УДК 621.81

ПРОГНОЗИРОВАНИЕ ТЕРМОМЕХАНИЧЕСКИХ ПРОЦЕССОВ ПРИ ФРИКЦИОННОМ ВЗАИМОДЕЙСТВИИ КОНТАКТИРУЮЩИХ ТЕЛ (ЧИСЛЕННЫЕ МЕТОДЫ)

В.П. Сергиенко

Государственное научное учреждение «Институт механики металлополимерных систем им. В.А. Белого НАН Беларуси», г. Гомель

В.М. Ткачев, А.И. Столяров

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Эффективность тормозных устройств мобильных машин зависит от температуры трения и существенно может снижаться при высокой температуре в деталях тормозов. Повышение температуры во время торможения может являться причиной повышенного износа контактирующих поверхностей, трещинообразования и возникновения термически возбуждаемых вибраций. Указанные причины снижают надежность и долговечность тормозов. Поэтому, для повышения безопасности эксплуатации важно прогнозировать изменение температуры и температурную эффективность тормозных систем.

Обсуждается тепловая схема контактного взаимодействия пар трения, которая учитывает генерацию тепла на поверхностях фрикционного контакта при многократных нестационарных процессах.

В работе тепловую нагруженность и термоконтактные параметры рассчитывали с использованием системы уравнений тепловой динамики трения.

Решаются взаимосвязанные задачи: контактная, тепловая и термоупругая. Граничные условия задавались на подвижном контакте. При расчете температурных полей и напряжений в зоне фрикционного контакта учитывали кинетический характер термоконтактных параметров, определяющих тепловыделение.

На основе решения задачи распространения тепла в зоне фрикционного контакта с учетом нелинейности теплофизических свойств фрикционного материала, проведен численный расчет температур и напряжений в контактирующих телах в режиме торможения. Вычислены распределения температур и напряжений по толщине фрикционно-взаимодействующих тел в зависимости от удельных сил трения, продолжительности цикла торможения и конструктивных особенностей фрикционного узла. Спрогнозированы параметры трения, при которых могут возникать дефекты структуры материалов тел трения. Проведен анализ тепловых процессов, про-исходящих в тормозных узлах мобильных энергетических средств.

Установлено, что вследствие интенсивности тепловыделения в процессе трения, фактическая площадь фрикционного контакта в дисковых тормозах уменьшается, составляя ≈30 % от номинальной. Это является причиной увеличения неоднородности температурных полей и существенного возрастания поверхностных температур и температурных напряжений в трущихся телах, а также увеличению времени торможения. Предложенный метод расчета применяется при прогнозировании рабочих характеристик тормозов, и позволяет оптимизировать конструкцию тормоза для заданных материалов фрикционной пары.