ФОРМИРОВАНИЕ СЛОЖНОПРОФИЛЬНЫХ ГРАВЮР ВЫСАДОЧНОГО И ЧЕКАНОЧНОГО ИНСТРУМЕНТА С ПРЕДВАРИТЕЛЬНЫМ УПРОЧЕНИЕМ ПОВЕРХНОСТИ

И.Н. Степанкин, канд. техн. наук доц., В.М. Кенько, канд. техн. наук доц. И.А. Панкратов, ассистент Гомельский государственный технический университет имени П.О.Сухого (г. Гомель, Беларусь)

Введение. Традиционным способом получения сложнопрофильных гравюр чеканочного и высадочного инструмента является электроэрозионная об-

работка. Эта технология обеспечивая высокую точность формируемой поверхности снижает локальную прочность материала, за счет формирования специфического профиля обрабатываемой поверхности. В наибольшей степени это проявляется при обработке инструментальных сталей ледебуритного класса в местах выхода карбидных частиц на поверхность гравюры [1]. Одним из действенных способов, позволяющих повысить локальную прочность металла, является горячее выдавливание профиля инструмента, которое изменяет текстуру металла [2]. Однако данная технология предполагает длительный контакт нагретой заготовки с кислородом воздуха, что приводит к окислению металла и искажению профиля гравюры в области наиболее тонких элементов рисунка поковки. Точное воссоздание профиля гравюры особенно актуально при производстве государственных наград и других элементов символики. В этом случае изготовление штампов предполагает применение холодного выдавливания полости инструмента [3]. Однако технология последующего упрочнения рабочей поверхности в её традиционном применении – длительное термическое воздействие на рабочую поверхность приводит к искажению полученного профиля гравюры.

В работе исследована технология формирования гравюры чеканочных и высадочных штампов по предварительно упрочненному слою.

Объекты и методики исследования. В качестве объектов исследований использовали чеканочную и высадочную оснастку. Наиболее сложную гравюру имеет чеканочный инструмент для производства государственных наград.

В процессе работы инструмента даже при небольшом количестве сложно-профильных элементов гравюры интенсивное течение металла заготовки по поверхности инструмента вызывает износ и искажение профиля гравюры.

Результаты исследований и их обсуждение. В качестве упрочняющей технологии использовали науглероживание. Эта обработка в отношении высоколегированных быстрорежущих сталей является эффективной в части формирования рабочего слоя с большим количеством карбидных частиц. Достигается высокая износостойкость поверхности и сохраняется прочность свойственная быстрорежущим сталям. В упрочненнрм слое сформированы специальные карбиды типа (Fe, Cr)₇C₃, MoC, VC и WC [4, 5]. Размеры карбидных частиц при науглероживании в течении 4–х часов при температуре 950 °C составляют 4–9 мкм и имеют вид глобул. Общая толщина карбидного слоя в этом случае достигает 0,5–0,6 мм. Наиболее крупные частицы формируются в зонах скопления первичных ледебуритных карбидных строчек. Объемная доля карбидной фазы в науглероженном слое быстрорежущей стали Р6М5 достигает 75–78 %, при содержании углерода порядка 2 % [5].

Оценка технологической пластичности упрочненных образцов показала, что максимальная деформация составляет 20%. Превышение этой величины приводит к зарождению микротрещин, которые при последующей термообработке приводят к разрушению материала. Величина внешнего напряжения, необходимого для протекания пластической деформации составляет порядка 2000 МПа.

Учитывая низкую величину технологической пластичности, полученную в результате изотермического науглероживания, с целью увеличения порогового значения предельной деформации, операцию науглероживания совместили с процессом циклического отжига. В результате величина технологической пластичности до момента образования первых микродефектов возросла до значения 45–47 %, а рабочее напряжение, необходимое для пластического деформирования материала с науглероженным слоем, уменьшено до 1200 МПа. Структура науглероженного слоя, сформированного в процессе многократных фазовых превращений, отличается равномерным распределением карбидных частиц, размеры которых не превышают 3 мкм. Благодаря пластичности металлической матрицы — зернистого перлита и более равномерному распределению напряжений в окрестности включений, более чем двух кратное превышение порогового значение деформации обеспечивает получение однородного, бездефектного рабочего слоя металла.

Заключение. Рассмотрено влияние режимов формирования науглероженных слоев быстрорежущих сталей на морфологию и технологическую пластичность металла в холодном состоянии. Показана возможность увеличения технологической пластичности быстрорежущей стали P6M5 с науглероженным слоем с 20 до 47%. Рабочее напряжение при деформировании образцов снижено с 2000 до 1200 МПа.

Литература

- 1. Кенько В.М., Степанкин И.Н. Влияние микроструктуры штамповой холодновысадочной оснастки на её износостойкость / / Трение и износ.— 2000.— Т.21. С. 323—328.
- 2. Кенько В.М., Пинчук В.В., Степанкин И.Н. Оптимизация технологии изготовления холодновысадочных матриц / / Кузнечно—штамповочное производство. 1998. № 11. С. 22—24.
- 3. Бунатян Г.В. и др. Холодное выдавливание деталей формующей технологической оснастки / Г.В. Бунатян, В.А. Скуднов, А.И. Хыбемяги. М.: Машиностроение, 1998.-182 с.: ил.
- 4. Геллер Ю.А. Инструментальные стали: Справочник.— М.: Металлургия, 1984.— 584 с.
- 5. Тарасов А.Н. Структура и свойства диффузионных слоев, формирующихся на легированных сталях при цементации в активированных древесно—угольных смесях / / Металловедение и термообработка металлов.— 2007.—№ 2(620).— С. 17–22.