); желтооранжевой (577,9–599,3 нм) и оранжево-красной (614,8–636,7 нм) областях спектра излучения (рис. 3). Самый интенсивный пик принадлежит полосе 544 нм, обуслов-

ливающей визуально наблюдаемый зеленый цвет люминесценции. Рост интенсивности люминесценции в три раза (рис. 4) при обжиге образцов при высоких температурах на воздухе (при нагреве от 700 до $1100\,^{\circ}$ C) связан, скорее всего, с удалением с поверхности агрегатов адсорбированных газовых примесей (диссоциированных термолизом кислородосодержащих газов: N_2O , CO_2 , CO_3 , формируемых в ходе горения, на поверхности пор в агломератах, а также гидроксильных групп, также оказывающих тушащее воздействие.

Рис. 3. Спектр возбуждения (*a*) и спектр люминесценции Y_2O_3 : Tb^{3+} (*б*) образцов, полученных при горении в карбамиде и ГМТА при температуре 650 °C

Puc. 4. Спектр люминесценции Y_2O_3 : Tb^{3+} в зависимости от температуры прокаливания: 1-700 °C; 2-900 °C; 3-1100 °C

Заключение. На основании вышеизложенного можно сделать следующие выводы:

1. Проведен термохимический синтез наноструктурированных порошков Y_2O_3 : Tb^{3+} одностадийным методом в условиях окисления-восстановления азотнокислых солей иттрия и тербия в присутствии смеси карбамида с ГМТА в качестве горючего для получения люминофора зеленого цвета излучения.

- 2. Измерение спектров фотолюминесценции выявило наиболее интенсивные группы линий в сине-зеленой ($\lambda = 479,2-506,2$ нм), зеленой ($\lambda = 537,0-563,4$ нм) областях спектра, обусловливающих визуальное наблюдение излучения зеленого цвета при возбуждении на длине волны 305 нм.
- 3. Полученные порошки Y_2O_3 : Tb^{3+} могут быть использованы в цветных дисплеях различного типа.

Литература

- . Подденежный, Е. Н. Классификация способов получения ультрадисперсных оксидных порошков / Е. Н. Подденежный, А. А. Бойко // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. 2003. № 1. С. 21–28.
- 2. Minh, L. Q. Luminescent nanomaterials / L. Q. Minh // Journal of Nanomaterials. 2007. Article ID 48312. Mode of access: http://www.hindawi.com/journals/jnm/2007/048312/abs/. Date of access: 07.08.12.