УДК 621.9.02

ВЛИЯНИЕ КОНСТРУКТИВНЫХ ВАРИАНТОВ СБОРНОГО ОСЕВОГО ИНСТРУМЕНТА НА ЕГО СТАТИЧЕСКИЕ ПОКАЗАТЕЛИ

М. И. МИХАЙЛОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Анализ литературы по исследованиям сборного инструмента в условиях статических нагрузок выявил, что большой вклад сделан исследованиями жесткости в УДН им. П. Лумумбы [1]–[5]. Многими авторами жесткость сборного инструмента изучалась на специально разработанных стендах, на которых определялась доля смещения режущей кромки инструмента в результате смещения отдельных элементов или в процессе резания, а также численным моделированием. По результатам измерений перемещений оценивалось влияние жесткости отдельных элементов на суммарную жесткость инструмента. Сила, с которой нагружался инструмент, соответствовала результирующей силе резания. Перед испытаниями на жесткость производился контроль прямолинейности и шероховатости опорной поверхности пластины и гнезда в державке под пластину. Это позволяло оценивать как конструктивный вариант исполнения инструмента, так и качество его изготовления.

Интересными представляются исследования жесткости сборных торцовых фрез с механическим креплением режущих пластин [6], [7]. Испытаниям подверглись фрезы с радиальным и тангенциальным расположением режущих пластин, а также фрезы с инструментальными блоками. В результате статических нагружений фрез было выявлено, что наибольшей жесткостью по оси Z обладает экспериментальная фреза конструкции ВНИИ с тангенциальным расположением режущих пластин. При больших нагрузках жесткость системы «режущая пластина – корпус» у этой фрезы снижается, а у остальных типов фрез повышается. Для всех типов исследованных фрез, за исключением экспериментальной фрезы ВНИИ, доля перемещения режущей пластины по координате Z за счет перемещения кассеты составляет 50 %.

Для повышения производительности осевой обработки углублений под головки крепежных элементов применяют комбинированные инструменты. Точность обработки такими инструментами зависит от конструктивных элементов корпуса инструмента и от способов их соединения [8]–[10].

Цель работы – повышение статической точности комбинированного осевого инструмента путем оптимизации формы соединительных элементов.

Методика исследования

Основными задачами при проведении исследований были:

- построение 3D-модели инструмента в программном комплексе SolidWorks;
- определение статических деформаций в модели осевого инструмента;
- определение распределений напряжений;
- определение запаса прочности;
- определение распределений перемещений.

Процесс создания модели в SolidWorks начинался с построения опорного тела и последующего добавления или вычитания материала.

Исходными данными для расчетов являлись значения силы резания, геометрические параметры инструмента, физико-механические и теплофизические свойства материала режущей части и обрабатываемой заготовки.

Параметры конечно-элементной сетки приведены в табл. 1.

Таблица 1

Параметр	Значение
Тип сетки	Сетка на твердом теле
Используемое разбиение	Стандартная сетка
Сглаживание поверхности	Вкл
Проверка Якобиана	4 Points
Размер элемента	1,7309 мм
Допуск	0,33654 мм
Количество элементов	8261
Количество узлов	13738

Параметры конечно-элементной сетки

Анализировалось влияние конструктивных вариантов осевого инструмента на его статические показатели. При этом рассматривались различные варианты нагружения на комбинированный инструмент, варианты конструктивного исполнения корпуса инструмента и варианты соединения отдельных частей инструмента.

Расчетные значения сил резания, прикладываемые на каждую режущую пластину, были равны 300 H, при этом в первом варианте они были приложены к двум пластинам, а во втором – ко всем четырем.

Результаты расчетов приведены в табл. 2.

Таблица 2

Результаты расчетов напряженно-деформированного состояния инструмента

δ = 0,00166 мм

пластин

Результаты расчетов позволяют заключить, что приложение нагрузок к четырем пластинам уравновесило конструкцию инструмента, что привело к уменьшению максимальных перемещений в 1,73 раза при незначительном изменении максимальных суммарных напряжений.

Влияние способа соединения элементов комбинированного инструмента производили для следующих режимов резания: диаметр отверстия после сверления Ø 38H12; глубина – 60 мм; скорость резания v = 199 м/мин; подача s = 0,18 мм/об.; мощность резания N = 17 кВт; осевая сила $P_{oc} = 5081$ Н; момент M = 97 Нм. Так как корпус комбинированного инструмента состоит из двух ступеней 2, 4 (табл. 3) и центрирующей части 3, то рассматривались различные варианты конструктивного исполнения этих составляющих. В первом варианте первая ступень выполнена цилиндрической, центрирующая часть 3 – цилиндрическая. Во втором варианте первая ступень выполнена с конусом увеличенного диаметра, центрирующая часть 3 – цилиндрическая. В третьем варианте первая ступень выполнена с конусом увеличенного диаметра, центрирующая часть 3 – цилиндрическая. В третьем варианте первая ступень выполнена с конусом увеличенного диаметра, центрирующая часть 3 – коническая. Результаты расчетов приведены в табл. 3.

Таблица 3

Результаты расчетов напряженно-деформированного состояния комбинированного инструмента

Продолжение табл. 3

Анализ результатов, приведенных в табл. 2 и 3, позволяет заключить, что применение второго конструктивного варианта позволит уменьшить максимальные значения эквивалентных напряжений в 1,23 раза, а максимальные эквивалентные перемещения – в 1,18 раза, при этом повысился минимальный коэффициент запаса текучести в 1,31 раза. Применение третьего конструктивного варианта приводит к росту максимальных значений эквивалентных напряжений в 1,003 раза, а максимальных эквивалентных перемещений – в 1,03 раза, при этом снизился минимальный коэффициент запаса текучести в 1,1 раза.

Окончание табл. 3

Заключение

Сравнивая распределения эквивалентных напряжений, можно заключить, что зона максимальных значений в первом и третьем вариантах расположена на стыке двух ступеней инструмента, а во втором варианте – в зоне режущей части сверла, что позволяет оптимизировать конструкцию комбинированного инструмента.

Литература

- Хамуда, С. Н. Экспериментальное исследование жесткости сборных торцевых фрез по их статическим характеристикам / С. Н. Хамуда, К. Г. Громаков, А. Д. Шустиков // Исследование процессов обработки металлов и динамики технологического оборудования. – М., 1982. – С. 44–49.
- 2. Шустиков, А. Д. Анализ качества сборных проходных резцов / А. Д. Шустиков. М. : НИИМаш, 1981. 40 с.
- 3. Способ контроля качества инструмента : а. с. 2895679 СССР : МКИ5 В23В / А. Д. Шустиков [и др.] ; дата публ.: 07.12.1981.
- Вольвачев, Ю. Ф. Оценка качества сборных проходных резцов по статическим и динамическим характеристикам на полуавтоматических испытательных стендах : автореф. дис. ... канд. техн. наук : 05.03.01 / Ю. Ф. Вольвачев ; Мосстанкин. – М., 1953. – 18 с.
- 5. Малыгин, В. И. Модель напряженно-деформированного состояния режущего элемента сборного инструмента / В. И. Малыгин, Н. В. Лобанов // Вестн. машиностроения. – 2000. – № 2. – С. 22–26.
- Гречишников, В. А. Исследование деформированного состояния сборного режущего элемента методом конечных элементов / В. А. Гречишников, С. В. Лукина, А. И. Веселов // Конструкторско-технологическая информатика 2000 : материалы IV Междунар. конгр., Москва, 2000 г. / МГТУ. М., 2000. Т. 1. С. 158–160.
- Когель, И. З. Исследование жесткости узлов крепления пластин твердого сплава в корпусе инструмента и ее влияние на стойкость лезвия при торцевом фрезеровании : автореф. дис. ... канд. техн. наук : 05.03.01 / И. З. Когель ; Мосстанкин. – М., 1985. – 22 с.
- 8. Systeme d'outil equilibre multi-fonctions. TraMetal ; Revue technique mensuelle du travail des metaux. 2000. № 51. P. 14–16.
- Лукина, С. В. Система автоматизированного проектирования сборного режущего инструмента / С. В. Лукина // Конструкторско-технологическая информатика 2000 : материалы IV Междунар. конгр., Москва, 2000 г. : МГТУ. – М., 2000. – Т. 2. – С. 33–36.
- Михайлов, М. И. Сборный металлорежущий механизированный инструмент: Ресурсосберегающие модели и конструкции / М. И. Михайлов ; под ред. Ю. М. Плескачевского. – Гомель : ГГТУ им. П. О. Сухого, 2008. – 339 с.

Получено 01.03.2017 г.