УДК 631.35

ОПТИМИЗАЦИЯ КОНСТРУКЦИИ МОСТА УПРАВЛЯЕМЫХ КОЛЕС КОСИЛКИ САМОХОДНОЙ НА ОСНОВЕ АНАЛИЗА ЕГО ТВЕРДОТЕЛЬНОЙ МОДЕЛИ

А. Н. КОНДРАШОВА, Д. В. ДЖАСОВ

Научно-технический центр комбайностроения OAO «Гомсельмаш», Республика Беларусь

В. Б. ПОПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Ввеление

Одним из наиболее важных и ответственных узлов самоходной косилки, обеспечивающих ей необходимые ходовые свойства, является мост управляемых колес (рис. 1). Он представляет собой качающуюся балку, установленную в шарнире, который расположен на раме машины. За счет качания моста управляемых колес в поперечном направлении обеспечивается копирование рельефа поля. По бортам моста установлены поворотные кулаки, которые вращаются вокруг шкворней, прикрепленных к кронштейнам балки моста. Поворот каждого кулака осуществляется гидроцилиндром, который одним концом шарнирно закреплен на балке моста, а другим концом — на рычаге кулака. Кулаки правого и левого борта соединены рулевой тягой, которая обеспечивает согласованный поворот обоих колес. За счет механизма поворота рулевой трапеции осуществляется согласованный поворот колес косилки в обе стороны.

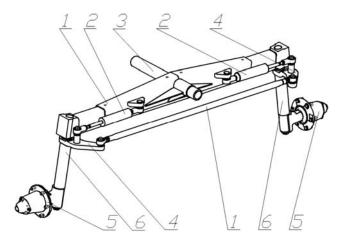


Рис. 1. Конструкция моста управляемых колес косилки самоходной: 1 — балка моста; 2 — гидроцилиндры; 3 — ось качания балки моста; 4 — рычаги кулака; 5 — ступица колеса; 6 — стойка кулака

Отличительной особенностью конструкции управляемого моста косилки является большой клиренс, который необходим для укладки скошенной технологической массы между колесами. Из-за этой конструктивной особенности возникла необхо-

димость взаимного расположения элементов механизма поворота колес в разных плоскостях, а также организации большой длины шкворней и стоек кулаков.

В литературе широко освещены особенности проектирования мостов управляемых колес различных типов колесных машин [1]–[5], однако недостаточно внимания уделено мостам управляемых колес высококлиренсных самоходных косилок.

Цель работы — создание и анализ модели напряженно-деформированного состояния управляемого моста, а также оптимизация конструкции по критериям минимальной материалоемкости с одновременным обеспечением ее жесткости и прочности для различных режимов эксплуатации косилки.

Основная часть

Для определения направлений оптимизации конструкции моста высококлиренсной самоходной косилки необходимо сформировать режимы нагружения, которые обеспечат наибольшие нагрузки в элементах конструкции, провести прочностной расчет с анализом результатов расчета на предмет выявления опасных зон с точки зрения прочности его элементов.

При движении косилки по дороге либо по пересеченной местности на управляемый мост действует часть веса машины с динамическим догружением.

При повороте колес на кулаки и балку моста действуют силы от гидроцилиндров, приложенные в местах их крепления. Максимальная величина сил, действующих на элементы моста от гидроцилиндров, достигается при повороте колес на месте, когда динамическое догружение моста отсутствует. В этом случае силы от правого и левого гидроцилиндров разные, так как при повороте колес в одну сторону в каждом гидроцилиндре рабочими являются разные полости: в одном – поршневая, в другом – штоковая.

Величины этих сил могут быть вычислены по величине потребного давления для поворота колес на месте, которое определяется путем проведения кинематического и силового расчета рычажного механизма поворота колес по методике, приведенной в литературе [6], [7].

Максимально возможная величина сил, действующих на элементы моста от гидроцилиндров, может быть вычислена по максимальному давлению в гидросистеме рулевого управления, ограниченному настройкой предохранительного клапана. Для реализации этого режима необходимо обеспечить неподвижность хотя бы одного из колес, что в реальных условиях эксплуатации машины соответствует блокировке колеса от поворота. На основании описанных выше силовых факторов формируются режимы нагружения моста.

Режимы нагружения моста

Для проведения расчета на прочность моста управляемых колес косилки само-ходной выбраны два режима нагружения, соответствующие различным условиям эксплуатации, не пересекающимся во времени, и формирующие наибольшие нагрузки в элементах конструкции.

Первый режим соответствует движению косилки на транспортной скорости по полевой дороге. На мост действует вертикальная нагрузка от веса опирающейся на него части машины с коэффициентом динамики в вертикальной плоскости (1):

$$R = mgk_{\pi}, \tag{1}$$

где m — масса комбайна, приходящаяся на управляемый мост; g — ускорение свободного падения; $k_{\scriptscriptstyle \perp}$ — коэффициент динамики в вертикальной плоскости.

Величина коэффициента динамики для этого режима принята равной $k_{_{\rm I}}=2$, что соответствует экспериментально подтвержденному значению. Силы от подрулива-

ния на этом режиме, действующие от гидроцилиндров на элементы моста, незначительны и ими можно пренебречь.

Второй режим нагружения имитирует поворот колес на месте в среднем положении механизма при условии блокирования от поворота одного из колес. В этом положении плечи гидроцилиндров максимальны и осуществляется максимальное нагружение элементов конструкции.

Силы от гидроцилиндров для этого режима рассчитаны по максимальному давлению (2), (3) в гидросистеме рулевого управления:

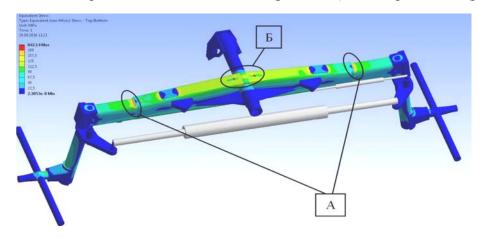
$$S_{\text{int}} = \pi \frac{D^2}{4}; \tag{2}$$

$$S_{\text{порш}} = \frac{\pi}{4} (D^2 - d^2); \tag{3}$$

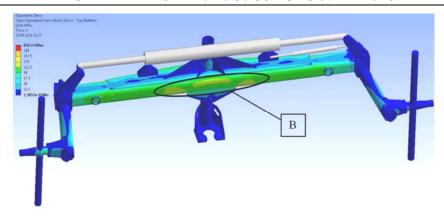
$$F_{\text{IIIT}} = p_{\text{max}} S_{\text{IIIT}}; \tag{4}$$

$$F_{\text{порш}} = p_{\text{max}} S_{\text{ш}}, \tag{5}$$

где $S_{\text{шт}}$ и $S_{\text{порш}}$ – площадь штоковой и поршневой области соответственно; D и d – диаметр штока и поршня соответственно; p_{max} – максимальное давление в гидросистеме.


Одновременно на этом режиме на мост действует вертикальная нагрузка от веса опирающейся на него части машины без динамического догружения.

Напряженное состояние моста управляемых колес


Картину напряженного-деформированного состояния моста управляемых колес косилки целесообразно осуществить путем построения твердотельной модели моста с последующим приложением нагрузок и расчетом в одном из конечно-элементных пакетов.

На рис. 2—4 показаны поля эквивалентных напряжений в элементах моста управляемых колес косилки в условиях первого режима нагружения.

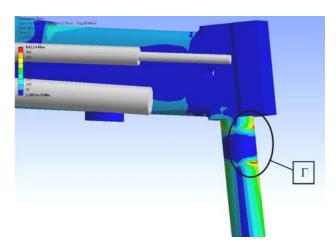

Как показывает анализ результатов расчета, наиболее нагруженными на этом режиме оказалась центральная часть балки моста (рис. 2 и 3) и шкворни колес (рис. 4).

Рис. 2. Поля эквивалентных напряжений в конструкции для первого режима нагружения (вид сверху)

Рис.3. Поля эквивалентных напряжений в конструкции для первого режима нагружения (вид снизу)

Puc. 4. Поля эквивалентных напряжений в конструкции для первого режима нагружения (правый борт)

Пики напряжений присутствуют в центральной части балки в зонах крепления оси качания (зоны G, рис. G), в зоне приварки усилителя балки (зона G), рис. G) и в верхней части шкворней (зона G), рис. G).

На рис. 5 изображены поля эквивалентных напряжений в конструкции балки моста для второго режима нагружения. Как следует из результатов расчета, максимальные напряжения для этого режима присутствуют в местах приварки кронштейнов крепления гидроцилиндров (зона Д), крепления шарниров гидроцилиндров на кулаках (зона Е) и верхней части стоек кулаков (зона Ж).

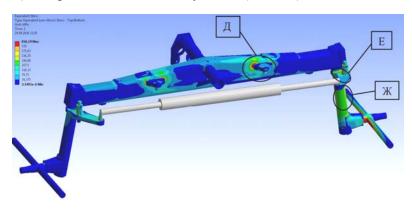


Рис. 5. Поля эквивалентных напряжений в конструкции для второго режима нагружения

1,63

Результаты расчета запасов прочности элементов конструкции управляемого моста для разных режимов нагружения сведены в таблицу.

Зоны действия максимальных напряжений	Запас прочности по пределу текучести
Зоны приварки усилителя к балке моста (зона А, рис. 2)	1,77
Верхняя зона центральной части балки (зона Б, рис. 2)	2,03
Нижняя зона центральной части балки (зона В, рис. 3)	2,59
Верхняя часть шкворней (зона Г, рис. 4)	2
Зона приварки кронштейнов крепления гидроцилиндров (зона Д, рис. 5)	1,03
Зона приварки оси крепления гидроцилиндра на рычаге (зона Е, рис. 5)	2,5

Результаты расчета запасов прочности элементов конструкции

По результатам расчета в наиболее нагруженной зоне (зона Д, рис. 5) для режима действия максимальной силы от гидроцилиндров запас прочности по пределу текучести составляет всего 1,03 (см. таблицу). С учетом того, что данный режим является аварийным, такой запас прочности для опытного образца машины принято признать достаточным и проверить работоспособность этой зоны в реальных условиях эксплуатации при проведении испытаний опытного образца.

Как показали полевые испытания опытного образца косилки, мост управляемых колес, рассчитанный по сформированным режимам нагружения и имеющий приведенное выше напряженное состояние на этих режимах, обеспечивает выполнение возложенных на него функций с достаточным уровнем надежности.

Заключение

Верхняя часть стоек кулаков (зона Ж, рис. 5)

На основании вышеизложенного можно сделать следующие выводы:

- 1. Сформированные режимы нагружения позволяют с достаточной долей адекватности оценить работоспособность моста управляемых колес косилки самоходной в условиях реализации максимально возможных нагрузок. Полученная модель напряженно-деформированного состояния моста управляемых колес для различных режимов эксплуатации позволяет провести всесторонний анализ конструкции и сформировать рекомендации по ее совершенствованию.
- 2. В связи с тем, что отличительной особенностью конструкции управляемого моста косилки является большой клиренс, на режиме движения косилки самоходной по полевой дороге с транспортной скоростью наиболее нагруженными зонами являются центральная часть балки моста и верхние части стоек кулаков. На режиме поворота колес на месте наиболее нагружены зоны крепления гидроцилиндров как на балке моста и на кулаках, а также стойки кулаков.
- 3. Конструкция моста для данной косилки с используемым конкретным адаптером обеспечивает выполнение возложенных на него функций с достаточным уровнем надежности, что подтвердили полевые испытания.
- 4. В случае изменения условий агрегатирования косилки либо увеличения ее эксплуатационной массы для совершенствования конструкции моста управляемых колес целесообразно рассмотреть возможность изменения конструкции моста следующим образом:
- изготовить балку моста из профиля переменного сечения с наибольшей величиной в центральной части в районе шарнира качания (зона Б, рис. 2 и зона В, рис. 3);

- увеличить ширину кронштейнов крепления осей гидроцилиндров на балке и обеспечить плавный переход к балке для снижения локальных напряжений по бокам (зона Д, рис. 5);
- для крепления гидроцилиндра на кулаке применить ось с дополнительным переходом диаметра, в виде фланца, обеспечивающим ее приварку к кулаку на большем диаметре (зона E, рис. 5);
- применить для поворота колес механизм с измененной кинематикой, с большим количеством звеньев с использованием промежуточных переходов, обеспечивающих приложение управляющих усилий в непосредственной близости к колесу. Это позволит существенно снизить нагруженность стоек кулаков (зона Ж, рис. 5), к которым крепятся колеса.

Литература

- 1. Гуськов, В. В. Тракторы, теория / В. В. Гуськов. М. : Машиностроение, 1988. 210 с.
- 2. Наумов, Е. С. Рулевое управление колесных тракторов : учеб. пособие / Е. С. Наумов, В. М. Шарипов, И. М. Эглит. М. : МАМИ, 1999. 42 с.
- 3. Гришкевич, А. И. Автомобили. Конструкция, конструирование и расчет. Системы управления и ходовая часть / А. И. Гришкевич. Минск : Выш. шк., 1987. 200 с.
- 4. Раймпель, Й. Шасси автомобиля / Й. Раймпель. М. : Машиностроение, 1983. 356 с
- 5. Раймпель, Й. Шасси автомобиля: Рулевое управление / Й. Раймпель. М. : Машиностроение, 1987. 232 с.
- 6. Рехлицкий, О. В. / Математическое описание механизма поворота колес самоходной сельскохозяйственной машины / О. В. Рехлицкий, Ю. В. Чупрынин, Д. В. Джасов // Механика машин, механизмов и материалов. 2014. № 2 (27). С. 23–29.
- 7. Джасов, Д. В. Применение векторного анализа для математического описания пространственных рычажных механизмов на примере моста управляемых колес сельскохозяйственной машины / Д. В. Джасов, А. Я. Машук, Ю. В. Чупрынин // Актуальные вопросы машиностроения : сб. науч. тр. Минск, 2013. Вып. 2. С. 102–106.

Получено 27.10.2016 г.