МОДЕЛИРОВАНИЕ РАСЧЕТА РЕАКЦИЙ СМЕННЫХ МНОГОГРАННЫХ ПЛАСТИН В КОРПУСЕ СБОРНОГО ИНСТРУМЕНТА

Т. В. Лапинкая

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель М. И. Михайлов

Моделированием статических нагрузок режущих элементов сборных режущих инструментов занимались многие ученые. В представленной работе разработана модель с учетом базирования сменных многогранных пластин (СМП).

При моделировании из базовой системы координат путем последовательных переходов находили такую систему координат, в которой хотя бы одна ось была сонаправлена с силой реакции в базовой точке.

Для пятигранной пластины размещали систему координат так, чтобы оси совпадали с осями технологической системы координат. Затем выбранную систему координат поворачивали вокруг оси Z на угол ϕ и получили систему координат $X_1Y_1Z_1$ (рис. 1).

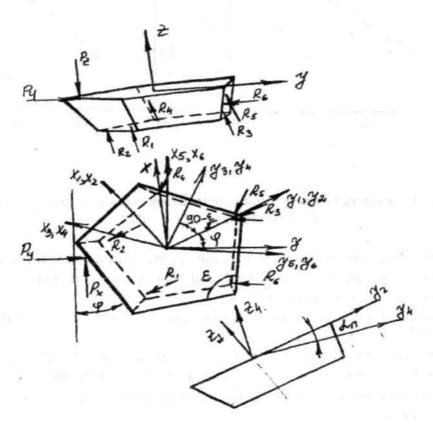


Рис. 1. Расчетная схема

Уравнения связи между системами координат приняли вид:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}.$$
 (1)

Затем поворачивали систему координат $X_1Y_1Z_1$ вокруг оси X_1 на угол γ так, чтобы оси X_2Y_2 новой системы координат располагались в плоскости, параллельной опорной грани.

Тогда уравнения связи между системами координат приняли следующий вид:

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\gamma) & -\sin(\gamma) \\ 0 & \sin(\gamma) & \cos(\gamma) \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}.$$
 (2)

Подставив уравнения (2) в систему (1), получили систему уравнений

$$\begin{cases} x = x_2 \times \cos(\varphi) + y_2 \times \sin(\varphi) \times \cos(\gamma) - z_2 \times \sin(\varphi) \times \sin(\gamma), \\ y = -x_2 \times \sin(\varphi) + y_2 \times \cos(\varphi) \times \cos(\gamma) - z_2 \times \cos(\varphi) \times \sin(\gamma), \\ z = y_2 \times \sin(\gamma) + z_2 \times \cos(\gamma). \end{cases}$$
(3)

Так как ось Z_2 была сонаправлена с силами реакции $R_1R_2R_3$, то выражения для проекции их на оси XYZ будут соответствовать выражениям при координатах $X_2Y_2Z_2$ уравнения (3)

$$\begin{cases} R_{1x} = -R_1 \times \sin(\varphi) \times \sin(\gamma), \\ R_{1y} = -R_1 \times \cos(\varphi) \times \sin(\gamma), \\ R_{1z} = R_1 \times \cos(\gamma). \end{cases}$$
(4)

Далее систему координат $X_2Y_2Z_2$ поворачивали вокруг оси Z_2 на угол α и получили систему координат $X_3Y_3Z_3$, ось Y_3 которой располагалась перпендикулярно грани, где находились точки 4 и 5 (рис. 1). Затем систему координат $X_3Y_3Z_3$ поворачивали вокруг оси X_3 так, чтобы оси новой системы координат располагались в плоскости параллельно опорным точкам.

Учитывая связи между системами координат, получили расчетные выражения для проекций сил реакции в точках 4 и 5 :

$$\begin{cases} R_{4x} = -R_4 \times \left[\cos(\alpha) \times (\cos(\varphi) \times \cos(\varepsilon/2) + \sin(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)\right) + \sin(\alpha) \times \sin(\varphi) \times \sin(\gamma)\right], \\ R_{4y} = -R_4 \times \left[\cos(\alpha) \times (-\sin(\varphi) \times \cos(\varepsilon/2) + \cos(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)\right) + \sin(\alpha) \times \sin(\gamma) \times \cos(\varphi)\right], \\ R_{4z} = -R_4 \times \left[\cos(\alpha) \times \sin(\gamma) \times \sin(\varepsilon/2) - \sin(\alpha) \times \cos(\gamma)\right]. \end{cases}$$
 (5)

$$\begin{cases} R_{5x} = -R_5 \times \left[\cos(\alpha) \times \left(\cos(\varphi) \times \cos(\varepsilon/2) + \sin(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)\right) + \sin(\alpha) \times \sin(\varphi) \times \sin(\gamma)\right], \\ R_{5y} = -R_5 \times \left[\cos(\alpha) \times \left(-\sin(\varphi) \times \cos(\varepsilon/2) + \cos(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)\right) + \sin(\alpha) \times \sin(\gamma) \times \cos(\varphi)\right], \\ R_{5z} = -R_5 \times \left[\cos(\alpha) \times \sin(\alpha) \times \sin(\varepsilon/2) - \sin(\alpha) \times \cos(\gamma)\right]. \end{cases}$$

Систему координат $X_3Y_3Z_3$ поворачивали вокруг оси Z_3 так, чтобы ось Y_5 новой системы координат проходила перпендикулярно грани, на которой располагалась точка 6.

Затем поворачивали систему координат $X_5Y_5Z_5$ вокруг оси X_5 так, чтобы ось Y_6 новой системы координат располагались параллельно силе реакции R_6 опорной грани.

Учитывая связи между системами координат, получили расчетные варажения для проекций силы реакции в точке 6:

$$A = -\sin(\varepsilon) \times \cos(\varphi) \times \sin(\varepsilon/2) - \sin(\varphi) \times \cos(\gamma) \times \cos(\varepsilon/2),$$

$$B = -\cos(\varepsilon) \times (\cos(\varphi) \times \cos(\varepsilon/2) + \sin(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)),$$

$$A_1 = -\sin(\varepsilon) \times (-\sin(\varphi) \times \sin(\varepsilon/2) - \cos(\varphi) \times \cos(\gamma) \times \cos(\varepsilon/2)),$$

$$B_1 = -\cos(\varepsilon) \times (-\sin(\varphi) \times \cos(\varepsilon/2) + \cos(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)),$$

$$R_{6x} = -R_6 \times \left[\cos(\alpha) \times (A+B) + \sin(\alpha) \times \sin(\varphi) \times \sin(\varphi)\right],$$

$$R_{6y} = -R_6 \times \left[\cos(\alpha) \times (A_1+B_1) + \sin(\alpha) \times \cos(\varphi) \times \sin(\varphi)\right],$$

$$R_{6z} = -R_6 \times \left[\sin(\alpha) \times (\sin(\varepsilon) \times \sin(\varphi) \times \cos(\varepsilon/2) - \cos(\varepsilon) \times \sin(\varphi) \times \sin(\varepsilon/2)\right] - \sin(\alpha) \times \cos(\varphi)$$

Далее рассчитывали координаты точек 1, 2, 3, ..., 6 приложения сил реакции. Используя методику систем координат, получили расчетные выражения. Тогда уравнение связи между системами координат приняли вид:

$$\begin{pmatrix} x_4 \\ y_4 \\ z_4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} x_5 \\ y_5 \\ z_5 \\ 1 \end{pmatrix}.$$
(7)

Далее систему координат перемещали по оси Y на нижнюю грань пластины на величину (a), где располагались точки 4 и 5. Новую систему координат обозначили через $X_6Y_6Z_6$.

После несложных преобразований окончательно получили:

$$x_1 = x_{6.1} \times A + y_{6.1} \times B + z_{6.1} \times \sin(\varphi) \times \sin(\gamma) - a \times C + h \times \sin(\varphi) \times \sin(\gamma),$$

$$y_1 = x_{6.1} \times A_1 + y_{6.1} \times B_1 + z_{6.1} \times \sin(\gamma) \times \cos(\varphi) - a \times C_1 + h \times \sin(\gamma) \times \cos(\varphi),$$

$$z_1 = x_{6.1} \times (-\sin(\gamma) \times \cos(\varepsilon/2)) - y_{6.1} \times \sin(\gamma) \times \sin(\varepsilon/2) - z_{6.1} \times \cos(\gamma) +$$

$$+ a \times \sin(\gamma) \times \sin(\varepsilon/2) - h \times \cos(\gamma).$$

THE
$$A = \cos(\varphi) \times \sin(\varepsilon/2) - \sin(\varphi) \times \cos(\gamma) \times \cos(\varepsilon/2)$$
,
 $B = -\cos(\varphi) \times \cos(\varepsilon/2) - \sin(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)$,
 $C = -\cos(\varphi) \times \cos(\varepsilon/2) - \sin(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)$,
 $A_1 = -\sin(\varphi) \times \sin(\varepsilon/2) - \cos(\varphi) \times \cos(\gamma) \times \cos(\varepsilon/2)$,
 $B_1 = \sin(\varphi) \times \cos(\varepsilon/2) - \cos(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)$,
 $C_1 = \sin(\varphi) \times \cos(\varepsilon/2) - \cos(\varphi) \times \cos(\gamma) \times \sin(\varepsilon/2)$.

Используя аналогичную методику определили координаты всех базовых точек. Найденные значения проекций сил реакций и координат опорных точек подставляли в систему уравнений равновесия СМП:

$$\begin{split} \sum_{i} R_{ix} &= 0 \rightarrow -R_{1x} - R_{2x} - R_{3x} - R_{4x} - R_{5x} - R_{6x} + P_{x} = 0, \\ \sum_{i} R_{iy} &= 0 \rightarrow -R_{1y} - R_{2y} - R_{3y} - R_{4y} - R_{5y} - R_{6y} + P_{y} = 0, \\ \sum_{i} R_{iz} &= 0 \rightarrow R_{1z} + R_{2z} + R_{3z} - R_{4z} - R_{5z} - R_{6z} + P_{z} = 0, \end{split}$$

$$\sum_{i} M_{ix} = 0 \rightarrow -R_{1z} \times y_{1} - R_{1y} \times z_{1} - R_{2z} \times y_{2} - R_{2y} \times z_{2} - R_{3y} \times z_{3} + R_{3z} \times y_{3} - R_{4z} \times y_{4} - R_{4y} \times z_{4} + R_{5z} \times y_{5} - R_{5y} \times z_{5} + R_{6z} \times y_{6} - R_{6y} \times z_{6} + P_{y} \times z + P_{z} \times y = 0,$$

$$\sum_{i} M_{iy} = 0 \rightarrow R_{1z} \times x_{1} + R_{1x} \times z_{1} + R_{2z} \times x_{2} + R_{2x} \times z_{2} - R_{3z} \times x_{3} + R_{3x} \times z_{3} + R_{3x} \times z_{3} + R_{4x} \times z_{4} - R_{4z} \times x_{4} + R_{5x} \times z_{5} - R_{5z} \times x_{5} + R_{6z} \times x_{6} + R_{6x} \times z_{6} - P_{z} \times x - P_{x} \times z = 0,$$

$$\sum_{i} M_{iz} = 0 \rightarrow R_{1y} \times x_{1} + R_{2x} \times y_{2} + R_{3x} \times y_{3} - R_{3y} \times x_{3} - R_{4x} \times y_{4} - R_{4y} \times x_{4} + R_{5y} \times x_{5} + R_{5x} \times y_{5} + R_{6y} \times x_{6} - R_{1x} \times y_{1} + P_{x} \times y - P_{y} \times x = 0.$$

$$(10)$$

С помощью метода Гаусса решали матрицу и находили значения $R_1, R_2, ..., R_6$:

$$R_1 = 3693H$$
, $R_2 = 5321H$, $R_3 = 3997H$, $R_4 = 1823H$, $R_5 = 1763H$, $R_6 = 1935H$.