

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Материаловедение в машиностроении»

химия нефти

методические указания по курсу «Химия» для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения

Электронный аналог печатного издания

Рекомендовано к изданию научно-методическим советом механико-технологического факультета ГГТУ им. П. О. Сухого (протокол № 5 от 15.06.2010 г.)

Авторы: Т. И. Александрова, О. А. Стоцкая, В. П. Русов, Л. А. Кенько

Рецензенты: зав. отд. исследования нефти и нефтепродуктов РУП ПО «Белоруснефть» БелНИПИнефть канд. техн. наук, доц. А. Г. Ракутько; зав. каф. «Разработка и эксплуатация нефтяных месторождений и транспорт нефти» ГГТУ им. П. О. Сухого канд. техн. наук А. В. Захаров

Химия нефти: метод. указания по курсу «Химия» для студентов специальности X46 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» днев. и заоч. форм обучения / Т. И. Александрова [и др.]. – Гомель: ГГТУ им. П. О. Сухого, 2011. – 50 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: http://lib.gstu.local. – Загл. с титул. экрана.

ISBN 978-985-420-925-8.

Изложены основные понятия и аспекты органической химии, теория Бутлерова, классификация органических соединений, свойства основных углеводородов, содержащихся в нефти и образующихся из нефти.

Рассмотрены физические и химические свойства нефти, способы ее переработки, свойства и применение продуктов переработки нефти.

Для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения.

УДК 665.03(075.8) ББК 35.514я73

ISBN 978-985-420-925-8

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2011

Введение

Нефть и продукты ее естественного выхода на земную поверхность — асфальты и битумы — известны с глубокой древности. В древнем Вавилоне и Византии их использовали как зажигательную смесь. В древнем Египте, Риме, в междуречье Тигра и Евфрата их применяли как вяжущие и гидроизоляционные материалы при строительстве дорог, акведуков и т. д.

Свое название нефть получила от мидийского слова нафата (просачивающаяся, вытекающая). В русский язык слово «нефть» вошло в XVI в.

С конца XVIII в. продукт переработки нефти – керосин стали использовать для освещения улиц и жилищ, а с XIX в. нефтепродукты стали основным видом топлива для транспортных средств.

В настоящее время 80–90 % нефти перерабатывается в различные виды топлива и смазочные материалы, значительная часть нефти идет на химический и нефтехимический синтез.

Нефть представляет собой сложную смесь жидких углеводородов, в которой растворены твердые углеводороды, смолистые вещества, гетерогенные соединения (О-, S-, N-содержащие). В нефти растворены и газообразные углеводороды. Углеводороды нефти в основном относятся к алканам, циклоалканам, нафтенам и аренам.

В отличие от других видов горючих ископаемых нефть относительно легко добывается и транспортируется (по трубопроводам) и довольно просто перерабатывается в широкую гамму продуктов. Поэтому экономика государств зависит от нефти больше, чем от других энергоносителей.

1. Избранные главы органической химии

1.1. Органические вещества и предмет органической химии

Отдельные вещества, причисляемые теперь к органическим соединениям, были известны человечеству еще в древности, хотя в чистом виде их удалось получить значительно позже.

В глубокой древности люди научились получать органические вещества из растительных и животных источников.

На протяжении многих лет химикам не удавалось получать искусственным путем вещества, которые они умели выделять из животных и растительных организмов. Считалось, что превратить минеральные (т. е. неорганические) вещества в органические обычными физическими и химическими методами невозможно. Ошибочно предполагали, что такие превращения могут происходить только в живых организмах с помощью особой таинственной «жизненной силы». Учение о «жизненной силе» называется витализм от латинского vita — жизнь. Однако исследования ученых середины XIX века опровергли эту идеалистическую теорию.

В 1828 г. Велер сделал выдающееся открытие: при нагревании цианида аммония ему удалось получить мочевину — продукт жизнедеятельности животных, входящий в состав мочи. В 1845 г. немецкий ученый Кольбе из древесного угля, хлора, серы и воды синтезировал уксусную кислоту — типичное органическое вещество. В 1850 г. Бертло синтезировал жиры — вещества, играющие важную роль в организме животных и человека.

Эти открытия и ряд других работ привели к краху идеалистической теории «жизненной силы».

Тогда же, в XIX в., органическая химия выделилась в самостоятельную отрасль химической науки.

Существует два определения органической химии:

- 1. Органическая химия это химия соединений углерода (но некоторые из этих соединений: CO и CO_2 , H_2CO_3 и ее соли изучаются неорганической химией).
- 2. Органическая химия это химия углеводородов и их производных.

Углеводороды (УВ) — это простейшие органические вещества, молекулы которых состоят только из атомов С и H, например: CH_4 , C_3H_6 , C_6H_6 и др.

Производные УВ – это продукты замещения атомов H в молекулах УВ на другие атомы или группы атомов. Кроме С и H, в состав многих органических веществ входят следующие элементы: O, N, S, P, Cl, Br и др.

Типичные органические вещества имеют ряд свойств, которые отличают их от типичных неорганических веществ.

 Таблица 1.1

 Различия неорганических и органических веществ

Типичные неорганические	Типичные органические
вещества	вещества
Ионные или полярные ковалентные	Неполярные или слабополярные
СВЯЗИ	ковалентные связи
Электролиты	Неэлектролиты
Твердые вещества с высокой	Жидкости или твердые вещества
температурой плавления	с низкой температурой плавления
Плавятся без разрушения	Разрушаются при нагревании
Не окисляются на воздухе, не горючи	Окисляются на воздухе, горючи
Растворимы в воде	Нерастворимы или плохо растворимы
	в воде

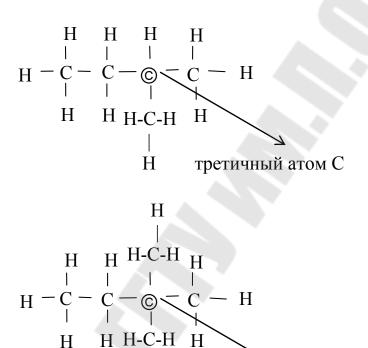
Молекулы органических веществ выражаются эмпирическими (показывают только состав вещества) и структурными (показывают химическое строение) формулами, например:

$$C_{2}H_{4}$$
 этилен $C_{2}H_{6}$ $C_{2}H_{$

1.2. Теория строения органических соединений А. М. Бутлерова

Основу современной органической химии составляет теория строения органических соединений, предложенная в 1861 г. великим русским ученым А. М. Бутлеровым.

Основные положения теории строения органических веществ А. М. Бутлерова заключаются в следующем:

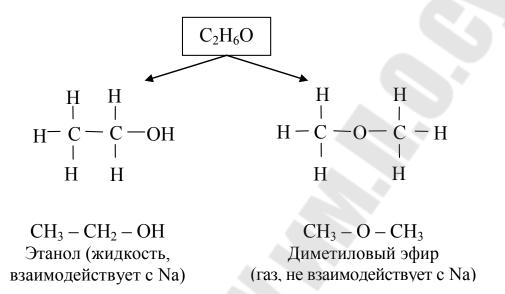

1. Атомы в молекулах органических веществ соединяются между собой в определенной последовательности согласно их валентности, причем атом углерода в органических соединениях четырехвалентен.

В органических соединениях атомы углерода соединяются друг с другом, образуя цепи (углеродный скелет). В образующихся цепях атом углерода может быть связан либо с одним соседним атомом углерода, либо с двумя, тремя или четырьмя.

Соответственно различают первичные, вторичные, третичные и четвертичные атомы углерода. В зависимости от наличия тех или иных атомов углерода цепи бывают:

а) *прямые*, или *неразветвленные* – содержат два первичных атома C (крайние в цепи), остальные – вторичные, например:

б) разветвленные – содержат хотя бы один третичный или один четвертичный атом С, например:



Н четвертичный атом С

в) *замкнутые*, или *циклы* – не содержат первичных атомов C, например:

2. Свойства органических веществ зависят не только от состава, но и от строения их молекул.

Например, два разных вещества имеют одинаковый состав, выражаемый одной эмпирической формулой, но различные структурные формулы:

Такие вещества, имеющие одинаковый состав, но разное строение молекул и различные свойства, называются *изомерами*. Изомеры имеют одинаковую эмпирическую формулу, но разные структурные формулы. Различают структурную и пространственную изомерию. Пространственную изомерию называют также стереоизомерией.

3. В молекулах органических веществ атомы и группы атомов влияют друг на друга. Это взаимное влияние определяет свойства веществ.

Рассмотрим, например, влияние углеводородного радикала на подвижность атома водорода в группе – OH, связанной с углеводородным радикалом.

Если группа – ОН связана с бензольным радикалом (бензольным кольцом), то атом водорода в ней подвижен и может замещаться на атом металла при взаимодействии со щелочью.

$$\begin{array}{cccc} OH & ONa \\ | & & | \\ \hline \\ \hline \\ \end{array} + NaOH & \longrightarrow & \begin{array}{cccc} \\ \hline \\ \end{array} + H_2O \end{array}$$

Если группа – ОН связана с алкильным радикалом, подвижность водорода в ней мала и он не может замещаться на металл при действии щелочи:

$$CH_3 - CH_2 - OH + NaOH \rightarrow$$
 реакция не идет

1.3. Основы классификации органических веществ

Органические вещества принято разделять на три большие группы:

- 1) ациклические соединения вещества, имеющие прямую или разветвленную, но обязательно не замкнутую цепь углеродных атомов;
- 2) карбоциклические соединения вещества, содержащие в составе своей молекулы кольца (циклы) только из углеродных атомов;
- 3) гетероциклические соединения вещества, содержащие в составе своей молекулы циклы, в которых кроме атомов углерода содержатся атомы других элементов (азота, кислорода, серы и др.), называемых гетероатомы.

В каждой группе от основных простейших веществ могут быть получены различные классы производных веществ в зависимости от функциональных групп (атомов или групп атомов, замещающих атомы водорода в основных соединениях).

Таблица 1.2 Классификация органических веществ по функциональным группам (X)

X	Название функциональ- ной группы	RX	Название класса	Примеры
-OH	Гидроксиль- ная группа	R-OH	Спирты фенолы	СН ₃ - СН ₂ - ОН
	(гидроксил)			\bigcirc OH
C = 0	Карбонильная группа (карбонил)	R_1 $C = O$	Кетоны	CH_3 $C = O$
- C H	Альдегидная группа	R - CH	Альдегиды	CH ₃ – C H

X	Название функциональ- ной группы	RX	Название класса	Примеры
- C OH	Карбоксильная группа (карбоксил)	R - COH	Карбоновые кислоты	CH ₃ -CH ₂ -COH
- c o	Сложноэфир- ная группа	R-C O R'	Сложные эфиры	$CH_3 - C$ O CH_3
		K		CI13
-NH ₂	Аминогруппа	$R - NH_2$	Первичные амины	$C_2H_5 - NH_2$
-NO ₂	Нитрогруппа	$R-NO_2$	Нитросое- динения	\sim NO ₂
$-NH_2$	Аминогруппы	NH ₂	Амино-	0//
- C O	+ карбоксил	$R \setminus C$	кислоты	$CH_3 - CH - C$
HO′		OH		NH ₂ OH

2. Углеводороды, содержащиеся в нефти и получающиеся из нее

2.1. Предельные углеводороды, физические и химические свойства, основные представители, применение

Углеводороды – органические соединения, в молекулы которых входят атомы лишь двух элементов – C и H.

Предельные, или насыщенные, углеводороды носят еще название *парафиновые углеводороды*, или *алканы*. В молекулах этих углеводородов атомы углерода связаны между собой простой одинарной связью, а все остальные валентности насыщены атомами водорода. Название парафины этот класс углеводородов получил от латинских слов parum – мало и affinitas – сродство, буквально «не имеющие сродства», т. е. обладающие малой склонностью к реакциям с другими веществами.

Родоначальник (первый представитель) предельных углеводородов – метан.

2.1.1. Нахождение алканов в природе

Парафины широко распространены в природе. Низшие члены этого ряда содержатся в природных газах, выделяющихся из земной коры (в основном это метан, этан, пропан). Они являются также главной составной частью нефтяного газа, который встречается в районах, богатых нефтью.

Насыщенные углеводороды со средней и высокой молекулярной массой содержатся в почти неисчерпаемых количествах во многих нефтях.

Земляной воск (озокерит, горный воск) содержат смесь высших, твердых парафиновых углеводородов. Земляной воск образуется путем частичного осмоления и полимеризации парафинистых масел нефти.

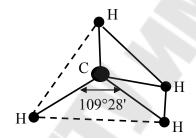
Низший парафиновый углеводород – метан – образуется в природе при брожении целлюлозы под действием бактерий (метановое брожение). Он содержится в пустотах между каменно-угольными пластами, в составе нефтяных газов, а также образуется при сухой перегонке древесины, торфа и угля, является болотным газом.

2.1.2. Гомологический ряд, строение, изомерия алканов

Гомологический ряд — это ряд соединений, обладающих сходным химическим строением, сходными свойствами и отличающихся друг от друга по составу на группу CH_2 .

Члены этого ряда носят название *гомологи*, разница в составе двух соседних членов ряда — группа CH_2 — называется *гомологической разностью*.

Общая формула алканов — C_nH_{2n+2} .


Названия алканов, кроме первых четырех, строятся из суффикса -ан и соответствующего греческого числительного.

Гомологический ряд алканов:

CH_4 – метан	$C_{15}H_{32}$ – пентадекан
C_2H_6 – этан	;
C_3H_8 – пропан	$C_{20}H_{42}$ – эйкозан
C_4H_{10} – бутан	$C_{21}H_{44}$ – генэйкозан
C_5H_{12} – пентан	$C_{22}H_{46}$ – докозан
C_6H_{14} – гексан	$C_{23}H_{48}$ – трикозан
$C_7 H_{16}$ – гептан	$C_{24}H_{50}$ – тетракозан
C_8H_{18} – октан	:

 $C_{9}H_{20}$ — нонан $C_{31}H_{64}$ — гентриаконтан $C_{10}H_{22}$ — декан $C_{32}H_{66}$ — дотриаконтан $C_{11}H_{24}$ — ундекан $C_{12}H_{26}$ — додекан $C_{50}H_{102}$ — пентаконтан $C_{13}H_{28}$ — тридекан $C_{14}H_{30}$ — тетрадекан $C_{60}H_{122}$ — гексаконтан $C_{70}H_{142}$ — гептаконтан

В молекулах алканов атомы углерода находятся в состоянии Sp^3 – гибридизации, и каждый из них образует четыре σ -связи. Состояние Sp^3 – гибридизации характеризуется тетраэдрической конфигурацией атома углерода, поэтому молекула простейшего алкана, метана CH_4 , имеет форму тетраэдра.

Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — *изомерией углеродного скелета*. Например, пентан имеет три изомера:

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

n-пентан $t_{\text{кип}} = 36,2 \, ^{\circ}\text{C}$

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \operatorname{CH}_3 \end{array}$$

2-метилбутан (изопентан) $t_{\text{кип}} = 28 \, ^{\circ}\text{C}$

$$_{\text{CH}_{3}}^{\text{CH}_{3}}$$
 $_{\text{CH}_{3}}^{\text{CH}_{3}} - _{\text{C}}^{\text{C}} - _{\text{CH}_{3}}^{\text{CH}_{3}}$
 $_{\text{CH}_{3}}^{\text{CH}_{3}} = 2,2$ -диметилпропан $_{t_{\text{кип}}} = 9,5\,^{\circ}\text{C}$

Число изомеров зависит от числа атомов углерода в молекуле углеводорода и возрастает по мере увеличения числа атомов в молекуле углеводорода. Так, например, у гексана (C_6H_{14}) известно 5 изомеров, у гептана (C_7H_{16}) – 9, а углеводород тридекан ($C_{13}H_{28}$) может иметь уже 802 изомера.

Атомы углерода в предельных углеводородах неравноценны:

- атом углерода, связанный с одним соседним атомом углерода, называется первичным атомом углерода;
- атом углерода, связанный с двумя соседними атомами углерода, вторичный;
 - с тремя соседними атомами углерода третичным;
- с четырьмя соседними атомами углерода четвертичным атомом углерода.

Остатки углеводородов, получающиеся при отнятии одного атома водорода от молекулы алкана, называются *алкильными радикалами*, или *алкилами*. Названия алкилов являются производными от названий соответствующих алканов — суффикс -<u>ан</u> заменяется на -<u>ил</u>. Например: $(CH_3 -)$ метил, $(C_3H_7 -)$ пропил, $(C_5H_{11} -)$ пентил,

 (C_2H_5-) этил, (C_4H_9-) бутил, $(C_6H_{13}-)$ гексил.

2.1.3. Номенклатура алканов

Номенклатура — это правила составления названий органических соединений. В органической химии различают *тривиальные* и *систематические названия*. *Тривиальные* названия исторически, случайно сложились и отражают происхождение, способ получения, фамилии первооткрывателей или какие-то другие свойства, например: глюкоза (от греч. qlykyc — сладкий). *Систематические названия* составляются по специально оговоренным правилам.

Систематическая номенклатура предельных углеводородов делится на рациональную и заместительную, которая разработана Международным союзом теоретической и прикладной химии (ИЮПАК). Названия, составленные по этим правилам, называются международными.

По рациональной номенклатуре названия всех алканов образуются из названия простейшего члена гомологического ряда — метана, перед которым помещают обозначения углеводородных радикалов, замещающих в нем атомы водорода, например:

$$CH_3$$
 $-@H-CH_3$ CH_3 триметилметан

$${
m CH_3}$$
 ${
m @H}$ ${
m CH_2}$ ${
m CH_3}$ ${
m CH_3}$ диметилэтилметан

По современной заместительной номенклатуре (женевской номенклатуре) углеводороды с разветвленной цепью рассматривают как производные нормальных алканов, в цепи которых вместо атомов водорода стоят углеводородные радикалы:

- 1) главную цепь выбирают максимальной длины, углеродные атомы ее нумеруют, начиная с конца, ближайшего к разветвлению;
- 2) в названии цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если заместители разные, то они располагаются в алфавитном порядке, число одинаковых радикалов указывают приставками ди-, три-, тетра-.

Общий порядок названия алкана имеет следующий вид:

например:

2,2,3,6-тетраметилгептан

$$\begin{array}{c} CH_{3} \\ CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3} \\ CH_{2} - CH_{3} - CH_{3} \\ CH_{3} - CH_{3} - CH_{3} \end{array}$$

2, 5-диметил-5-этил-3-изопропилгептан

2.1.4. Физические свойства алканов

Первые четыре члена гомологического ряда алканов при обычных условиях – газообразные вещества; углеводороды от C_5 до C_{15} – жидкости; от C_{16} и больше – твердые вещества.

Алканы с разветвленной цепью кипят при более низкой температуре, чем их изомеры с нормальной цепью.

Температуры кипения повышаются с ростом разветвленности углеродной цепи. Плотность всех алканов < 1. Алканы практически не растворяются в воде, а растворяются в эфире и других органических растворителях. Метан и этан почти не имеют запаха, углеводороды с C_5 – C_{15} имеют запах бензина или керосина, высшие гомологи алканов запаха не имеют из-за малой летучести.

2.1.5. Химические свойства алканов

Алканы – устойчивые химические соединения, химические превращения которых осуществляются либо за счет разрыва цепи атомов углерода, либо за счет отрыва атома водорода с последующим замещением его на другой атом или группу атомов. Для алканов характерны реакции замещения: галогенирования, нитрования, сульфоокисления, сульфохлорирования, окисления.

Галогенирование: с фтором алканы реагируют энергично; с хлором – при освещении; с бромом – при освещении и нагревании. Прямое иодирование алканов невозможно.

Реакция замещения атомов водорода в углеводородах на атомы галогенов носит название реакции *металепсии*. Особенностью этой реакции является то, что галоид может последовательно замещать несколько атомов водорода. Например, метан может дать четыре различных продукта замещения хлором:

$$\mathrm{CH_4} \xrightarrow[-\mathrm{HCl}]{+\mathrm{Cl}_2,\,h\,\nu} \mathrm{CH_3Cl} \xrightarrow[-\mathrm{HCl}]{+\mathrm{Cl}_2,\,h\,\nu} \mathrm{CH_2Cl}_2 \xrightarrow[-\mathrm{HCl}]{+\mathrm{Cl}_2,\,h\,\nu} \mathrm{CHCl}_3 \xrightarrow[-\mathrm{HCl}]{+\mathrm{Cl}_2,\,h\,\nu} \mathrm{CCl}_4$$

метан хлорметан дихлорметан трихлорметан тетрахлорметан (хлороформ) (четыреххлористый углерод)

Нитрование: с концентрированной азотной кислотой алканы при обычной температуре не реагируют. При нагревании их с разбав-

ленной азотной кислотой или оксидами азота в жидкой или паровой фазе идет реакция нитрования (реакция М. Н. Коновалова):

$$CH_3 - CH_2 - CH_3 \xrightarrow{140\,^{\circ}C} CH_3 - CH_3 - CH_3 - CH_3$$
 2-нитропропан NO

Сульфоокисление:

$$CH_3 - CH_2 - CH_3 + SO_2 + \frac{1}{2}O_2 \rightarrow CH_3 - CH - CH_3$$

$$O = S = O$$

$$OH$$

Сульфохлорирование:

$$CH_{3} - CH_{2} - CH_{3} \xrightarrow{Cl_{2}, SO_{2}, h \nu} CH_{3} - CH - CH_{3}$$

$$O = S = O$$

$$Cl$$

Окисление:

а) при обычных условиях происходит реакция горения

$$C_3H_8 + 5O_2 = 3CO_2 + 4H_2O;$$

б) при недостатке воздуха при высоких температурах происходит окислительный пиролиз

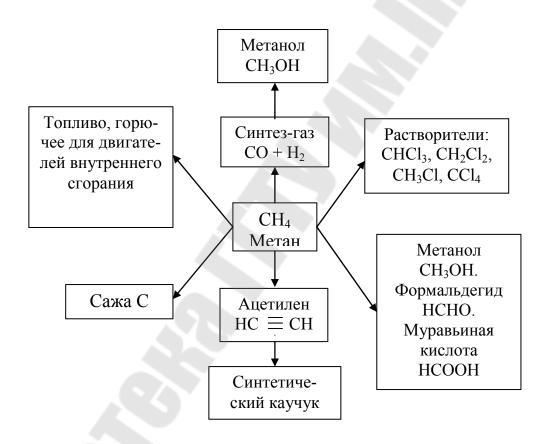
$$6CH_4 + O_2 = 2HC = CH + 2CO + 10H_2;$$

в) в присутствии катализаторов происходит каталитическое окисление

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{O_2} CH_3 - C - H + CH_3 - CH_2 - OH.$$

2.1.6. Отдельные представители алканов и их применение

Метан – является составной частью многих природных газов. Содержится также в газах, выделяемых при бурении нефтяных скважин, входит в состав нефти, содержится в болотном газе.


Этан — в растворенном состоянии входит в состав нефти и выделяется из нее при выходе нефти на поверхность земли, большое количество этана содержится в попутных газах нефтяных пластов.

Пропан – входит в состав природных газов, содержится в нефти.

Высшие парафины содержатся в менее летучих составных частях нефти.

Применение алканов многообразно: получение растворителей, сажи, ненасыщенных углеводородов, кислородсодержащих органических соединений, высокоэнергетического топлива.

Применение алканов можно рассмотреть на примере использования метана.

2.2. Непредельные углеводороды, изомерия и номенклатура, их свойства и применение

Непредельные, или ненасыщенные – это углеводороды, содержащие кратные углерод – углеродные связи

$$C = C$$
, или $-C \equiv C -$

Непредельных углеводородов в нефти практически нет. Они встречаются редко и в незначительных количествах (бакинская, пенсильванская и эльзасская нефти), но эти углеводороды являются продуктами переработки нефти.

2.2.1. Алкены (олефины, этиленовые углеводороды)

Алкены – ненасыщенные углеводороды, содержащие в молекуле одну двойную углерод – углеродную связь

$$C = C$$

Общая формула алкенов C_nH_{2n} .

Гомологический ряд алкенов следующий:

 C_2H_4 – этен (этилен)

 C_3H_6 – пропен (пропилен)

 C_4H_8 – бутен

 C_5H_{10} – пентен

 C_6H_{12} – гексен

 C_7H_{14} – гептен

 C_8H_{16} – октен

 C_9H_{18} – нонен

 $C_{10}H_{20}$ – децен и т. д.

Изомерия алкенов. Для алкенов характерно три типа изомерии:

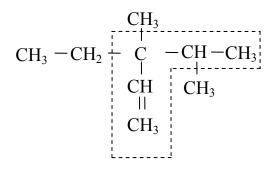
- 1) углеродного скелета;
- 2) положения двойной связи;
- 3) пространственная.

В качестве примера рассмотрим изомеры бутена (С₄H₈):

$$CH_2 = CH - CH_2 - CH_3$$
 изомерия двойной связи $CH_3 - CH = CH - CH_3$ изомерия углеродного скелета CH_3

Пространственная изомерия — цис- и транс-изомерия. Цисизомер — заместители расположены по одну сторону от плоскости двойной связи; транс-изомер — заместители расположены по разные стороны от плоскости двойной связи.

Транс-изомеры обычно имеют более высокую температуру плавления. При нагревании или облучении УФ-светом цис- и транс-изомеры могут переходить друг в друга.


Номенклатура алкенов. Тривиальные названия алкенов характеризуются суффиксом -илен: этилен, пропилен, бутилен и т. д.

Рациональная номенклатура рассматривает алкены как производные этилена, содержащие углеводородные радикалы; в случае необходимости уточняют положение радикалов у разных атомов этиленовой группировки, обозначая их греческими буквами α и β , например:

$$CH_2 = CH - CH_2 - CH_3$$
 этилэтилен (бутен-1)
$$CH_3 - CH = CH - CH_3$$
 диметилэтилен (бутен-2)

По международной номенклатуре (заместительной) названия алкенов составляют подобно названиям алканов, но суффикс -ан заменяют на -ен:

- 1) выбирают наиболее длинную цепь углеродных атомов, которая содержит двойную связь и наибольшее число заместителей;
- 2) нумеруют атомы углерода цепи так, чтобы атом «С», у которого начинается двойная связь, имел наименьший номер;
- 3) называют заместители, указывая их в алфавитном порядке, и алкен, соответствующий главной цепи (цифрой после названия цепи указывают положение двойной связи).

$$\begin{array}{c|c}
 & CH_{3} \\
 & CH_{3}
\end{array}$$

3, 4-диметил-3-этил-пентен-1

Физические и химические свойства алкенов. Алкены по физическим свойствам близки к алканам. Однако температуры кипения их несколько ниже, а плотность выше, чем у соответствующих алканов.

Первые три члена гомологического ряда алкенов (C_2 – C_4) представляют собой газы, (C_5 – C_{16}) – жидкости, C_{17} и выше – твердые вещества.

Все алкены имеют плотность меньше единицы, обладают характерным запахом, в воде растворимы плохо, но лучше, чем соответствующие алканы.

Для алкенов характерны реакции присоединения. Алкены взаимодействуют с галогеноводородами (HCl, HBr, HI); галогенами (галогенирование); водой (гидратация); серной кислотой; водородом (реакции гидрирования).

Присоединение водорода (гидрирование):

$$CH_2 = CH_2 \xrightarrow{H_2} CH_3 - CH_3$$

этилен этан

Эта реакция легко протекает при комнатной температуре в присутствии катализаторов с образованием соответствующих предельных углеводородов.

Присоединение воды (гидратация):

$${
m CH_3-CH}={
m CH_2}\overset{{
m H_2O}}{\underset{kt}{\longrightarrow}}{
m CH_3-CH-CH_3}$$
 пропилен изопропиловый спирт

Реакция гидратации происходит в присутствии катализаторов (хлорид цинка, серная кислота и др.) с образованием спиртов жирного ряда.

Присоединение серной кислоты:

$$\mathrm{CH_2} = \mathrm{CH_2} + \mathrm{H_2SO_4} \rightarrow \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{OSO_3H}$$
 этилен этилсерная кислота

Концентрированная серная кислота образует с олефинами кислые эфиры серной кислоты (например, с этиленом – этилсерную кислоту), которые при действии воды разлагаются с образованием спирта и серной кислоты:

Причем реакция присоединения к несимметричным алкенам галогеноводородов осуществляется в соответствии с правилом Марковникова: атом водорода присоединяется к наиболее гидрированному атому водорода при двойной связи, а анионы реагента — к наименее гидрированному, например:

$$Cl$$
 $CH_2 = CH - CH_3 + H - Cl \rightarrow CH_3 - CH - CH_3$ пропилен хлористый изопропил

Основное применение алкены находят в качестве мономеров при получении многих полимеров путем реакции полимеризации, например:

$$n{
m CH}_2 = {
m CH}_2 \stackrel{t,p,\,kt}{\to} (-\,{
m CH}_2 - {
m CH}_2 -)_n$$
 этилен полиэтилен

2.2.2. Алкины (ацетиленовые углеводороды)

Алкины — это непредельные (ненасыщенные) углеводороды, имеющие в молекуле тройную углерод-углеродную связь (— $C \equiv C$ —).

Общая формула алкинов C_nH_{2n-2} .

Существует ряд углеводородов, подобных ацетилену (этину):

 C_2H_2 – этин (ацетилен)

 C_3H_4 – пропин (метилацетилен)

 C_4H_6 – бутин

 C_5H_8 – пентин

 C_6H_{10} – гексин

 C_7H_{12} – гептин

 C_8H_{14} – октин

 C_9H_{16} – нонин

Изомерия. Для алкинов характерны три типа изомерии: углеродного скелета; положения тройной связи; различных гомологических рядов. Например:

$$CH_3 - C \equiv C - CH_2 - CH_3$$
 изомерия положения тройной связи $CH \equiv C - CH_2 - CH_2 - CH_3$ изомерия углеродного скелета CH_3

 ${
m CH}_2 = {
m CH} - {
m CH} = {
m CH} - {
m CH}_3$ изомерия *различных гомологических рядов* (общая формула диенов ${
m C}_n {
m H}_{2n-2}$).

Номенклатура алкинов похожа на номенклатуру алкенов. По рациональной номенклатуре алкины рассматриваются как производные ацетилена; по современной международной (заместительной) номенклатуре названия алкинов образуют от названия соответствующего алкана путем замены суффикса -ан на -ин.

Если в молекуле имеются тройная и двойная связи, то начало нумерации определяет двойная связь, например:

$$CH_2 = CH - CH_2 - CH_2 - C \equiv CH$$
 гексен – 1 – ин – 5.

 Φ изические свойства. Низшие алкины C_2 – C_4 представляют собой газы, C_5 – C_{16} – жидкости, высшие с C_{17} – твердые вещества. Температура кипения и плотность алкинов выше, чем у алкенов. Растворимость низших алкинов в воде выше, чем растворимость алкенов и алканов с таким же количеством атомов углерода.

Химические свойства. Типичными реакциями для ацетилена и его гомологов являются реакции присоединения. Алкины подвергают-

ся гидрированию, галогенированию, гидрогалогенированию. В отличие от алкенов, алкины вступают значительно легче в реакции с нуклеофильными соединениями (вода, щелочи, аммиак, кислотные остатки).

Присоединение водорода, галоидоводородов и галогенов к алкинам происходит в две стадии: сначала разрывается тройная связь, а затем и образовавшаяся двойная, например:

$$HC \equiv CH \xrightarrow{+H_2} CH_2 = CH_2 \xrightarrow{+H_2} CH_3 - CH_3$$
 $R = CH \xrightarrow{+H_2} CH_2 = CH_2 \xrightarrow{+H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{+H_2} CH_2 = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{+H_2} CH_2 = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{+H_2} CH_2 = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{-H_2} CH_2 = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH \xrightarrow{-H_2} CH_3 - CH_3$
 $R = CH$

ацетилен дибромэтилен тетрабромэтан

Присоединение воды происходит в присутствии катализатора – солей ртути (реакция Кучерова); при этом сначала образуется неустойчивый виниловый спирт, который сразу изомеризуется в уксусный альдегид:

$$HC \equiv CH \xrightarrow{+ H - OH} CH_2 = CH - OH \rightarrow CH_3 - C \xrightarrow{O} H$$

ацетилен виниловый спирт уксусный альдегид

Оказалось, что атомы водорода, связанные тройной связью в молекулах углеводородов, могут легко вступать в реакции замещения, могут легко замещаться на металлы с образованием ацетиленидов:

$$HC \equiv CH + 2Na \rightarrow Na - C \equiv C - Na$$
 ацетиленид натрия
$$HC \equiv CH + Ag_2O \rightarrow Ag - C \equiv CH + AgOH$$
 ацетиленид серебра

Ацетилен и его производные являются сырьем для органического синтеза.

2.2.3. Другие углеводороды нефти

Главной составной частью некоторых нефтей являются *циклоал- каны* – это насыщенные углеводороды с замкнутыми циклами, их еще называют *нафтеновыми углеводородами* (*нафтенами*).

Легкие фракции нефти содержат в основном циклопентан и циклогексан и их производные:

$$\begin{array}{cccc} H_2C - CH_2 & H_2C & CH_2 \\ & | & | & | \\ H_2C & CH_2 & H_2C & CH_2 \\ & CH_2 & CH_2 & CH_2 \end{array}$$

Циклопентан

Циклогексан

Кроме того, в нефтях обнаружены нафтеновые углеводороды с двумя, тремя и четырьмя циклами – полициклические нафтены.

Нафтены являются важнейшей составной частью моторных топлив и смазочных масел. Автомобильным бензинам они придают высокие эксплуатационные свойства.

Нафтены являются источником получения бензола, толуола, капролактама, лекарств, полимеров.

В состав нефтей входят ароматические углеводороды (арены). Арены — соединения карбоциклического ряда, содержащие шестичленный цикл с тремя чередующимися двойными связями. Первым представителем аренов является бензол C_6H_6 . Структурную формулу бензола в виде цикла с чередующимися одинарными и двойными связями предложил А. Кекуле в 1865 г.:

Некоторые фракции нефти содержат двух и трехцикловые арены – нафталины и антрацены и их производные

Ароматические углеводороды применяются как компоненты нефтепродуктов, растворители, сырье для нефтехимического синтеза, а также для производства взрывчатых веществ.

3. Нефть. Происхождение, добыча, физические свойства, состав

3.1. Краткие сведения о происхождении нефти

Вопрос о происхождении нефти занимал ученых с давних пор. До настоящего времени не утихают споры по этому вопросу. Все различные многообразные теории о происхождении нефти делятся на две основные группы: теория неорганического и теория органического происхождения нефти.

Впервые мысль о неорганическом происхождении нефти из карбидов металлов и паров воды высказал в 1877 г. Д. И. Менделеев. В наше время многие химики и геохимики высказывают предположения о других возможных путях образования углеводородов непосредственно в недрах земли из углерода и водорода при очень высоких температурах.

Параллельно с неорганической теорией возникла и концепция органического происхождения нефти.

За последние десятилетия сформировалась органическая осадочно-миграционная теория происхождения нефти в толще земной коры. В развитие этой теории внесли свой вклад и известные российские ученые – И. М. Губкин, А. Д. Архангельский и др. Согласно этой теории исходным материалом в генезисе нефти являются органические осадки крупных водоемов (планктон, водоросли, микроорганизмы и мелкие животные), которые, погибая, образовали донный ил. По мере его уплотнения ускоряются биохимические процессы и происходят химические реакции органических веществ под действием повышающихся температур и давления. При температурах 60...120 °C, характерных для глубины 3...7 км, в течение миллионов лет «созревала» нефть. Продуктами этих процессов являются газообразные и жидкие углеводороды.

3.2. Условия залегания нефти, разведка месторождений и добыча нефти

Нефть залегает в земных недрах в виде скоплений, объем которых колеблется в широких пределах (ед. мм^3 ... $\text{млрд } \text{м}^3$).

Практический интерес представляют залежи нефти массой в несколько тысяч тонн и более, которые располагаются в пористых и проницаемых породах, например, песчаниках, известняках. Глубина нефтяных залежей составляет обычно 500...3500 м, а основные запасы располагаются на глубине 800...2500 м.

Разведка месторождений состоит из двух этапов: поиск и разведка. В ходе поискового этапа осуществляются геологическая, аэромагнитная и гравиметрическая съемки местности, геохимическое исследование пород и вод, составление карт. Затем проводится разведочное бурение поисковых скважин. Результат поискового этапа – предварительная оценка запасов новых месторождений.

Главные цели *разведочного* этапа – обозначить (оконтурить) залежи, определить мощность и нефтегазонасыщенность пластов и горизонтов. После завершения разведочного этапа подсчитываются промышленные запасы нефти и разрабатываются рекомендации о вводе месторождения в эксплуатацию.

Методы добычи нефти из недр земли осуществляются за счет энергии двух видов — естественной энергии пластов и энергии, подаваемой в скважину тем или иным способом.

Способ эксплуатации нефтяной скважины за счет энергии пласта называется фонтанным.

Способы добычи, при которых нефть поднимается на земную поверхность за счет подводимой извне энергии, называются *механизированными*. Все эти способы имеют свои особенности и их много.

3.3. Физические свойства нефти

Нефть – маслянистая жидкость от светло-бурого до черного цвета с характерным запахом. Нефть – смесь углеводородов с числом атомов углерода до 50 и выше, поэтому у нее нет определенной температуры кипения.

Нефть легче воды. Взаимная растворимость нефти и воды ничтожна, однако при их интенсивном перемешивании образуются иногда очень стойкие нефтяные эмульсии.

Цвет нефти зависит от содержания и строения смолистых веществ, входящих в ее состав. На свету нефть флуоресцирует.

Вязкость нефти зависит от ее состава и может быть различной, но всегда выше, чем у воды.

Нефть – горючий материал. Теплота ее сгорания 42 МДж/кг, что выше, чем у твердых горючих ископаемых – углей, сланцев, торфа.

3.4. Состав нефти

Элементарный состав нефти – это углерод, водород, сера, азот и кислород. Углерода содержится 82...87 % (мас.), водорода – 11...14 % (мас.).

Сера входит в состав гетероатомных соединений нефти. По содержанию серы нефти делятся на три класса: малосернистые, средне- и высокосернистые. В малосернистых она составляет до 0.5%, в среднесернистых – от 0.51 до 2.0%, а в высокосернистых – больше 2.1%.

Азота и кислорода в нефтях до 1,8 и 3,0 % (мас.) соответственно.

В нефтяной золе найдено около 30 металлов, из которых наиболее распространенными являются V, Ni, Fe, Zn, Cu, Mg, Al.

Групповой химический состав нефтей представляют следующие группы соединений: углеводороды, гетероатомные соединения, смолы и асфальтены. Углеводороды природных нефтей представлены в основном тремя группами — алканы, циклоалканы и арены. Непредельных углеводородов (алкенов) в природных нефтях практически нет (за исключением очень немногих), но они в большом количестве образуются в процессе переработки нефти.

К гетероатомным соединениям относятся серо-, азот-, кислород-и металлосодержащие соединения.

Смолы и асфальтены представляют собой концентрат высокомолекулярных соединений (М выше 1500...2000 а. е. м.), находящихся в нефти в виде коллоидов.

В зависимости от преимущественного содержания тех или иных классов углеводородов нефти делятся на: парафиновые, нафтеновые, парафино-нафтено-ароматические, нафтено-ароматические, ароматические.

Углеводороды C_1 – C_4 находятся в газообразном состоянии и входят в состав нефтяных попутных газов.

Фракционный состав нефти. Нефть представляет собой сложную смесь органических соединений. В ее составе обнаружены сотни углеводородов различного строения, а также многочисленные гетеросоединения. Полностью разделить такую смесь на индивидуальные соединения невозможно, но это и не требуется ни для технической характеристики нефтяного сырья, ни для его промышленного использования.

Важным показателем нефти является ее фракционный состав, который определяется при лабораторной перегонке нефти, в процессе которой при постепенно повышающейся температуре из нефти отгоняют части — фракции, отличающиеся друг от друга температурами начала и конца кипения.

При промышленной перегонке нефти используют не лабораторный метод постепенного испарения, а схемы с так называемым однократным испарением и дальнейшей ректификацией. Фракции, выкипающие до 350 °C, отбирают при давлении, несколько превышающем атмосферное; они носят название *светлых* дистиллятов (фракций). Обычно при атмосферной перегонке получают следующие фракции, название которых присвоено в зависимости от направления их дальнейшего использования:

- н.к. (начало кипения) − 140 °C бензиновая фракция;
- 140...180 °C лигроиновая фракция (тяжелая нафта);
- 140...220 °C (180...240 °C) керосиновая фракция;
- -180...350 °C (220...350 °C; 240...350 °C) дизельная фракция (легкий или атмосферный газойль, соляровый дистиллят).

Остаток после отбора светлых дистиллятов (фракция, выкипающая выше 350 °C) называется *мазутом*. Мазут разгоняют под вакуумом, при этом в зависимости от направления переработки нефти получают следующие фракции:

– для получения топлив:

350...500 °C — вакуумный газойль (вакуумный дистиллят) > >500 °C — вакуумный остаток (гудрон);

– для получения масел:

300...400 °C (350...420 °C) — легкая масляная фракция (трансформаторный дистиллят);

400...450 °C (420...490 °C) – средняя масляная фракция (машинный дистиллят);

450...490 °C — тяжелая масляная фракция (масляный дистиллят) > > 450 °C — гудрон.

Мазут и полученные из него фракции называются *темными*. Продукты, получаемые при любом виде переработки, относят к светлым, если они выкипают до $350\,^{\circ}$ С, и к темным, если пределы выкипания $350\,^{\circ}$ С и выше.

3.5. Сбор и подготовка нефти к транспортировке и переработке

Нефть, поступающая из недр на поверхность земли, содержит попутный газ $(50...100 \text{ м}^3/\text{т})$, воду (200...300 кг/т), минеральные соли (до 10...15 кг/т), механические примеси. Перед транспортировкой и подачей на переработку нефти из нее должны быть удалены газы, механические примеси, основная часть воды и солей.

Пластовая нефть, добываемая из недр земли, представляет собой сложную физическую смесь углеводородов парафинового, нафтенового и ароматического гомологических рядов с примесью кислородных, азотистых и сернистых соединений. Отдельные углеводороды и фракции, выделенные из этой смеси, находятся при н. у. в газообразном, жидком или твердом состоянии.

При извлечении пластовой нефти из недр изменяются ее давление и температура, в результате чего она из однофазного жидкого состояния переходит в двухфазное — разгазированную нефть и нефтиной газ. Разгазированная нефть — это смесь жидких углеводородов и неуглеводородных примесей. Нефтиной газ — это смесь газо- и парообразных углеводородных и неуглеводородных компонентов, выделяющихся из пластовой нефти при ее разгазировании.

Разгазирование нефти происходит при определенных температуре и давлении в специальных аппаратах и называется *сепарация*. Газы, сопутствующие нефти и выделяемые из нее при сепарации, называются попутными и нефтепромысловыми.

Сырая нефть (только что добытая из скважины) подвергается сепарации, при которой на первой стадии из нефти отделяется газ, ко-

торый направляется на ГПЗ, затем проводится вторая и третья стадии, в течение которых нефть обезвоживается и обессоливается. Затем на специальных установках определяют качество нефти, и после этого она поступает в товарные резервуары.

После многоступенчатой сепарации в нефти все же остается значительное количество углеводородов C_1 — C_4 , которые могут быть потеряны при перекачках из резервуара в резервуар, хранении и транспортировке нефти. Чтобы это предотвратить и устранить загрязнение воздуха газами и легкими фракциями нефти, на многих промыслах нефть подвергают стабилизации в специальных колоннах. В стабильной нефти не более 1 % углеводородов C_1 — C_4 , а в нестабильной 2...3 %. Обессоленную и обезвоженную нефть по магистральным трубопроводам или железной дороге транспортируют потребителю и на НПЗ.

3.6. Добыча газов

Месторождения горючих газов подразделяют на *собственно* газовые, в которых скопление газов не связано с другими полезными ископаемыми; газонефтяные — газообразные углеводороды растворены в нефти или находятся над нефтью в виде газовой шапки, а также газоконденсатные — в которых газ обогащен жидкими углеводородами.

Газовые конденсаты содержат пентаны и более тяжелые углеводороды. Конденсаты различных нефтяных месторождений сильно отличаются по групповому химическому составу и содержанию гетеросоединений. Одни конденсаты имеют ярко выраженный метановый характер, в других преобладают нафтеновые углеводороды, в некоторых — ароматические углеводороды. Газоконденсаты являются сырьем для химической промышленности.

Если природные газы в основном состоят из метана, то попутные газы нефтяных месторождений содержат большое количество углеводородов C_3 и выше. Большинство попутных газов содержит в основном алкановые углеводороды (от метана до декана) и незначительное количество циклоалканов. В некоторых попутных газах присутствуют следы ароматических углеводородов. Кроме того, в газах присутствуют азот, диоксид углерода, сероводород, меркаптаны, сероуглерод, гелий и другие газы и влага.

Попутные газы также являются сырьем для органического синтеза.

Газы, богатые пропаном и высшими алканами, называются жирными. Они являются источником получения сжиженных газов, индивидуальных углеводородов для нефтехимического синтеза, а также так называемого газового бензина. Газы, содержащие метан и этан, называются сухими. Они используются как бытовое и промышленное топливо, а также как сырье для получения ацетилена, водорода и других продуктов органического синтеза.

4. Переработка нефти

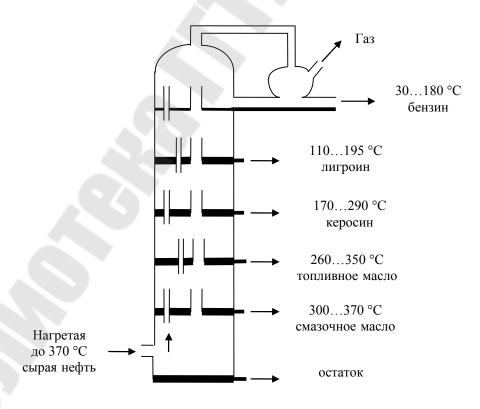
4.1. Прямая фракционная перегонка нефти

Первый процесс переработки нефти на нефтеперерабатывающих заводах заключается в ее перегонке (так называемая прямая гонка). Прямую гонку нефти проводят на специальных установках, состоящих из трубчатой печи, ректификационной колонны и теплообменной аппаратуры. Трубчатая печь представляет собой камеру, выложенную огнеупорным материалом. Внутри печи находятся трубы по которым движется нефть. Трубы обогреваются теплом, выделяющимся при сгорании топлива в топочной камере печи. При нагревании нефти в трубах до определенной температуры (до 370 °C) все подлежащие перегонке компоненты нефти переходят в парообразное состояние и жидкость.

Ректификация служит для разделения смеси веществ, имеющих различные температуры кипения. Установка для ректификации обычно состоит из куба, в котором происходит испарение смеси, ректификационной колонны, в которой происходит непосредственное разделение смеси на отдельные компоненты, и холодильника для конденсации выходящих из колонны паров.

Ректификационная колонна (рис. 4.1) представляет собой вертикальный цилиндрический аппарат, разделенный на части горизонтальными тарелками, на каждой из которых имеется несколько отверстий — паровых патрубков, перекрытых колпачками с зазубренными краями, не доходящими до дна тарелки, а также отверстия для стекания жидкости.

Подлежащая разделению смесь непрерывно подается на определенную тарелку колонны и постепенно стекает на ниже расположенные тарелки. Пары этой же смеси, поднимающиеся из куба, соприкасаются с менее нагретой смесью, находящейся на тарелках. При этом из смеси, находящейся на тарелках, испаряются легколетучие (низко-


кипящие) компоненты и в виде паров поступают на тарелки верхней части колонны, на которых конденсируется наиболее высококипящая их часть. Это происходит следующим образом: сверху колонна орошается низкокипящим конденсатом — так называемой «флегмой», отбираемой из конденсатора.

На тарелках верхней части колонны поднимающиеся пары, соприкасаясь с низкокипящим конденсатом (флегмой), обогащаются более летучим компонентом, а стекающая жидкость — менее летучим компонентом.

Таким образом, ректификацию можно представить себе как сумму последовательных перегонок смеси на каждой тарелке колонны, в результате которых происходит разделение смеси на низкокипящие компоненты, отбираемые из конденсатора, и высококипящие компоненты, собирающиеся в кубе колонны. Последние удаляются из куба через специальный вентиль.

При прямой гонке отделяется газ при температуре испарения до 20 °C, содержащий C_1 – C_4 , используемый в качестве топлива и бытового газа.

Количество фракций, отбираемых при прямой гонке нефти, зависит от схемы проводимой ректификации нефти.

Puc. 4.1. Схема ректификационной колонны для разделения компонентов сырой нефти

Когда пар сырой нефти движется вверх, он конденсируется и различные компоненты отделяются по точке их кипения и отводятся, как показано на рис. 4.1.

Обычно отбирают три основные фракции:

- 40...200 °C − бензиновая;
- 150...350 °C керосиновая;
- ->350 °С мазут.

При прямой гонке может отбираться и большее количество фракций (рис. 4.1). Наиболее ценная бензиновая фракция составляет лишь от 5 до 20 % от массы нефти. Вторичная переработка нефти используется для повышения выхода бензина.

4.2. Термические процессы переработки нефти

Еще в прошлом веке стало известно, что под действием высоких температур органические соединения нефти химически видоизменяются, распадаются и вступают в различные вторичные реакции между собой. Это позволило создать новые, так называемые термические процессы переработки нефти, позволяющие получать из нее углеводородные газы, дополнительные количества жидких нефтепродуктов, а также продукт глубокого уплотнения — нефтяной кокс, т. е. такие новые вещества, которых в исходной нефти нет.

Применение термических процессов намного расширило возможности использования нефти как химического сырья.

В зависимости от условий и назначения процессы термической переработки нефтяного сырья получили названия крекинг, коксование и пиролиз.

4.3. Крекинг, виды крекинга и химические процессы при крекинге

Крекинг свое название получил от английского глагола to crack – расщеплять.

Крекинг — это процесс расщепления при повышенных температурах углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле.

Технология крекинга основана на различной термической стой-кости углеводородов и на механизме их расщепления.

При температуре > 500 °C практически все насыщенные углеводороды становятся неустойчивыми и распадаются на более простые вещества. Энергия связи С — Н больше, чем энергия связи С — С, поэтому эндотермический процесс крекинга приводит, в первую очередь, к разрыву углеродной цепи и при этом тем легче, чем длиннее цепь. Термоустойчивость углеводородов уменьшается в следующем порядке: метан (1000 °C) > ароматические соединения (650 °C) и бутадиен > алициклические соединения > изопарафины > n-парафины (450 °C).

Крекинг проводят либо в паровой фазе при атмосферном давлении и высокой температуре, либо в жидкой или смешанной фазах с применением высоких давлений. Известен также каталитический крекинг, при котором для облегчения расщепления применяются катализаторы.

Различают следующие виды крекинга: термический крекинг, каталитический крекинг, риформинг, гидрокрекинг, а также высокотемпературный крекинг, называемый пиролизом.

4.4. Термический крекинг. Условия проведения, исходное сырье и продукты

Термический крекинг обычно ведут при температуре 450...550 °C и давлении 2...7 МПа. При этом молекулы углеводородов с большим числом углеродных атомов расщепляются на более мелкие молекулы предельных и непредельных углеводородов, составляющих фракцию бензинов. Кроме того, при крекинге выделяется значительное количество так называемых газов крекинга, содержащих много непредельных углеводородов, которые применяются в качестве сырья для химической промышленности и для синтеза высококачественных компонентов моторного топлива.

Сырьем для термического крекинга являются как тяжелые фракции и остатки перегонки нефти, так и легкие фракции: лигроин, керосин и др.

Применяя крекинг, из нефти удается получить вдвое больше бензинов, чем при обычной дробной разгонке нефти.

Крекинг при низких давлениях (0,3...0,5 МПа) и температуре 550...600 °C проводят в паровой фазе — это *парофазный* крекинг. Сырье — фракции прямой гонки.

4.5. Каталитический крекинг

Каталитический крекинг — это крекинг нефтяного сырья в присутствии катализаторов. Целью каталитического крекинга является получение продуктов меньшей молярной массы — компонентов высокооктановых бензинов, легких газолей, углеводородных газов C_3 — C_4 .

Основное достоинство каталитического крекинга – большая эксплуатационная гибкость: возможность перерабатывать практически любые нефтяные фракции в высококачественные продукты; сравнительная легкость совмещения с другими процессами, например, с алкилированием, гидрокрекингом и т. д.

При каталитическом крекинге происходят следующие основные реакции: разрыв связей С – С, так называемое перераспределение водорода (гидрирование и дегидрирование), деалкилирование, дегидроциклизация, полимеризация и поликонденсация. Соотношение скоростей этих реакций зависит от состава сырья, типа катализатора и условий проведения процесса.

Преимущества катализатора крекинга:

- 1) в результате ускорения процесса удается снизить температуру крекинга и проводить процесс при более низком давлении;
- 2) действие катализатора ускоряет реакции, приводящие к накоплению в крекинг-бензинах ароматических, изопарафиновых и изоолефиновых углеводородов, обладающих большими октановыми числами.

Процесс каталитического крекинга проводят чаще всего в паровой фазе при 450...525 °C под давлением не выше 0,4 МПа в присутствии алюмосиликатных катализаторов.

Основными видами сырья для каталитического крекинга являются фракции, выкипающие в пределах 200...500 °C – это керосиногазойлевые фракции (200...350 °C), тяжелые фракции – вакуумные газойли (350...500 °C), а также продукты вторичных процессов – газойли коксования, термического крекинга и гидрокрекинга. С начала 80-х годов благодаря созданию специальных катализаторов стало возможным в качестве сырья каталитического крекинга использовать и мазут.

Примеси в нефтяном сырье металлов, коксообразующих веществ, а также азотистых и сернистых соединений отрицательно влияют на процесс каталитического крекинга, главным образом за счет разрушения и снижения активности катализаторов.

Одним из самых рациональных способов подготовки нефтяных фракций для каталитического крекинга является гидроочистка, позволяющая значительно повысить степень превращения сырья и выход бензина, а также снизить коксообразование и содержание серы в продуктах крекинга.

Продуктами каталитического крекинга являются углеводородные газы, бензин, легкий и тяжелый газойли.

Углеводородные газы каталитического крекинга содержат не менее 75...80 % (мас.) смеси пропан-пропиленов, бутан-бутиленов и пентан-амиленов. Газы каталитического крекинга — ценное сырье для нефтехимического синтеза.

Бензины каталитического крекинга имеют плотность $(0,72...0,77\ \text{г/cm}^3)$ и высокое октановое число (87...91). Эти бензины по составу отличаются от бензинов прямой гонки и крекинг-бензинов: в них $9...10\,\%$ (мас.) непредельных углеводородов и $20...40\,\%$ ароматических углеводородов.

Легкий газойль — фракция, выкипающая при 195...350 °C, — имеет плотность 0,89...0,94 г/см³ и состоит на 40...80 % из ароматических соединений. Легкий газойль с высоким цетановым числом используется как компонент дизельного топлива, а с низким цетановым числом — в качестве разбавителя мазута.

И бензин, и легкий газойль, полученные из сернистого сырья, нуждаются в дополнительной очистке от серы.

Тяжелый газойль – фракция, выкипающая выше 350 °C, – остаточный жидкий продукт каталитического крекинга; он используется как компонент топочного мазута или в качестве сырья установок коксования.

Кроме того, газойли каталитического крекинга являются сырьем для получения индивидуальных ароматических углеводородов и других веществ.

4.6. Риформинг

Риформинг — каталитический процесс переработки бензиновых фракций (в основном прямогонных, но могут быть подвергнуты бензины крекинга, гидрокрекинга и коксования) под давлением H_2 с целью получения высокооктановых бензинов, ароматических углеводородов (бензола, толуола, ксилола и др.) и водородсодержащего газа. Каталитический риформинг — один из важнейших процессов нефтеперерабатывающей и нефтехимической промышленности.

Первые промышленные установки, (созданные в 40-е гг. 20 в. в США), на которых использовали алюмомолибденовый катализатор, называли установками *гидрориформинга*; при переходе на платиновые катализаторы установки каталитического риформинга стали называть установками *платформинга*.

Каталитический риформинг осуществляют в реакторах с неподвижным или с движущимся слоем катализатора. В первом случае процесс проводят под давлением 1,5...4 МПа, что обеспечивает достаточную продолжительность работы катализатора без регенерации. Во втором случае (давление около 1 МПа) катализатор непрерывно выводят из реактора и подвергают регенерации в отдельном аппарате.

Несмотря на разницу в технологическом оформлении и катализаторах, общий характер превращений углеводородов одинаков, различаются только скорости процессов.

Основные процессы каталитического риформинга приводят к образованию ароматических и изопарафиновых углеводородов.

При каталитическом риформинге используются бифункциональные алюмоплатиновые катализаторы — металлическая Pt, нанесенная на поверхность Al_2O_3 , обработанного хлористыми или фтористыми соединениями.

При каталитическом риформинге нафтеновые углеводороды на 90...95 % превращаются в ароматические; степень конверсии парафиновых углеводородов зависит от давления Н2. С повышением общего давления и парциального давления Н2 снижается выход аромаинтенсифицируется углеводородов И тических разложение парафинов; кроме того, уменьшается коксообразование и увеличивается продолжительность работы катализатора без регенерации. Повышение температуры и увеличение времени контакта сырья с катализатором способствует повышению степени ароматизации октанового числа бензинов; с возрастанием объемного соотношения водородсодержащий газ - сырье уменьшается коксообразование и увеличивается продолжительность работы катализатора.

4.7. Гидрокрекинг

Гидрокрекинг – каталитический процесс переработки нефтяного сырья под давлением водорода, предназначенный для получения светлых нефтепродуктов – бензина, керосина, дизельного топлива, а также сжиженных газов C_3 – C_4 .

Гидрокрекинг позволяет получать широкий ассортимент нефтепродуктов практически из любого нефтяного сырья путем подбора соответствующих катализаторов. Гидрокрекингу обычно подвергают нефти низкого качества, а также тяжелые фракции нефти.

Катализаторами являются оксиды и сульфиды никеля, кобальта, молибдена, вольфрама на кислотных носителях, таких, как алюмосиликаты, например, алюмокобальтмолибденовый катализатор.

4.8. Электрокрекинг

При переработке газов нефтепереработки используют электрокрекинг – процесс получения этилена и ацетилена действием электрического разряда в метане. Электрокрекинг осуществляют при 1000...1300 °C и 0,14 МПа. Электрический разряд длится от 0,01 до 0,1 секунды.

4.9. Коксование нефтяного сырья

Коксование – разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка – кокса.

Коксование нефтяного сырья — это глубокий термический крекинг при 450...540 °C с целью получения нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций.

Сырьем для коксования являются тяжелые остатки, образующиеся при дистилляции нефти, деасфальтизации, термическом и каталитическом крекинге остаточных и дистиллятных фракций, пиролизе бензина и газойлевых фракций.

При коксовании происходит расщепление всех компонентов сырья с образованием жидких дистиллятных фракций и углеводородных газов; деструкция и циклизация углеводородов с интенсивным выделением керосино-газойлевых фракций; конденсация и поликонденсация углеводородов и глубокое уплотнение высокомолекулярных соединений с образованием сплошного коксового «пирога».

Коксование нефтяного сырья можно проводить тремя способами: способом периодического коксования, способом непрерывного коксования в кипящем слое (термоконтактный крекинг), а также способом замедленного (полунепрерывного) коксования.

В мировой практике наиболее распространен способ замедленного (полунепрерывного) коксования. Сырье, предварительно нагре-

тое в трубчатых печах до 350...380 °C, непрерывно контактирует в нижней части ректификационной колонны, которая работает при атмосферном давлении, с парами, подаваемыми из реакционных аппаратов. В результате тепло- и массообмена часть паров конденсируется, образуя с исходным сырьем так называемое вторичное сырье, которое нагревается в трубчатых печах до 490...510 °C и поступает в коксовые камеры – полые вертикальные цилиндрические аппараты диаметром 3...7 м и высотой 22...30 м. В камеру реакционная масса подается непрерывно в течение 24...36 ч и благодаря аккумулированной ею теплоте коксуется. После заполнения камеры коксом на 70...90 % его удаляют, обычно струей воды под давлением до 15 МПа. Кокс поступает в дробилку, а затем на грохот, где разделяется на фракции разных размеров. Летучие продукты коксования, представляющие собой парожидкостную смесь, непрерывно выводятся из действующих камер и последовательно разделяются в ректификационной колонне, водоотделителе, газовом блоке и отпарной колонне на газы, бензины и керосино-газойлевые фракции. Выход продуктов при замедленном коксовании зависит от перерабатываемого нефтяного сырья.

Таблица 4.1 Влияние сырья на выход продуктов при замедленном коксовании, %

Продукты	Сырье		
	Мазут	Гудрон	Крекинг- остаток
Кокс	1415	2324	3435
Газы	45	67	78
Бензины	78	1516	67
Керосино-газойлевые			
фракции	6869	5859	4647

Газы коксования содержат предельные $(C_1...C_4)$ и непредельные $(C_2...C_4)$ углеводороды, H_2 и H_2S и являются продуктами для нефтехимического синтеза.

Бензины коксования содержат значительное количество непредельных углеводородов и имеют октановое число не более 72. Поэтому их подвергают гидроочистке, которая сопровождается удалением серы, с последующим каталитическим риформингом.

Керосино-газойлевые фракции — сырье для каталитического крекинга, а также используются в производстве технического углерода (сажи). Керосино-газойлевые фракции применяют в качестве компонента газотурбинных топлив.

Кокс нефтяной — твердый пористый продукт от темно-серого до черного цвета. Его используют для получения анодной массы в производстве Al, графитированных электродов дуговых печей в сталеплавильной промышленности, в производстве CS_2 (сероуглерода), карбидов Ca и Si, в качестве восстановителей в химической промышленности (например, в производстве BaS_2 из барита) и так называемых сульфидизаторов в цветной металлургии (для перевода оксидов металлов и металлов в сульфиды при производстве Cu, Ni и Co с целью облегчения извлечения их из руд). Некоторые специальные сорта кокса используются как конструкционный материал для изготовления коррозионноустойчивой аппаратуры.

4.10. Пиролиз

Пиролиз является наиболее жесткой формой термического крекинга, проводимого с целью получения газообразных непредельных углеводородов, в основном этилена и пропилена, для нефтехимического синтеза.

Процессы пиролиза применяются для переработки самого разнообразного нефтяного сырья – от газов до тяжелых остатков.

Пиролиз осуществляется при температуре порядка 800...850 °C при атмосферном давлении. Различают четыре основные группы сырья для пиролиза:

- 1) этан, пропан, бутан и их смеси, выделяемые из природных и попутных газов;
- 2) прямогонные и смешанные нефтяные фракции типа бензинов с концом кипения 200 °C, плотностью до 0.73 г/см³;
 - 3) тяжелые дистилляты с концом кипения примерно 380 °C;
 - 4) нефтяные остатки и сырые нефти.

Продуктами пиролиза являются:

- 1. Водородная фракция. Последнее время увеличивается спрос на продукт повышенной чистоты более 90 % об. водорода.
 - 2. Метановая фракция.
- 3. Ацетилен должен вырабатываться чистотой не ниже 99,8 % об.
- 4. Этилен. Наряду с сортом «полимеризационный» существует спрос и на менее чистый продукт для производства этилбензола.
- 5. Пропилен. В последнее время наметился дефицит пропилена в связи с ростом производства важнейших продуктов из него: поли-

пропилена, бутиловых спиртов (методом оксосинтеза), акрилонитрила и др.

- 6. Бутадиен, получающийся при пиролизе, используется главным образом для производства различных полимерных материалов.
 - 7. Пиробензин.

В качестве побочных продуктов образуется некоторое количество ароматических углеводородов — бензола, толуола и других, а также легкая смола. Из нее могут быть получены ароматические углеводороды (бензол, ксилол, стирол, толуол и др.), эти углеводороды являются важными исходными веществами для производства ценных продуктов.

4.11. Гидроочистка

Гидроочистка — процесс улучшения качества дистиллятов путем удаления из них серы, азота, кислорода, смолистых и непредельных соединений в среде водорода. Сырьем для гидроочистки служат прямогонные дистилляты и дистилляты вторичных процессов. Применяется с целью получения малосернистых бензинов, реактивных, дизельных, печных топлив, а также подготовки сырья для каталитического крекинга и риформинга, гидрокрекинга и др.

Основные реакции, происходящие при гидроочистке — это гидрогенолиз (разрыв) связей углерод — гетероатом с практически полным превращением серо-, азот- и кислородсодержащих органических соединений в предельные углеводороды с одновременным образованием легкоудаляемых H_2S , NH_3 и водяных паров. Например, при гидроочистке меркаптаны превращаются практически нацело:

$$RSH + H_2 \rightarrow RH + H_2S.$$

При гидроочистке происходит также гидрирование непредельных углеводородов и разрушение металлоорганических соединений.

Гидроочистку проводят при 250...415 °C, 1...10 МПа. Применяют катализаторы на основе оксидов металлов VII и VIII групп (никель, кобальт, молибден, вольфрам). В промышленности используют алюмокобальтмолибденовый (АКМ) и алюмоникельмолибденовый (АНМ) катализаторы. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, достаточно активен в гидрировании непредельных соединений. Катализатор АНМ проявляет большую активность при гидрировании ароматических и азотистых соединений.

В процессе гидроочистки на катализаторе откладывается кокс, в результате чего катализатор теряет активность. Для восстановления активности его подвергают регенерации. В зависимости от состава катализатора применяют газо-воздушный или паро-воздушный методы регенерации. Газо-воздушная регенерация осуществляется смесью инертного газа с воздухом при температуре до 550 °С. При паровоздушной регенерации используют смесь воздуха и водяного пара, нагретую в печи до температуры выжига кокса. Для цеолитсодержащих катализаторов паро-воздушный способ не используют. Длительность газо-воздушной регенерации составляет 100...120 ч, для паровоздушной она меньше.

В результате гидроочистки может быть снижено содержание (% по массе): серы в бензинах – с 0,03...0,6 до 10^{-5} , в дизельных топливах с 0,6...2,5 до 0,01...0,2, в вакуумных газойлях с 1,5...3,5 до 0,15...0,4, азота в бензинах с 0,01...0,03 до 10^{-4} , в вакуумных газойлях с 0,05...0,2 до 0,02...0,15. Кроме того, в нефтяных фракциях уменьшается содержание смолистых веществ, улучшаются запах и цвет, повышается устойчивость к окислению.

5. Продукты нефтепереработки, их свойства и применение

5.1. Бензин, его виды, условия получения, применение

Бензин — смесь углеводородов, выкипающих в пределах 30...200 °C. Бензины в основном получают при переработке нефти — прямой перегонке (прямогонный бензин), а также термическим крекингом, риформингом и коксованием.

Бензиновая фракция прямой перегонки нефти содержит от 5 до 10 атомов С в молекуле. Из этой фракции в свою очередь с помощью дробной перегонки выделяют следующие сорта бензинов:

- 1. Легкий бензин так называемый петролейный эфир; фракция с $t_{\text{кип}}$ 40...75 °C, плотностью 0,64...0,66 г/см³, применяется в качестве растворителя.
- 2. Средний бензин (собственно бензин) фракция с $t_{\text{кип}}$ 70...120 °C. Это наиболее ценная фракция, используемая для двигателей внутреннего сгорания.
- 3. Тяжелый бензин (лигроин) фракция с $t_{\text{кип}}$ 120...140 °C, плотность 0,73...0,77 г/см³, используется в качестве топлива для дизельных двигателей.

По назначению бензины делятся на автомобильные и авиационные.

Важнейшим эксплуатационным требованием к бензинам является бездетонационное сгорание в двигателях, для которых они предназначены. В камере карбюраторного двигателя во время сжатия образуется гомогенная топливно-воздушная рабочая смесь, которая воспламеняется от электрической искры. При нормальном сгорании фронт пламени воспламеняется со скоростью 20...30 м/с.

Детонацией называется особый ненормальный характер сгорания топлива в двигателе, при котором только часть рабочей смеси воспламеняется с нормальной скоростью. Несгоревшая часть рабочей смеси в какой-то момент цикла мгновенно самовоспламеняется, и скорость распространения пламени возрастает до 2500...3000 м/с, а давление возрастает резкими скачками, что создает ударную детонационную волну. Внешние признаки детонации: металлический стук в цилиндре и клубы черного дыма в выхлопных газах. На детонационных режимах мощность двигателя падает, расход топлива увеличивается, износ двигателя ускоряется.

За меру детонационной стойкости принято октановое число.

Октановое число — это условная единица детонационной стойкости, численно равная % содержанию (по объему) изооктана (2,2,4-триметилпентана) в его смеси с гептаном, эквивалентной по детонационной стойкости испытуемому топливу в стандартных условиях испытания. Октановое число эталонного изооктана — 100, гептана — 0.

Бензины в зависимости от способа их получения имеют разные октановые числа.

Так, бензины прямой перегонки нефти содержат большое число слабо разветвленных парафиновых углеводородов и имеют октановые числа в пределах 40...50 (редко около 70).

Бензины термического крекинга содержат большой % непредельных углеводородов и вследствие этого характеризуются большей детонационной стойкостью, для них октановое число в пределах 65...70; их добавляют только в автомобильные бензины.

Еще более высокие октановые числа имеют бензины каталитического крекинга, что связано с повышенным содержанием в них ароматических и изопарафиновых углеводородов. Такие бензины часто используют в качестве базовых для приготовления товарных высокооктановых бензинов.

Бензины каталитического риформинга имеют октановые числа 77...86 по моторному методу и 83...96 по исследовательскому мето-

ду. Их высокая детонационная стойкость объясняется большим содержанием ароматических углеводородов и олефинов разветвленного строения.

Хороший автомобильный бензин должен иметь октановое число 85, а авиационный бензин – не менее 100.

Для повышения детонационной стойкости в бензины вводят специальные добавки – антидетонаторы.

Цифры в марке автомобильных бензинов – октановые числа.

В качестве базовых компонентов авиационных бензинов используют бензины каталитического крекинга, в некоторых случаях – катализаты риформинга. Для улучшения эксплуатационных свойств авиационных бензинов в них добавляют алкилат, толуол, антидетонационные и антиокислительные присадки.

5.2. Керосин, его виды, условия получения, применение

Керосин — смеси углеводородов (С9...С16), выкипающие в пределах 110...320 °C. Содержит примеси сернистых, азотистых или кислородных соединений. Название происходит от греч. Кего́ѕ — воск. Имеет окраску от бесцветной до светло-коричневой с голубым оттенком. В зависимости от химического состава и способа переработки нефти, из которой получен керосин, в его состав входят: предельные алифатические углеводороды 20...60 %, нафтеновые 20...50 %, бициклические ароматические 5...25 %, непредельные до 2 %. Чем выше температура конца кипения смесей, тем больше в них бициклических углеводородов. Основные физико-химические свойства керосина: вязкость 1,2...4,5 мм²/с (при 20 °C), плотность 0,78...0,85 г/см³ (при 20 °C), температура вспышки 28...72 °C, теплота сгорания 42,9...43,1 МДж/кг, КВП 1,2...8,0 % по объему.

Керосин получают главным образом атмосферной перегонкой нефти, при необходимости с последующей очисткой химическими реагентами, гидрированием или гидроочисткой.

Современные области применения керосина: реактивное топливо (преимущественно авиационный керосин); компонент жидкого ракетного топлива (окислитель — жидкий O_2 и HNO_3); производственно-технические (технический керосин) и бытовые (осветительный керосин).

Авиационный керосин служит в двигателях летательных аппаратов не только топливом, но также хладагентом и применяется для смазыва-

ния топливных систем. Поэтому он должен обладать хорошими противоизносными и низкотемпературными свойствами, высокой термоокислительной стабильностью и большой удельной теплотой сгорания.

Технический керосин используют как сырье для пиролитического получения этилена, пропилена и ароматических углеводородов, в качестве топлива в основном при обжиге стеклянных и фарфоровых изделий, как растворитель при промывке механизмов и деталей. Деароматизированный путем глубокого гидрирования керосин содержит не более 7 % ароматических углеводородов и используется как растворитель в производстве ПВХ полимеризацией в растворе.

Осветительный керосин применяют в основном в обычных осветительных и калильных лампах, в качестве топлива в аппаратах для резки металлов и в бытовых нагревательных приборах, как растворитель в производствах пленок и лаков, при пропитке кож и промывке деталей в электроремонтных и механических мастерских. Качество осветительного керосина определяется высотой некоптящего пламени (ВНП), а также температурами вспышки и помутнения. ВНП определяет способность керосина гореть в стандартной фитильной лампе (диаметр фитиля 6 мм) ровным белым пламенем без нагара и копоти; численные значения этого показателя входят (в мм) в обозначения марок керосина. В высококачественном осветительном керосине должно быть максимальное количество легких фракций. Поэтому в составе осветительного керосина предпочтительны повышенное содержание предельных алифатических углеводородов и пониженное – ароматических, что приводит к уменьшению нагара и копоти и увеличению ВНП. Повышению ВНП и улучшению других эксплуатационных свойств керосина способствует также его гидроочистка.

5.3. Дизельные топлива

Дизельные топлива – смеси углеводородов, используемые в качестве топлив для дизелей и газотурбинных установок. Получают дизельные топлива при атмосферной и вакуумной перегонке нефти с последующей гидроочисткой и депарафинизацией. В некоторые сорта дизельного топлива добавляют до 20% гидроочищенного газойля, получаемого каталитическим крекингом.

Топливом для быстроходных дизельных двигателей служат легкие керосино-газойлевые маловязкие фракции нефти, для тихоходных – тяжелые вязкие фракции.

Таблица 5.1 **Характеристики дизельных топлив**

Показатель	Для быстроходных двигателей	Для тихоходных двигателей
Плотность, $\Gamma/\text{см}^3$, не более	0,8300,860	0,930
Вязкость, $\text{мм}^2/\text{c}$		
20 °C	1,56,0	
50 °C	_	20130
$T_{\text{кип}}$, °С	180360	250420
T_{3act} , °C	от −55 до −5	от –5 до 10
T_{BCII} , °C	3561	6585
Содержание, %, не более		
ванадий	- <	0,0100,015
cepa	0,20,5	0,52,0
Кислотное число, не более	5	_
Ионное число, не более	6	_
Коксуемость, %, не более	0,3	39
Зольность, %, не более	0,01	0,020,06

Присутствие H_2S , водорастворимых кислот и щелочей, H_2O , а в случае дизельного топлива для быстроходных двигателей – и механических примесей не допускается.

Главные эксплуатационные свойства дизельных топлив — быстрое воспламенение и плавное сгорание. Эти свойства характеризуются так называемым *цетановым числом* (ц. ч.). Наиболее легко воспламеняются парафиновые углеводороды нормального строения и олефины (ц. ч. соответственно 56...103 и 40...90), наиболее трудно — ароматические углеводороды (ц. ч. 5...30). Оптимальную работу двигателей обеспечивает топливо с ц. ч. 45...60. При ц. ч. менее 45 резко увеличиваются период задержки воспламенения (время между началом вспрыска и воспламенением топлива) и скорость нарастания давления в камере сгорания двигателя, усиливается износ узлов трения. При ц. ч. более 60 снижается полнота сгорания топлива, возрастают дымность выпускных газов и нагарообразование в камере сгорания, повышается расход топлива. С увеличением молярной массы углеводородов в гомологическом ряду ц. ч. возрастает.

Маркировка дизельных топлив включает содержание (в массовых долях) S и для летнего сорта — температуру вспышки (Л — 0,2...40), а для зимнего сорта — температуру застывания (З — 0,2 — минус 35). Дизельные топлива для тихоходных двигателей маркируют как ДМ и ДТ. Прокачиваемость дизельных топлив определяется их низкотем-

пературными свойствами (температуры помутнения и застывания), ухудшающимися при повышении содержания *п*-алканов. Пожаро-опасность дизельных топлив характеризуется температурой вспышки, зависящей от содержания легких фракций.

Эксплуатационные свойства дизельных топлив значительно улучшаются введением присадок: инициирующих, повышающих ц. ч.; противодымных; антиокислительных; антикоррозионных и других.

5.4. Мазут

Мазут – содержит углеводороды с большим числом углеродных атомов. Его подвергают дальнейшей переработке. Для предупреждения разложения мазута, которое происходит при температурах выше 300 °C, его перегоняют с водяным паром или в вакууме (под уменьшенным давлением). При этом из мазута выделяют так называемые соляровые масла и различные смазочные масла.

Соляровые и смазочные масла широко применяются в технике: первые – в качестве моторного топлива, вторые – для смазки механизмов.

Остаток мазута после отгонки соляровых и смазочных масел называется *гудроном* и идет для изготовления асфальтового покрытия дорог.

Парафин, выделяемый из масляных фракций некоторых сортов нефти и состоящий из смеси твердых углеводородов, применяется для изготовления свечей, в текстильной промышленности для пропитки тканей, а также в качестве сырья для получения различных химических веществ, например, высших карбоновых кислот.

Литература

- 1. Химия нефти и газа : учеб. пособие для вузов / под ред. В. А. Проскурякова и А. Е. Драбкина. Санкт-Петербург : Химия, 1995.
- 2. Химия нефти / под ред. 3. И. Сюняева. Ленинград : Химия, 1984.
- 3. Технология переработки нефти: учеб. пособие для вузов в 2-х частях / О. Ф. Глаголева [и др.]; под ред. О. Ф. Глаголевой и В. М. Капустина. Москва: Химия; Колос С, 2006.
- 4. Эрих, В. Н. Химия и технология нефти и газа / В. Н. Эрих, М. Г. Расина, М. Г. Рудин. Ленинград : Химия, 1977.
- 5. Жиряков, В. Г. Органическая химия / В. Г. Жиряков. Москва : Химия, 1977.
- 6. Каррер, П. Курс органической химии : пер. с нем. Ленинград : Хим. лит., 1962.

Содержание

Введение	3
1. Избранные главы органической химии	4
1.1. Органические вещества и предмет органической химии	4
1.2. Теория строения органических соединений А. М. Бутлерова	6
1.3. Основы классификации органических веществ	
2. Углеводороды, содержащиеся в нефти и получающиеся из нее	10
2.1. Предельные углеводороды, физические	
и химические свойства, основные представители, применение	10
2.1.1. Нахождение алканов в природе	11
2.1.2. Гомологический ряд, строение, изомерия алканов	11
2.1.3. Номенклатура алканов	13
2.1.4. Физические свойства алканов	15
2.1.5. Химические свойства алканов	15
2.1.6. Отдельные представители алканов и их применение	
2.2. Непредельные углеводороды, изомерия и номенклатура,	
их свойства и применение	17
2.2.1. Алкены (олефины, этиленовые углеводороды)	18
2.2.2. Алкины (ацетиленовые углеводороды)	22
2.2.3. Другие углеводороды нефти	24
3. Нефть. Происхождение, добыча, физические свойства, состав	25
3.1. Краткие сведения о происхождении нефти	25
3.2. Условия залегания нефти, разведка месторождений	
и добыча нефти	26
3.3. Физические свойства нефти	27
3.4. Состав нефти	
3.5. Сбор и подготовка нефти к транспортировке	
и переработке	29
3.6. Добыча газов	30
4. Переработка нефти	31
4.1. Прямая фракционная перегонка нефти	31
4.2. Термические процессы переработки нефти	33
4.3. Крекинг, виды крекинга и химические процессы	
при крекинге	33
4.4. Термический крекинг. Условия проведения,	
исходное сырье и продукты	34
4.5. Каталитический крекинг	
4.6. Риформинг	
4.7. Гидрокрекинг	37

4.8. Электрокрекинг	38
4.9. Коксование нефтяного сырья	
4.10. Пиролиз	40
4.11. Гидроочистка	
5. Продукты нефтепереработки, их свойства и применение	
5.1. Бензин, его виды, условия получения, применение	42
5.2. Керосин, его виды, условия получения, применение	
5.3. Дизельные топлива	45
5.4. Мазут	
Литература	

Учебное издание

Александрова Тамара Ивановна **Стоцкая** Оксана Анатольевна **Русов** Владимир Павлович и др.

химия нефти

Методические указания по курсу «Химия» для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных и газовых месторождений» дневной и заочной форм обучения

Электронный аналог печатного издания

 Редактор
 А. В. Власов

 Компьютерная верстка
 М. В. Аникеенко

Полписано в печать 27.01.11.

Формат 60х84/_{16.} Бумага офсетная. Гарнитура «Таймс». Ризография. Усл. печ. л. 3,02. Уч.-изд. л. 2,9. Изд. № 54. E-mail: ic@gstu.by http://www.gstu.by

Издатель и полиграфическое исполнение: Издательский центр учреждения образования «Гомельский государственный технический университет имени П. О. Сухого».

ЛИ № 02330/0549424 от 08.04.2009 г. 246746, г. Гомель, пр. Октября, 48.