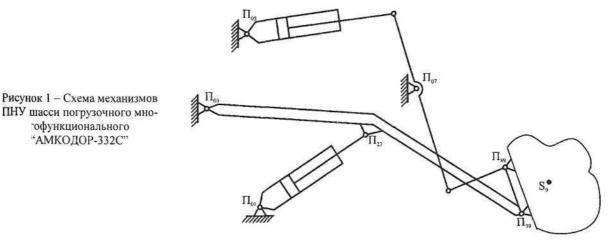
УДК 658.512.011


## ОПРЕДЕЛЕНИЕ ГРУЗОПОДЪЕМНОСТИ ПОДЪЕМНО-НАВЕСНОГО УСТРОЙСТВА ШАССИ ПОГРУЗОЧНОГО МНОГОФУНКЦИОНАЛЬНОГО "АМКОДОР 332C"

## В. Б. ПОПОВ

Гомельский государственный технический университет им. П.О. Сухого

Эффективность агрегатирования шасси погрузочного многофункционалного (ШПМ) с различными рабочими орудиями и машинами определяется в первую очередь грузоподъемностью его подъемно-навесного устройства (ПНУ). ПНУ — это необходимый комплект механизмов, предназначенных для связи мобильного энергоносителя (ШПМ) с рабочим орудием или машиной.

ПНУ ШПМ состоит из объемного гидропривода, гидроцилиндры которого движут расположенные симметрично относительно продольной плоскости симметрии ШПМ механизмы подъема стрелы (МПС) и поворота траверсы (МПТ), на которой жестко крепится рабочее орудие (РО). На рисунке 1 представлен плоский аналог механизмов ПНУ шасси "АМКОДОР-332С" — структурная схема с РО в виде ковша.



Устройство механизма подъема стрелы (МПС) следующее: на раме ШПМ шарнирно закреплена стрела, поднимающаяся при помощи гидроцилиндра (рисунок 1). На стреле шарнирно закреплен механизм поворота траверсы (МПТ), включающий гидроцилиндр, гильза которого шарнирно закреплена на раме шасси, а што-ком через рычаг и тягу связан с траверсой. Структурный анализ показывает, что в проекции на продольную плоскость симметрии ШПМ его МПС представляет собой одноподвижный четырехзвенник со средней поступательной парой, а МПТ идентифицируется одноподвижным шестизвенником.

Аналитическое исследование механизмов ПНУ было выполнено на основе метода векторных контуров (рисунок 2). В результате геометрического анализа МПС были получены аналитические выражения для координат центра тяжести стрелы  $S_3$  и оси подвеса стрелы (центр шарнира  $\Pi_{09}$ ) в зависимости от обобщенной координаты  $S_3$ :

$$X_{S3}(S) = X_{03} + L_{S3} \cdot \cos[\varphi_3(S) + \Delta\varphi], \ Y_{S3}(S) = Y_{03} + L_{S3} \cdot \sin[\varphi_3(S) + \Delta\varphi], \tag{1}$$

$$X_{09}(S) = X_{03} + L_{39} \cdot \cos[\varphi_3(S) + \Delta \varphi_1], \ Y_{09}(S) = Y_{03} + L_{39} \cdot \sin[\varphi_3(S) + \Delta \varphi_1],$$
 (2)

где  $\Delta \phi$  — угол между векторами  $\vec{L}_3$  и  $\vec{L}_{S3}$ ;  $\Delta \phi_1$  — угол между векторами  $\vec{L}_3$  и  $\vec{L}_{39}$  .

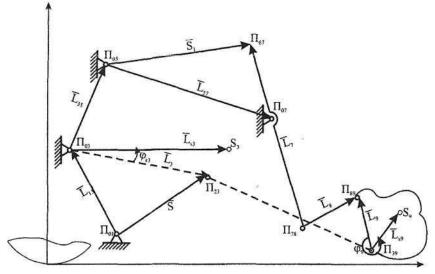



Рисунок 2 – Векторная интерпретация механизмов подъема стрелы и поворота траверсы ПНУ ПППМ

По результатам анализа МПТ, были определены координаты центра тяжести РО ( $S_9$ ) в зависимости от обобщенных координат S,  $S_1$ :

$$X_{S9}(S, S_1) = X_{09}(S) + L_{S9} \cdot \cos[\varphi_9(S_1) + \varphi_{S9}], Y_{S9}(S, S_1) = Y_{09}(S) + L_{S9} \cdot \sin[\varphi_9(S_1) + \varphi_{S9}],$$
(3)

где  $\phi_9$  — угол, образуемый вектором  $\vec{L}_9$  (геометрическая модель траверсы) в правой декартовой системе координат;  $\phi_{S9}$  — угол между векторами  $\vec{L}_9$  и  $\vec{L}_{S9}$  в момент начала движения закрепленного на траверсе PO.

Влияние МПС и МПТ на изменение координат центра тяжести РО (3) однозначно связано с изменением независящих друг от друга обобщенных координат S и  $S_1$ . Причем первая изменяет положение оси подвеса стрелы ( $\Pi_{09}$ ) относительно ШПМ, а вторая – положение траверсы ( $L_9$ ) относительно оси подвеса.

Понятие грузоподъемности ПНУ ШПМ вводено по аналогии с грузоподъемностью ПНУ колесного трактора. Грузоподъемность ПНУ трактора определяется массой поднимаемого груза (m) при максимальной величине усилия на штоке гидроцилиндра механизма навески (MH)  $F_{\rm шт}^{\rm max}$ :

$$m = \frac{F_{\rm int}^{\rm max} \eta_{\rm MH}}{gI_{\rm S}},\tag{4}$$

где g – ускорение свободного падения;  $I_S$  – передаточное число МН;  $\eta_{\rm MH}$  – КПД МН.

Передаточное число МН представляет собой аналог вертикальной скорости центра тяжести РО или кинематическую передаточную функцию 1-го порядка, зависящую только от внутренних параметров механизмов ПНУ ШПМ.

Максимально сила на штоке гидроцилиндра МПС определяется по выражению:

$$F_{\rm urr}^{\rm max} = p_{\rm ru}^{\rm max} F_{\rm H} \,, \tag{5}$$

где  $F_{\rm H}$  – площадь поршня со стороны напорной магистрали.

В выражении (8) верхняя граница  $p_{\text{гц}}^{\text{max}}$  определяется настройкой предохранительного клапана гидропривода ПНУ.

В приведенной к штоку гидроцилиндра нагрузке —  $mgI_S$ , которая получена из выражения (4), не учитываются возникающие в момент начала подъема силы инерции и масса звеньев механизма навески. Практика эксплуатации показывает, что для ШПМ, с одной стороны, невозможно пренебречь массой стрелы, а с другой — можно не учитывать силы инерции звеньев вследствие относительной краткости переходного процесса в нагруженном гидроприводе и тихоходности МПС.

С учетом принятых допущений из выражения (7) получим уравнение установившегося движения двух нагруженных поршней силовых гидроцилиндров:

$$(m_{po}I_{S9} + m_{crp}I_{S3})g = F_{uut}^{max} - F_{ru}(S),$$
 (6)

где  $I_{S9}$ ,  $I_{S3}$  — аналоги вертикальной скорости характерных точек — центров тяжести рабочего орудия и стрелы.

Передаточное число МПС ( $I_{59}$ ) и аналог вертикальной скорости центра тяжести закрепленного на траверсе ро—синонимы. Аналоги вертикальных скоростей характерных точек МПС и МПТ получают дифференцированием по независимой переменной t выражений (1)–(3), разделив затем результаты на независимые друг от пруга  $\dot{S}$ ,  $\dot{S}_1$  соответственно:

$$I_{S3}(S) = \varphi_3'(S)L_{S3}\cos[\varphi_3(S) + \Delta\varphi_1],$$
 (7)

$$I_{00}(S) = \varphi_3'(S)L_{30}\cos(\varphi_{30}(S)), \tag{8}$$

$$I_{SQ}(S, S_1) = I_{QQ}(S) + \varphi'_{S}(S_1) \cdot U_{QQ}(S_1) L_{SQ} \cos(\varphi_{Q}(S_1)),$$
(9)

где  $\varphi_3'(S)$  и  $\varphi_5'(S_1)$  – аналоги угловой скорости звеньев  $L_3$  и  $L_5$ ;  $I_{00}(S)$  – аналог вертикальной скорости оси подвеса стрелы;  $U_{97}(S_1)$  – передаточное отношение угловых скоростей звеньев  $L_9$  и  $L_7$  МПТ.

Поскольку аналоги вертикальных скоростей характерных точек изменяются в зависимости от текущего положения звеньев МПС и МПТ, постольку и грузоподъемность ПНУ –  $G(S, S_1)$  в диапазоне изменения обобщенных координат  $(S, S_1)$ , как это следует из уравнения (9), будет величиной переменной:

$$G(S, S_1) = \frac{p_{\text{cu}}^{\text{max}} F_{\text{tt}} - F_{\text{ru}}(S)}{\left[I_{S9}(S, S_1) + I_{S3}(S) \frac{m_{\text{crp}}}{m_{\text{po}}}\right] g}.$$
 (10)

Конструктора интересует, как правило, минимальное значение грузоподъемности, поскольку РО с таким весом устойчиво перемещается ПНУ во всем диапазоне изменения (S, S<sub>1</sub>). В этом положении аналог вертикальной скорости центра тяжести РО – наиболее влиятельный выходной параметр МПС, становится максимальным. Грузоподъемность можно рассматривать как обобщенный показатель качества ПНУ, зависящий, с одной стороны, от параметров гидропривода – давления в гидроцилиндре и площади его поршня со стороны напорной магистрали, а с другой – от параметров механизмов ПНУ и рабочего органа – их масс, передаточных чисел и КПД.