ИССЛЕДОВАНИЕ ВЛИЯНИЯ МАТЕРИАЛОВ ПОРОШКОВ И УСЛОВИЙ ОБРАБОТКИ НА ИЗНОСОСТОЙКОСТЬ ФЕРРОМАГНИТНЫХ ПОКРЫТИЙ

Ф.И. Пантелеенко

Учреждение образования «Полоцкий государственный университет», г. Новополоцк, Республика Беларусь

В.А. Люцко, Г.В. Петришин, В.Ф. Соболев

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

В работе приведены результаты исследований износостойкости покрытий из различных ферромагнитных порошков (ФМП) ферробора (ФБ-6, ФБ-17 ГОСТ14848-69), ферроборхрома (ФХБ-1, ФБХ-6-2 ТУ 48-42-12-70) серого чугуна, легированного В, Si, Cr, Ni (СЧЛ-1), абразивного (ферробраз-311) в условиях трения скольжения со смазкой, содержащей абразив. Данный вид износа характерен для большого ряда деталей сопряжений, работающих в условиях трения со смазкой, в которую абразив попадает либо из окружающей среды, либо в виде продуктов износа, шлама, нагара и т. д. (подшипниковые узлы сельскохозяйственных, транспортных, дорожно-строительных машин, детали двигателей внутреннего сгорания, направляющие элементы корпусных деталей технологического оборудования). Поэтому проблема повышения долговечности для деталей, работающих в указанных условиях, в настоящее время является вполне актуальной.

Исследования проводились на машине трения СМТ-1, микротвердость упрочненных образцов определялась на приборе ПМТ-1. Упрочнение образцов производилось на лабораторной установке, смонтированной на базе горизонтальнофрезерного станка мод. 6Р82Г в двух режимах: с включенным блоком стабилизации и с его отключением. Анализ экспериментальных данных показал, что материал ферропорошка оказывает существенное влияние на износ образцов. В порядке уменьшения износостойкости покрытий, в зависимости от марки применяемого ферропорошка, располагаются в следующей последовательности:

СЧЛ-1(
$$\varepsilon_{omh.}$$
 = 4,62) \rightarrow ФХБ-1 ($\varepsilon_{omh.}$ = 3,98) \rightarrow ФБ-17($\varepsilon_{omh.}$ = 2,96) \rightarrow ФБ-6 ($\varepsilon_{omh.}$ = 2,13) \rightarrow ФБХ-6-2 ($\varepsilon_{omh.}$ = 2,03) \rightarrow ферробраз-311 ($\varepsilon_{omh.}$ = 1,53).

Наибольшую износостойкость имеют покрытия из порошков СЧЛ-1 и ФХБ-1, хотя они по значениям микротвердости соответственно $H_{\mu}=(1600-1950)\cdot 10$ МПа и $H_{\mu}=(1250-1500)$ уступают покрытиям из ферропорошка ФБ-17 с $H_{\mu}=(1550-2080)\cdot 10$ МПа. Повышенная износостойкость данных металлопокрытий объясняется более плавным изменением механических свойств по глубине поверхностного слоя. Введение в состав ферропорошка СЧЛ-1 никеля способствует созданию менее хрупких покрытий по сравнению с покрытиями из ФХБ-1. Этим объясняется разница в износостойкости покрытий из данных ферропорошков. МЭУ со стабилизацией позволяет снизить интенсивность изнашивания для различных марок ферропорошков в 1,17-1,21 раза по сравнению с МЭУ по традиционной схеме. Полученные результаты хорошо согласуются с исследованиями микроструктуры и микротвердости покрытий, полученных в условиях стабилизации МЭУ и без нее.

После приработки, в зависимости от марки ферропорошка, коэффициенты трения в порядке увеличения значений располагаются в следующей последовательности:

$$\Phi B6 \rightarrow \Phi BX-6-2 \rightarrow \Phi B-17 \rightarrow \Phi eppo6pa3-311 \rightarrow CЧЛ-1 \rightarrow \Phi XB-1 \rightarrow \Phi BX-6-2$$
.

Таким образом, путем подбора материала ферропорошка и режимов упрочнения можно получать покрытия, отвечающие конкретным эксплуатационных характеристикам.