УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О.СУХОГО»

УТВЕРЖДАЮ
Первый проректор
УО «ГТУ имени П.О.Сухого»
О.Д.Асенчик
12.11.2014
Регистрационный № УД-124-241р

ОСНОВЫ ИНЖЕNERНОГО ТВОРЧЕСТВА
Учебная программа учреждения высшего образования
по учебной дисциплине для специальности
1-36 01 01 «Технология машиностроения»

Факультет машиностроительный
Кафедра «Технология машиностроения»
Курс 2
Семестр 4
Лекции 17 (часы)
Практические (семинарские) занятия 17 (часы)
Лабораторные занятия -
Аудиторных часов по учебной дисциплине 34
Всего часов по учебной дисциплине 64

Зачет - 4
Курсовой проект -

Форма получения образования дневная

Составила И.В.Царенко, к.т.н., доцент

2014

Рассмотрена и рекомендована к утверждению кафедрой «Технология машиностроения» 30.06 2014. Протокол № 11.

Заведующий кафедрой

М.П.Кульгейко

Одобрана и рекомендована к утверждению Научно-методическим советом машиностроительного факультета 08.09 2014. Протокол № 1.

Председатель

Г.В.Петришин
1. Пояснительная записка

1.1. Цели и задачи учебной дисциплины с учетом специальности 1-36 01 01 "Технология машиностроения".
Дисциплина «Основы инженерного творчества» предназначена для технологической подготовки инженеров широкого профиля в системе высшего образования.
Цель дисциплины «Основы инженерного творчества» - формирование у студентов творческого мышления, подразумевающего оригинальность, гибкость нестандартность при разработке и проектировании технических систем.
Основные задачи дисциплины «Основы инженерного творчества»:
- дать основы научного подхода при решении изобретательских задач;
- формировать творческий стиль мышления, включающий умения анализировать технические проблемы, устанавливать системные связи, выявлять противоречия, находить решения, прогнозировать варианты развития таких решений;
- ознакомить с основными методами решения изобретательских задач;
- развить умение использовать методологию генерации творческих идей в профессиональной деятельности.

1.2. Требования к освоению учебной дисциплины, включая формирование компетенций
В результате изучения дисциплины студент должен:
знать
- общие закономерности, лежащие в основе развития технических систем;
- основные приемы решения изобретательских задач;
уметь
- использовать теорию развития технических систем в своей практической деятельности: при разработке новых и совершенствовании существующих технических объектов;
- использовать методологию генерации творческих идей в профессиональной деятельности;
- проводить анализ проблемы, устанавливать системные связи, выявлять противоречия, находить решения, прогнозировать варианты развития таких решений;
владеть
- приемами поиска нестандартных решений

Требование к академическим компетенциям:
Студент должен:
- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
- уметь работать самостоятельно;
- быть способным порождать новые идеи (обладать креативностью);
- обладать навыками устной и письменной коммуникации;
- уметь учиться, повышать свою квалификацию.

Требование к социально-личностным компетенциям:
Студент должен:
- обладать качествами гражданственности;
- уметь работать в коллективе.

Требование к профессиональным компетенциям:
Студент должен:
- осуществлять рационализаторскую и изобретательскую деятельность по совершенствованию машиностроительных производств, технологий, оборудования, оснастки;
- использовать в процессе обучения современные средства представления данных и контроля знаний.

1.3. Место учебной дисциплины в системе подготовки специалиста и связь с другими учебными дисциплинами
Знания и умения, приобретенные в результате изучения дисциплины «Основы инженерного творчества», могут быть использованы при изучении следующих дисциплин специальности 1-36 01 01 "Технология машиностроения": «Детали машин», «Металлорежущие станки», «Режущий инструмент», «Технологии машиностроения», «Технологическая оснастка», «Основы исследований, изобретательства и инновационной деятельности в машиностроении».

1.4 Методы (технологии) обучения
Основными методами (технологиями) обучения отвечающими целям изучения дисциплины являются:
- чередование теоретических лекционных занятий с практическими занятиями, а также с управляемой самостоятельной работой;
- использование во время теоретических занятий современных средств для отображения видео-материалов и проведения презентаций;
- использование блочно-модульной системы (курс разделен на два модуля).

1.5 Общее количество часов и распределение аудиторного времени по видам занятий
Учебная программа дисциплины рассчитана на 64 часа, в том числе – 34 часа аудиторных занятий. Распределение аудиторных часов по видам занятий: лекции - 17 часов; практические (семинарские) занятия - 17 часов.
2. Содержание учебного материала

2.1 Лекционные занятия

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Название темы, содержание лекции</th>
<th>Объем в часах</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Раздел 1. Теоретические основы инженерного творчества</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Творчество как высшая форма человеческой деятельности. Креативность и интеллект. Оценка уровня интеллекта: IQ или тест Бине. Оценка уровня креативности: тест Торренса ТТСТ. Зависимость креативности/интеллект. Характеристики творческого мышления: гибкость мышления, беглость мышления. Воображение как основа творческого процесса.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Пути развития творческого мышления. Главные препятствия при поиске новых идей. Основные этапы творческого процесса. Постановка задачи. Сбор информации. Поиск решения (идей). Творческая инкубация. Выдвижение идей/гипотезы/решения («озарение»). Проверка и развитие идей.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Закономерности развития технических систем. Основные понятия: технический объект (ТО), техническая система (ТС), техническое противоречие (ТП), физическое противоречие (ФП). Параметры ТС. Основные законы развития ТС: закон S – образного развития, закон повышения степени идеальности, закон противоречий, закон слабого звена.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Раздел 2. Практические основы инженерного творчества – методы поиска творческих идей</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Методы рационального мышления. Метод изменения формулировки задачи. Метод изменения исходных установок (базы). Метод анализа атрибутов. Метод постановки вопросов (scamper). Морфологический анализ.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Теория решения изобретательских задач по Г.С.Альшуллеру. Инструменты ТРИЗ. Типовые приемы устранения технических противоречий. Правила выбора приемов устранения противоречий. Виды физических явлений; физические, химические и геометрические эффекты. Применение эффектов и явлений при решении изобретательских задач. Алгоритм решения изобретательских задач (АРИЗ). Параметрический метод решения изобретательских задач. Приемы устранения физических противоречий.</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Методы иррационального мышления. Методы образов. Методы направленного воображения (визуализационные методы). Метод поиска связей, аналогий, ассоциаций. Факторы, определяющие эффективность приемов иррационального мышления. Техники интуитивного «озарения».</td>
<td>3</td>
</tr>
<tr>
<td>№ п/п</td>
<td>Название темы, содержание</td>
<td>Объем в часах</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>Развитие гибкости и беглости мышления.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Технология развития творческого мышления и методология генерации творческих идей на примере анализа биографии творческой личности.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Выявление законов развития ТС на примере анализа эволюции развития конкретной ТС.</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Методы решения изобретательских задач</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Коллективные методы поиска решения изобретательских задач: метод «мозгового штурма» и его разновидности</td>
<td>3</td>
</tr>
</tbody>
</table>

Итого за семестр 17
Итого за учебный год 17

2.2 Практические занятия
Учебно-методическая карта дисциплины

<table>
<thead>
<tr>
<th>Номер раздела, темы</th>
<th>Название раздела, темы; перечень изучаемых вопросов</th>
<th>Количество часов</th>
<th>Материальное обеспечение занятия (наглядные и методические)</th>
<th>Литература</th>
<th>Форма контроля знаний</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Основы инженерного творчества (64 ч):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Теоретические основы инженерного творчества</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. Основные понятия: творчество, креативность, интеллект.</td>
<td>6</td>
<td></td>
<td>[1], [2], [7], [9-11]</td>
<td>зачет</td>
</tr>
<tr>
<td></td>
<td>2. Оценка интеллекта и креативности: тесты IQ и TTCT.</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Пути развития творческого мышления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Главные препятствия при поиске новых идей.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Основные этапы творческого процесса.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Основные понятия: технический объект (ТО), техническая система (ТС), техническое противоречие (ТП), физическое противоречие (ФП).</td>
<td>2</td>
<td></td>
<td>[1], [3], [7], [9]</td>
<td>Зачет, реферат</td>
</tr>
<tr>
<td></td>
<td>2. Параметры ТС.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Основные законы развития ТС</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Практические основы инженерного творчества - методы поиска творческих идей</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Методы рационального мышления.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Метод изменения формулировки задачи.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Метод изменения исходных установок (базы).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Метод анализа атрибутов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Метод постановки вопросов (scamper).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Лекция, Практические занятия, Управляемая самостоятельная работа студента.
<table>
<thead>
<tr>
<th>№</th>
<th>Тематика</th>
<th>Количество занятий</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Теория решения изобретательских задач по Г.С.Альтшуллеру. 1. Инструменты ТРИЗ. 2. Типовые приемы устранения технических противоречий. 3. Виды физических явлений; физические, химические и геометрические эффекты. Применение эффектов и явлений при решении изобретательских задач.</td>
<td>2 2 -</td>
<td>Конспект лекций</td>
<td>2-6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Методы иррационального мышления. 1. Методы образов. 2. Методы направленного воображения (визуализационные методы). 3. Метод поиска связей, аналогий, ассоциаций.</td>
<td>3 2 -</td>
<td>Конспект лекций</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Методы развития идей: метод вопросов. 2. Коллективные методы поиска идей: метод «мозгового штурма» и его разновидности, синектический метод, метод конференции идей.</td>
<td>2 3 -</td>
<td>Конспект лекций</td>
<td>1-3</td>
<td>9</td>
</tr>
</tbody>
</table>
4. Информационно-методическая часть

4.1 Методические рекомендации по организации и выполнению самостоятельной работы студентов

При изучении дисциплины используются следующие формы самостоятельной работы: - контролируемая самостоятельная работа в виде решения индивидуальных заданий во время проведения практических занятий;
- подготовка рефератов и презентаций по индивидуальным темам.

4.2 Перечни рекомендуемых средств диагностики компетенций, процедуры оценки знаний студента и методики формирования итоговой отметки

Для диагностики компетенций и оценки знаний используются следующие формы:
- устная форма в виде собеседования на практических занятиях, докладов, подготовленных по индивидуальным темам, участия с докладами на научных конференциях;
- письменная форма в виде письменных ответов по практическим работам;
- устно-письменная форма, в виде ответов по домашним практическим упражнениям с их устной защитой;
- техническая форма, в виде подготовки презентаций по индивидуальным темам.

4.3 Основная литература
4.Алдер Г. Техника развития интеллекта.- СПб.: Питер, 2001.- 192с.
5. Микалко М. Игры для разума. Тренинг креативного мышления - СПб.: Питер, 2008.- 448с.

4.4 Дополнительная литература
11. Айзенк Г., Кэмпин Л. Природа интеллекта — битва за разум: Как формируются умственные способности. — М.: Эксмо-Пресс, 2002.— 352с
13. Глазунов В.Н. Поиск принципов действия технических систем. М. Речн. Трасп. 1990

4.5. Компьютерные программы и научно методические материалы
1. Электронный учебно-методический комплекс дисциплины "Основы инженерного творчества" для студентов специальности 36 01 01 "Технология машиностроения". Электронная библиотека УО ГТТУ имени П.О. Сухого (ЭУМКД228), http://elibs.gstu.by/handle/220612/2122

5. Протокол согласования учебной программы по изучаемой учебной дисциплине с другими дисциплинами специальности

<table>
<thead>
<tr>
<th>Наименование дисциплины, с которыми требуется согласование</th>
<th>Название кафедры</th>
<th>Предложения об изменениях в содержании учебной программы по изучаемой дисциплине</th>
<th>Решение, принятное кафедрой, разработавшей учебную программу</th>
</tr>
</thead>
<tbody>
<tr>
<td>Технические дисциплины специальности и специализации</td>
<td>Технология машиностроения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Технология машиностроения. Технологическая оснастка, Проектирование и производство заготовок, Проектирование технологических процессов</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Зав. кафедрой

М.П.Кульгейко